羅晶晶,范旭良,馬榮偉,胡浩,牛振江*
(先進催化材料教育部重點實驗室,固體表面反應化學浙江省重點實驗室,浙江師范大學物理化學研究所,浙江 金華 321004)
超薄SnO2修飾Cu2O多孔薄膜的可見光光電化學性能
羅晶晶,范旭良,馬榮偉,胡浩,牛振江*
(先進催化材料教育部重點實驗室,固體表面反應化學浙江省重點實驗室,浙江師范大學物理化學研究所,浙江 金華 321004)
在FTO(即摻雜氟的SnO2透明導電玻璃)基底上采用兩步恒流電沉積,得到厚度約500 nm的金屬Cu薄膜,然后置于SnO2溶膠中浸漬并經(jīng)175 °C加熱氧化,制得由超薄SnO2修飾的Cu2O多孔薄膜。利用X射線衍射(XRD)、拉曼光譜、掃描電鏡(SEM)和漫反射-紫外可見光譜(UV-Vis DRS)表征了試樣的結構、形貌及光學性質。通過在0.2 mol/L Na2SO4溶液中測試樣品在可見光和零偏壓下的光電流,分析了薄膜的光電化學性能。結果表明,超薄的SnO2修飾層能顯著增強Cu2O多孔薄膜的光電化學性能。在SnO2溶膠中浸漬10 s所制備的超薄SnO2修飾Cu2O多孔薄膜,其光電流密度是Cu2O未修飾薄膜的4倍。
電沉積銅;氧化亞銅;二氧化錫;薄膜;光電化學;光電流密度
First-author’s address:Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
充分利用太陽能是解決能源和環(huán)境問題的途徑之一。自1972年Fujishima和Honda[1]用TiO2光電極在紫外光下進行光電化學分解水的工作以來,尋找能夠在可見光下光分解水的優(yōu)良光催化材料一直是國內(nèi)外研究的一個熱點[2-5]。
Cu2O是一種p型直接帶隙半導體材料,禁帶寬度Eg= 1.9 ~ 2.2 eV[6-7],對可見光有良好的吸收效率,而且自然資源豐富、無毒、制備成本低。然而Cu2O在光電化學反應中,光生載流子復合機率較高,且易發(fā)生光腐蝕現(xiàn)象,降低了Cu2O的性能[8-9]。國內(nèi)外學者對提高Cu2O的光催化活性進行了一系列研究[10],其中,用一些物質與Cu2O復合或對Cu2O摻雜是對其改性的有效方法。例如,通過表面負載碳層抑制Cu2O的光腐蝕現(xiàn)象[11],Tran等則將還原的氧化石墨烯(r-GO)[12]、ZnO[13]或SnO2[14]與Cu2O復合,提高了Cu2O的光催化光電化學性能。通過Sn離子摻雜也能提高Cu2O的光催化活性[15]。本課題組通過電化學方法制備出各種多孔SnO2/Cu2O復合薄膜[16-17],都顯示出良好的光催化降解羅丹明B的性能。
SnO2是一種n型半導體材料,化學性質穩(wěn)定[18]。當SnO2與p型Cu2O復合時,能形成p-n異質結和界面電場,促進光生載流子的分離和傳輸,從而改善材料的光學和電學性能[19]。本文在已有研究[16-17]的基礎上,通過電沉積和溶膠修飾,在FTO導電玻璃(即摻雜氟的SnO2透明導電玻璃)基底上制得超薄SnO2修飾的多孔Cu2O薄膜,測試了樣品在零偏壓和可見光條件下的光電化學性能,分析了薄膜的結構、形貌以及光學性質。
1. 1 薄膜的制備
1. 1. 1 Cu2O薄膜
根據(jù)文獻[20-23]和前期探索,選擇的鍍液組成為0.05 mol/L Cu(NO3)2+ 1.5 mol/L 乳酸,pH 1.0 ~ 1.5,溫度為(35 ± 2) °C。采用雙電極體系電沉積Cu薄膜。陰極為FTO導電玻璃(暴露面積為2.0 cm2,其余部分進行絕緣處理),陽極為3 cm × 4 cm的純銅片(99.99%,質量分數(shù),下同),陰陽極間距固定為4 cm。電鍍前,基底依次經(jīng)丙酮、乙醇、去離子水超聲清洗。采用雙電流階躍法沉積,即先在25.0 mA/cm2的電流密度陰極極化10 s,再在7.5 mA/cm2的電流密度下沉積90 s。所得鍍層用純水沖洗3次后干燥備用。Cu薄膜外觀致密均勻,與FTO基底結合良好。沉積的Cu薄膜經(jīng)清洗、熱風干燥后置于馬弗爐中,以5 °C /min的速率升溫至175 °C,恒溫加熱2 h,制得Cu2O薄膜。
