齊錦莉
【摘要】數(shù)學(xué)命題即與數(shù)學(xué)對象相關(guān)的命題,是數(shù)學(xué)知識中表達判斷的句子。本文先分析了命題的定義,然后闡述了在高中數(shù)學(xué)命題課教學(xué)中的教學(xué)策略為:發(fā)現(xiàn)探究與接受學(xué)習(xí)有機結(jié)合;設(shè)置適宜的數(shù)學(xué)命題教學(xué)情境;巧用信息技術(shù)來發(fā)現(xiàn)命題與探索規(guī)律。
【關(guān)鍵詞】高中數(shù)學(xué) ?命題課 ?教學(xué)策略
引言
數(shù)學(xué)命題是指在數(shù)學(xué)知識中用語言、符號或公式表達的,可以判斷真假的陳述句。在高中數(shù)學(xué)命題教學(xué)課程中,數(shù)學(xué)命題可以是由數(shù)學(xué)語言、符號或者數(shù)學(xué)公式來表達。在高中數(shù)學(xué)命題的教學(xué)中,教師可以采用理論與實際相結(jié)合,以建立教學(xué)情境為策略的教學(xué)模式來提高學(xué)生的學(xué)習(xí)興趣,實現(xiàn)課堂教學(xué)效益的最優(yōu)化。
一、什么是命題
什么是命題,高中教材中對命題的定義是:能夠判斷真假的語句叫做命題。判斷分為真假判斷,相應(yīng)的命題就有了真假命題,我們把判斷結(jié)果為真的命題叫做真命題,把判斷結(jié)果為假的命題稱為假命題。在這里還要注意的是一種形式的判斷,它也屬于判斷,但不是命題,被稱為開語句,如“3>1”和“X>1”,雖然他們都是判斷語句,但是前者是命題,后者由于無法判斷其真假,是開語句。根據(jù)數(shù)學(xué)命題的復(fù)雜程度可以將其分為簡單命題和復(fù)合命題。簡單命題就是不包含其他命題的命題,又可分為性質(zhì)命題和關(guān)系命題兩種,性質(zhì)命題就是判斷某事物具有或不具有某種性質(zhì)的命題。關(guān)系命題是關(guān)于斷言某些對象與對象之間關(guān)系的命題。復(fù)合命題是由兩個或者兩個以上的簡單命題通過邏輯連接詞結(jié)合起來而構(gòu)成的命題。
二、高中數(shù)學(xué)命題教學(xué)策略
1發(fā)現(xiàn)探究與接受學(xué)習(xí)有機結(jié)合
在數(shù)學(xué)命題教學(xué)中,學(xué)生的學(xué)習(xí)方式有兩種:命題接受式與命題發(fā)現(xiàn)式學(xué)習(xí).其中,發(fā)現(xiàn)式學(xué)習(xí)即學(xué)生通過獨立的學(xué)習(xí)與思考而獲取數(shù)學(xué)知識.在學(xué)習(xí)中,學(xué)生以具體數(shù)學(xué)實例為出發(fā)點,在實驗與操作、分析與推理,然后發(fā)現(xiàn)數(shù)學(xué)一般結(jié)論.通常分為四個環(huán)節(jié),探索與發(fā)現(xiàn),提出猜想,驗證,最后獲得結(jié)論.而接受式學(xué)習(xí)即教師通過定論形式向?qū)W生呈現(xiàn)學(xué)習(xí)內(nèi)容,然后由學(xué)生把這些學(xué)習(xí)內(nèi)容進行內(nèi)化.其環(huán)節(jié)如下:命題分析,活用舊知識,命題證明,理解與應(yīng)用.
上述兩種學(xué)習(xí)形式都有其利弊,發(fā)現(xiàn)式學(xué)習(xí)能夠幫助學(xué)生培養(yǎng)他們的探索精神,但是耗時且不容易控制,而接受式學(xué)習(xí)能夠節(jié)約課時,但不能有效地激發(fā)學(xué)生的學(xué)習(xí)熱情.因此,在命題教學(xué)中,教師應(yīng)將“發(fā)現(xiàn)一探究”式學(xué)習(xí)與接受式學(xué)習(xí)有機結(jié)合.教學(xué)中,若命題的學(xué)習(xí)不易實現(xiàn)發(fā)現(xiàn)與探究,教師則可部分采用接受式學(xué)習(xí)。同樣,在數(shù)學(xué)命題的接受學(xué)習(xí)的教學(xué)過程中,教師也可選取一部分教學(xué)內(nèi)容讓學(xué)生在探究操作中發(fā)現(xiàn)新知識,掌握新知識.這樣,通過兩種學(xué)習(xí)方式的取長補短,從而提高數(shù)學(xué)命題課的課堂教學(xué)效果.