1. 1. 2 SnO2修飾Cu2O薄膜
SnO2溶膠的制備參照文獻[24-26]并略加改進。稱取4.75 g SnCl4·5H2O溶于100 mL的1∶1純水-無水乙醇混合溶劑中,在(50 ± 2) °C下磁力攪拌6 h,得到無色透明的溶膠。電沉積Cu薄膜放入SnO2溶膠中浸漬一定時間后取出,再放入去離子水清洗,吹干后經(jīng)與制備Cu2O薄膜時相同的條件下熱氧化處理,制備得SnO2修飾的Cu2O薄膜。
1. 2薄膜的結構和形貌表征
薄膜結構通過荷蘭Phillips公司的PW3040/60型X射線衍射儀(XRD)分析,測試條件為CuKα靶,工作電壓40 kV,工作電流40 mA。薄膜表面形貌用日本Hitachi公司的S4800型掃描電子顯微鏡(SEM)分析,測試條件:加速電壓5 kV,工作電流10 μA。利用英國Renishaw RW1000型顯微共焦激光拉曼光譜儀對樣品進行拉曼光譜檢測,激發(fā)波長為514.5 nm。樣品的光學性質以紫外-可見漫反射光譜(UV-Vis DRS)分析,所用儀器為美國Thermo公司的Nicolet Evolution 500型紫外可見分光光度儀。
1. 3 SnO2修飾Cu2O薄膜的光電性能測試
采用兩電極體系,以所得薄膜為工作電極(受光照面積為 1.0 cm2),Pt片為對電極,電解液為 0.2 mol/L Na2SO4。光源為北京紐比特科技有限公司的150 W的Xe燈,用紫外截止濾光片ZJB380濾去光源的紫外部分。用上海辰華儀器公司的CHI440電化學工作站測試樣品在零偏壓下的光電流-時間(I-t)曲線。實驗時,每次光照50 s后遮光50 s為一次循環(huán),同一樣品經(jīng)過10次循環(huán)以上的測試。
實驗所用的化學試劑均為市售分析純。
2. 1 薄膜的結構
圖1是各種薄膜樣品[FTO基底、Cu、Cu2O、Cu2O/SnO2(1)(浸漬SnO2溶膠10 s)和Cu2O/SnO2(2)(浸漬SnO2溶膠20 s)]的XRD分析結果。由圖可見,與基底FTO相比,電沉積的Cu膜在2θ = 43.3°處出現(xiàn)對應于Cu(111)晶面的衍射峰(JCPDS No.89-2838)。這表明在本文沉積條件下,電沉積層中只有單一的金屬 Cu相,與文獻[20]在相近pH條件下得到的結果相同。未浸漬SnO2溶膠的Cu薄膜經(jīng)175 °C熱處理2 h后(Cu2O),在2θ為36.5°和42.4°出現(xiàn)分別對應于Cu2O的(111)、(200)晶面的特征衍射峰(JCPDS No.77-0199),而單質Cu的衍射峰消失,也沒有出現(xiàn)CuO相的衍射峰。這說明此條件下,單質Cu全部轉變?yōu)榧兊腃u2O相。經(jīng)過浸漬SnO2溶膠10 s [Cu2O/SnO2(1)]和20 s[Cu2O/SnO2(2)]并熱處理后得到的薄膜,XRD衍射特征與Cu2O完全相同,沒有SnO2相的衍射峰??赡艿脑蚴切揎椩贑u2O表面的SnO2膜太薄[27],衍射峰太弱并被基底FTO的強衍射峰所掩蓋。但從其衍射譜中也可看出,經(jīng)SnO2修飾后,Cu2O的衍射峰強度隨浸漬溶膠的時間延長有所減弱,意味著有SnO2覆蓋于Cu2O表面。
為確定Cu2O表面有SnO2修飾層存在,通過表面拉曼光譜對樣品進行了分析,見圖2。從圖中可看到,基底FTO在630 cm-1和780 cm-1處有很弱的拉曼散射峰。未修飾的Cu2O膜在120、148、218和625 cm-1處出現(xiàn)拉曼散射峰,這些峰均可歸屬于Cu2O的拉曼散射[7,28-30];而有SnO2修飾的薄膜,在416、502、525和636 cm-1處出現(xiàn)新峰,可指認為SnO2的拉曼散射[31-34]。而且SnO2修飾的薄膜中,除了位于625 cm-1的Cu2O拉曼散射峰被636 cm-1的SnO2散射峰包含之外,其余的峰與未修飾的Cu2O薄膜基本相近,強度沒有明顯減小。這進一步表明修飾在Cu2O表面的SnO2修飾層非常薄。
圖1 各樣品的XRD譜圖Figure 1 XRD patterns of various samples
圖2 FTO、Cu2O和Cu2O/SnO2樣品的拉曼光譜Figure 2 Raman spectra of samples of FTO, Cu2O, and Cu2O/SnO2
2. 2 薄膜的形貌
圖3a、3b、3c和3d分別為FTO基底,Cu、Cu2O和SnO2修飾的Cu2O薄膜的SEM照片(放大10 000倍) 及其局部放大圖(放大50 000倍)。由圖3的SEM分析結果可見,F(xiàn)TO基底表面是多面體的無規(guī)則堆積(圖3a)。電沉積的Cu薄膜呈納米棒構成的類花狀結構(圖3b)。在本文的電沉積過程中,開始時的短時間高陰極電流極化有利于Cu鍍層的成核,而后續(xù)的低陰極電流有利于控制晶粒的生長和形貌,并提高沉積層與基底的結合力。因此,雙電流階躍的方法能夠獲得與FTO基底結合良好的較均勻的類花狀Cu沉積層。經(jīng)氧化后,原來的棒狀形貌變成納米球形顆粒,Cu2O薄膜表面呈納米顆粒聚集形成的島狀形貌(圖3c)。而經(jīng)過浸漬后氧化的Cu2O/SnO2修飾薄膜,則呈不規(guī)則顆粒無序堆積的多孔形貌(圖3d)。原因可能是浸漬修飾的SnO2溶膠粒子在后續(xù)熱處理中發(fā)生聚合并影響了Cu氧化時的結晶過程。
圖3 各樣品的SEM照片F(xiàn)igure 3 SEM images of various samples
而從樣品的SEM截面形貌照片(如圖4所示)可見,Cu、Cu2O 和SnO2修飾的Cu2O 都呈現(xiàn)出半球狀形貌。薄膜的厚度都在400 ~ 500 nm之間。在修飾的薄膜上看不出明顯的SnO2修飾層,進一步證明了Cu2O表面的SnO2層很薄。與前面XRD和拉曼光譜分析結果一致。
2. 3 Cu2O/SnO2薄膜的光電化學性能
圖4 Cu、Cu2O和Cu2O/SnO2薄膜試樣的截面形貌Figure 4 Cross-sectional morphologies of Cu, Cu2O, and Cu2O/SnO2thin films
圖5給出了在零偏壓和可見光照射下,F(xiàn)TO基底、Cu2O和Cu2O/SnO2樣品在0.2 mol/L Na2SO4溶液中得到的光電流??梢娫谙嗤瑴y試條件下,基底FTO的光電響應極其微弱,產(chǎn)生約有 0.005 μA/cm2的陽極光電流(圖5a),顯示出n型半導體的特征[35]。Cu2O薄膜則產(chǎn)生0.25 μA/cm2的陰極光電流(圖5b),顯示出p型半導體的典型特征[36-37]。由于Cu2O的光生載流子復合機率較高[8-9],因此光電流較小。而經(jīng)SnO2修飾的Cu2O薄膜的陰極光電流密度增加至1.0 μA/cm2(圖5c),是未修飾Cu2O薄膜的4倍。進一步證實通過適當?shù)腟nO2修飾,能顯著增強Cu2O的光電化學活性[14]。在每次光照50 s、避光50 s的條件下重復12次循環(huán),光電流密度基本沒有變化。表明SnO2修飾的Cu2O薄膜有較穩(wěn)定的光電化學性能。另外,n型SnO2修飾的p型Cu2O薄膜,仍表現(xiàn)p型半導體的特性。Siripala等[38]在研究Cu2O/TiO2復合薄膜的光電化學性能時,也報道了類似現(xiàn)象。他們認為Cu2O/TiO2異質結中,只有Cu2O能吸收可見光產(chǎn)生電子-空穴對,激發(fā)的電子通過TiO2的導帶傳遞到TiO2/電解液界面處,而空穴傳輸?shù)綄﹄姌O,Cu2O的光生載流子在光電化學反應中起決定性作用。因此,可推測本文在Cu2O表面修飾的SnO也主要起提高光生載流子分離效果的作用。
圖5 可見光和零偏壓下各樣品的光電流響應Figure 5 Photocurrent responses of various samples under visible light and at zero bias
浸漬SnO2溶膠的時間對修飾氧化膜的光電流也有影響。由圖6可見,當浸漬時間為5 s,由于修飾的SnO2太少,光電流密度只比未修飾的Cu2O薄膜增加了不到1倍。而浸漬時間達到15 s和20 s的樣品,隨著浸漬時間延長,光電流密度又逐漸降低到0.35 μA/cm2。根據(jù)傅賢智等[39]的耦合效應模型,兩種不同能帶結構的半導體復合時,在含量匹配時將會產(chǎn)生“強耦合效應”,反之則會產(chǎn)生“弱耦合效應”。Cu2O表面修飾的SnO2過多將不利于產(chǎn)生強耦合作用,反而有可能產(chǎn)生較多的缺陷位,增加電子-空穴對的復合幾率,降低薄膜的光電化學活性[14,40-41]。因此,在本文條件下,只有在溶膠中浸漬10 s的薄膜才顯示出最好的光電化學性能。
圖6 浸漬時間對SnO2修飾Cu2O薄膜光電流密度的影響Figure 6 Effect of dipping time on photocurrent density of the SnO2-modified Cu2O thin film
SnO2溶膠修飾后能明顯提高Cu2O薄膜在可見光照射下的光電流,主要是因為在Cu2O/SnO2復合體系中,Cu2O和SnO2的禁帶寬度分別為2.0 eV[41]和3.8 eV[42],且Cu2O的導帶能級位于-0.28 V(相對于標準氫電極,下同)[43],高于SnO2的導帶能級(0.0 V[43])。圖7給出了Cu2O和SnO2的導帶(CB)和價帶(VB)的能級關系及電子轉移示意圖。在可見光照射下,Cu2O薄膜產(chǎn)生的光生電子能從Cu2O的導帶遷移到SnO2導帶上,并在電極/電解液界面處引發(fā)還原反應,而Cu2O價帶上的空穴則向相反方向傳輸?shù)綄﹄姌O發(fā)生氧化反應,從而促進光生電子和空穴的有效分離,減少電子-空穴對重組,進而增強薄膜的光電化學性能[44-45]。其次,從圖 8的紫外-可見漫反射光譜可見,Cu2O/SnO2薄膜在可見光區(qū)的吸收明顯增加,這也有利于提高Cu2O薄膜的光電化學性能。最后,Cu2O表面的SnO2還可以作為一層保護膜,抑制Cu2O的光腐蝕,提高Cu2O薄膜的穩(wěn)定性[15]。
圖7 Cu2O/SnO2異質結電子-空穴和電荷遷移示意圖Figure 7 Schematic diagram of electron-hole and charge-transfer of Cu2O/SnO2heterostructure
圖8 各樣品的紫外-可見漫反射光譜Figure 8 UV-Vis diffuse reflectance spectra of various samples
對Cu2O進行修飾以增強其光電化學性能的方法很多。如在500 W的氙燈照射下,PW10Mo2修飾的Cu2O薄膜[46]光電流密度約為 1.8 μA/cm2,但其光電流在每次光照 50 s的多次循環(huán)中衰減嚴重。石墨烯修飾的 Cu2O (Cu2O/RGO)電極在150 W氙燈下,光電流密度約為2.4 μA/cm2[47];CuO-Cu2O-Cu納米棒與r-GO的復合物(CuNRs-rGO)[2]的光電流密度約為0.115 μA/cm2。與在相近電解液體系和測試條件下的一些文獻結果相比較,本文制備的超薄SnO2修飾Cu2O薄膜的光電流密度與之相近,并顯示更好的穩(wěn)定性。而且本文的制備條件溫和,方法簡易。通過進一步優(yōu)化電沉積Cu、制備SnO2溶膠及熱處理的條件,可望得到光電化學性能更為優(yōu)異的超薄SnO2修飾Cu2O多孔薄膜,具有良好的應用前景。
采用電沉積Cu、浸漬SnO2溶膠和低溫熱氧化的簡單途徑,在FTO基底上制備出厚度為500 nm的超薄SnO2修飾多孔Cu2O薄膜。超薄SnO2修飾層能顯著增強Cu2O薄膜在可見光下的光電化學性能。所制備的修飾薄膜在零偏壓條件下的陰極光電流密度為1.0 μA/cm2,是未修飾的Cu2O薄膜(0.25 μA/cm2)的4倍。
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238 (5358): 37-38.
[2] TIAN J Q, LI H Y, XING Z C, et al. One-pot green hydrothermal synthesis of CuO-Cu2O-Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation [J]. Catalysis Science & Technology, 2012, 2 (11): 2227-2230.
[3] PANDA R, RATHORE V, RATHORE M, et al. Carrier recombination in Cu doped CdS thin films: Photocurrent and optical studies [J]. Applied Surface Science, 2012, 258 (12): 5086-5093.
[4] MANIKANDAN M, TANABE T, LI P, et al. Photocatalytic water splitting under visible light by mixed-valence Sn3O4[J]. ACS Applied Materials & Interfaces, 2014, 6 (6): 3790-3793.
[5] BERGER A, SEGALMAN R A, NEWMAN J. Material requirements for membrane separators in a water-splitting photoelectrochemical cell [J]. Energy & Environmental Science, 2014, 7 (4): 1468-1476.
[6] SUSMAN M D, FELDMAN Y, VASKEVICH A, et al. Chemical deposition of Cu2O nanocrystals with precise morphology control [J]. ACS Nano, 2014, 8 (1): 162-174.
[7] LI C L, LI Y B, DELAUNAY J J. A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells [J]. ACS Applied Materials & Interfaces, 2014, 6 (1): 480-486.
[8] ZHANG Z H, WANG P. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy [J]. Journal of Materials Chemistry, 2012, 22 (6): 2456-2464.
[9] LIU L M, YANG W Y, LI Q, et al. Synthesis of Cu2O nanospheres decorated with TiO2nanoislands, their enhanced photoactivity and stability under visible light illumination, and their post-illumination catalytic memory [J]. ACS Applied Materials & Interfaces, 2014, 6 (8): 5629-5639.
[10] 徐晨洪, 韓優(yōu), 遲名揚. 基于Cu2O的光催化研究[J]. 化學進展, 2010, 22 (12): 2290-2297.
[11] ZHANG Z H, DUA R, ZHANG L B, et al. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction [J]. ACS Nano, 2013, 7 (2): 1709-1717.
[12] TRAN P D, BATABYAL S K, PRAMANA S S, et al. A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation:employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O [J]. Nanoscale, 2012, 4 (13): 3875-3878.
[13] 陳善亮, 應鵬展, 顧修全, 等. 氧化亞銅/氧化鋅復合薄膜的制備及可見光催化研究[J]. 電鍍與涂飾, 2012, 31 (12): 1-4.
[14] FUKUDA A, ICHIMURA M. Heterostructure solar cells based on sol-gel deposited SnO2and electrochemically deposited Cu2O [J]. Materials Sciences andApplications, 2013, 4 (6A): 1-4.
[15] DU Y L, ZHANG N, WANG C M. Photo-catalytic degradation of trifluralin by SnO2-doped Cu2O crystals [J]. Catalysis Communications, 2010, 11 (7): 670-674.
[16] 李小輝, 阮孟勇, 漆寒梅, 等. 多孔Cu2O/SnO2復合薄膜的制備及其可見光催化降解羅丹明B的性能[J]. 世界科技研究與發(fā)展, 2011, 33 (5): 791-794.
[17] 徐彬, 李小輝, 童曉靜, 等. 多孔SnO2-Cu2O復合薄膜的制備及其光催化性能[J]. 北京科技大學學報, 2010, 32 (12): 1580-1585.
[18] GARCéS F A, BUDINI N, KOROPECKI R R, et al. Structural mosaicity and electrical properties of pyrolytic SnO2:F thin films [J]. Thin Solid Films, 2013, 531: 172-178.
[19] HUANG L, PENG F, OHUCHI F S. “In situ” XPS study of band structures at Cu2O/TiO2heterojunctions interface [J]. Surface Science, 2009, 603 (17): 2825-2834.
[20] ZHENG J Y, JADHAV A P, SONG G, et al. Cu and Cu2O films with semi-spherical particles grown by electrochemical deposition [J]. Thin Solid Films, 2012, 524: 50-56.
[21] MCSHANE C M, CHOI K S. Photocurrent enhancement of n-Type Cu2O electrodes achieved by controlling dendritic branching growth [J]. Journal of the American Chemical Society, 2009, 131 (7): 2561-2569.
[22] OSHEROV A, ZHU C Q, PANZER M J. Role of solution chemistry in determining the morphology and photoconductivity of electrodeposited cuprous oxide films [J]. Chemistry of Materials, 2013, 25 (5): 692-698.
[23] BIJANI S, SCHREBLER R, DALCHIELE E A, et al. Study of the nucleation and growth mechanisms in the electrodeposition of micro- and nanostructured Cu2O thin films [J]. The Journal of Physical Chemistry C, 2011, 115 (43): 21373-21382.
[24] KO J E, KWON B J, JUNG H. Synthesis and characterization of the SnO2-pillared layered titanate nanohybrid [J]. Journal of Physics and Chemistry of Solids, 2010, 71 (4): 658-662.
[25] K?R?SI L, NéMETH J, DéKáNY I. Structural and photooxidation properties of SnO2/layer silicate nanocomposites [J]. Applied Clay Science, 2004, 27 (1/2): 29-40.
[26] KIM J G, NAM S H, LEE S H, et al. SnO2nanorod-planted graphite: An effective nanostructure configuration for reversible lithium ion storage [J]. ACS Applied Materials & Interfaces, 2011, 3 (3): 828-835.
[27] CAO L, LIU J, XU S L, et al. Inherent superhydrophobicity of Sn/SnOxfilms prepared by surface self-passivation of electrodeposited porous dendritic Sn [J]. Materials Research Bulletin, 2013, 48 (11): 4804-4810.
[28] GAO H, ZHANG J Y, LI M, et al. Evaluating the electric property of different crystal faces and enhancing the Raman scattering of Cu2O microcrystal by depositing Ag on the surface [J]. Current Applied Physics, 2013, 13 (5): 935-939.
[29] PRABHAKARAN G, MURUGAN R. Room temperature ferromagnetic properties of Cu2O microcrystals [J]. Journal of Alloys and Compounds, 2013, 579: 572-575.
[30] JAGMINAS A, KOVGER J, R?ZA A, et al. Decoration of the TiO2nanotube arays with copper suboxide by AC treatment [J]. Electrochimica Acta, 2014, 125: 516-523.
[31] FAZIO E, NERI F, SAVASTA S, et al. Surface-enhanced Raman scattering of SnO2bulk material and colloidal solutions [J]. Physical Review B, 2012, 85 (19): 195423.
[32] KAUR J, SHAH J, KOTNALA R K, et al. Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO2nanoparticles [J]. Ceramics International, 2012, 38 (7): 5563-5570.
[33] LAN T, LI C, FULTZ B. Phonon anharmonicity of rutile SnO2studied by Raman spectrometry and first principles calculations of the kinematics of phono-phonon interactions [J]. Physical Review B, 2012, 86 (13): 134302.
[34] AYESHAMARIAM A, RAMALINGAM S, BOUOUDINA M, et al. Preparation and characterizations of SnO2nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations [J]. Spectrochimica Acta PartA: Molecular and Biomolecular Spectroscopy, 2014, 118: 1135-1143.
[35] BAGHERI-MOHAGHEGHI M M, SHAHTAHMASEBI N, ALINEJAD M R, et al. The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2semiconducting oxide nano-particles synthesized by polymerizing-complexing sol-gel method [J]. Physica B: Condensed Matter, 2008, 403 (13/16): 2431-2437.
[36] TACHIBANA Y, MURAMOTO R, MATSUMOTO H, et al. Photoelectrochemistry of p-type Cu2O semiconductor electrode in ionic liquid [J]. Research on Chemical Intermediates, 2006, 32 (5/6): 575-583.
[37] KIM M S, YOON S H, CHANG D Y, et al. Synthesis and characterization of electrodeposited Cu2O thin film for photo-electrochemical cells [C] // ECS Meeting Abstracts: MA2012-02—Honolulu PRiME 2012. [S. l.]: The Electrochemical Society, 2012: 3301.
[38] SIRIPALA W, IVANOVSKAYA A, JARAMILLO T F, et al. A Cu2O/TiO2heterojunction thin film cathode for photoelectrocatalysis [J]. Solar Energy Materials and Solar Cells, 2003, 77 (3): 229-237.
[39] 劉平, 周廷云, 林華香, 等. TiO2/SnO2復合光催化劑的耦合效應[J]. 物理化學學報, 2001, 17 (3): 265-269.
[40] XU H, OUYANG S X, LIU L Q, et al. Porous-structured Cu2O/TiO2nanojunction material toward efficient CO2photoreduction [J]. Nanotechnology, 2014, 25 (16):165402.
[41] REN S T, FAN G H, LIANG M L, et al. Electrodeposition of hierarchical ZnO/Cu2O nanorod films for highly efficient visible-light-driven photocatalytic applications [J]. Journal of Applied Physics, 2014, 115 (6): 064301.
[42] AMANO F, EBINA T, OHTANI B. Enhancement of photocathodic stability of p-type copper(I) oxide electrodes by surface etching treatment [J]. Thin Solid Films, 2014, 550: 340-346.
[43] TIAN Q Y, WU W, SUN L L, et al. Tube-like ternary α-Fe2O3@SnO2@Cu2O sandwich heterostructures: Synthesis and enhanced photocatalytic properties [J]. ACS Applied Materials & Interfaces, 2014, 6 (15): 13088-13097.
[44] XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals [J]. American Mineralogist, 2000, 85 (3/4): 543-556.
[45] HOU Y, LI X Y, ZHAO Q D, et al. Fabrication of Cu2O/TiO2nanotube heterojunction arrays and investigation of its photoelectrochemical behavior [J]. Applied Physics Letters, 2009, 95 (9): 093108.
[46] ZHANG Y Z, ZHAO Y Q, LI F Y, et al. Photovoltaic performance enhancement of Cu2O photocathodes by electrostatic adsorption of polyoxometalate on Cu2O crystal faces [J]. RSC Advances, 2014, 4 (3): 1362-1365.
[47] AN X Q, LI K F, TANG J W. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2[J]. ChemSusChem, 2014, 7 (4): 1086-1093.
[ 編輯:韋鳳仙 ]
Visible-light photoelectrochemical performance of porous Cu2O thin film modified by ultrathin SnO2layer
LUO Jing-jing, FAN Xu-liang, MA Rong-wei, HU Hao, NIU Zhen-jiang*
A ca.500 nm-thick metallic Cu thin film was obtained on the surface of FTO (F-doped SnO2transparent conductive glass) substrate by two-step galvanostatic electrodeposition, and then dipped in a SnO2sol followed by oxidation at 175 °C to prepare a porous Cu2O thin film modified by ultrathin SnO2layer. The structure, morphology, and optical property of the ultrathin SnO2-modified porous Cu2O thin film were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and diffuse reflection ultraviolet-visible spectroscopy (UV-Vis DRS), and the photoelectrochemical property of the thin film was analyzed via testing the photocurrent in 0.2 mol/L Na2SO4solution under visible light and at zero bias. The results revealed that the ultrathin SnO2layer greatly enhances the photoelectrochemical performance of the porous Cu2O thin film. The photocurrent density of the ultrathin SnO2-modified porous Cu2O thin film prepared by dipping in the SnO2sol for 10 s is four times that of the unmodified one.
copper electrodeposition; cuprous oxide; tin dioxide; thin film; photoelectrochemistry; photocurrent density
O646; TQ153.14
A
1004 - 227X (2015) 12 - 0650 - 06
2015-02-03
2015-03-31
國家自然科學基金(21173196)。
羅晶晶(1989-),女,河南信陽人,在讀碩士研究生,主要從事電化學方面的研究。
牛振江,教授,(E-mail) nzjiang@zjnu.cn。