2建立適宜的數(shù)學(xué)命題教學(xué)情境
在數(shù)學(xué)命題教學(xué)中設(shè)置一定的教學(xué)情境,從而引發(fā)學(xué)生的學(xué)習(xí)熱情與積極性,讓學(xué)生通過情境教學(xué)更好地接受教學(xué)內(nèi)容。在教學(xué)中,常見的數(shù)學(xué)情境教學(xué)有一下幾種形式。
創(chuàng)建數(shù)學(xué)實踐教學(xué)情境
高中數(shù)學(xué)命題教學(xué)的教材中有許多抽象的數(shù)學(xué)命題是源于生活,直接讓學(xué)生學(xué)習(xí)這些抽象的數(shù)學(xué)知識,學(xué)生會感覺不易理解。這時數(shù)學(xué)命題實踐教學(xué)情境的建立可以讓抽象的知識
具體化,將數(shù)學(xué)知識利用到生活中去,讓生活實際來表達數(shù)學(xué)理論與邏輯,讓學(xué)生更好地理解知識。例如,在學(xué)習(xí)球或球冠的表面積時,教師可以讓學(xué)生朗誦王之煥的詩:“欲窮千里目,更上一層樓”,然后話鋒一轉(zhuǎn),問道:“請同學(xué)們猜想一下,到底登上多高的樓層,才能欣賞到千里之外的美景呢?又能看到多大面積呢?”學(xué)生紛紛猜想,懷著強烈的好奇心和求知欲,積極參與到學(xué)習(xí)中來。這樣的引入,一方面使學(xué)生深深感受到詩人的浪漫和夸張,另一方面也學(xué)會了有關(guān)命題的知識。
創(chuàng)建數(shù)學(xué)實驗教學(xué)情境
僅僅通過文字分析和語言講解來進行數(shù)學(xué)命題的教學(xué),往往學(xué)生容易處在能了解學(xué)習(xí)內(nèi)容但不能透徹理解的狀態(tài),這時可以用實驗教學(xué)情境讓學(xué)生通過觀察和動手操作在實驗情境中探索規(guī)律、提出猜想,再通過邏輯論證到數(shù)學(xué)命題,來揭示數(shù)學(xué)命題的發(fā)生、發(fā)展過程。例如,高中生的抽象思維能力雖然已經(jīng)得到相當(dāng)程度的發(fā)展,但是在學(xué)習(xí)數(shù)學(xué)歸納法原理時,許多學(xué)生對其中體現(xiàn)出來的遞歸原理及其有限、無限思想的理解,仍然存在著一定困難。這時,教師可通過演示“多米諾骨牌”實驗,來揭示數(shù)學(xué)歸納法原理的直觀背景與抽象過程:一列排好的直立骨牌,用手推倒第一塊,第二塊就被第一塊推倒,第三塊就被第二塊推倒,......,于是所有骨牌都被推倒。讓學(xué)生在“多米諾骨牌”實驗中思考,為了保證無數(shù)塊骨牌都倒下,只要滿足以下兩個條件就夠了:一是,第一塊骨牌要倒下;二是,當(dāng)某一張骨牌倒下時,緊隨其后的一張也要倒下。至此,數(shù)學(xué)歸納法原理的引入可謂水到渠成、呼之即出。
3巧用信息技術(shù)來發(fā)現(xiàn)命題與探索規(guī)律
隨著現(xiàn)代信息技術(shù)的發(fā)展,多媒體教學(xué)在教學(xué)中的應(yīng)用也越來越廣泛.在高中數(shù)學(xué)命題課教學(xué)中,教師同樣可以通過利用信息技術(shù)優(yōu)化課堂教學(xué),通過一些教學(xué)軟件來精心制作有關(guān)的數(shù)學(xué)實驗,動畫演示,從而引導(dǎo)學(xué)生自主參與數(shù)學(xué)探究、學(xué)習(xí)與歸納,讓他們在參與中深刻領(lǐng)會數(shù)學(xué)命題知識的形成過程,從而真正提高數(shù)學(xué)教學(xué)效率與教學(xué)效果.例如,在“兩條直線平行與垂直的判定”這一內(nèi)容的教學(xué)中,有一命題:“斜率存在的兩直線垂直那么斜率積為-1”,教學(xué)中,教師可利用幾何畫板工具來對演示實驗進行精心設(shè)計與制作,讓學(xué)生開展探究.請學(xué)生仔細觀察圖中所示:以鼠標(biāo)將直線L進行拖動,拖動旋轉(zhuǎn)中注意兩直線始終保持垂直,屏幕中展示的值處在不斷變化過程中,只始終不變.同時,也可以讓學(xué)生參與命題驗證的設(shè)計與操作環(huán)節(jié)中,從而加深學(xué)生對數(shù)學(xué)命題的感知經(jīng)驗。
三、結(jié)束語
數(shù)學(xué)命題教學(xué)是數(shù)學(xué)教學(xué)活動的重要組成部分,是數(shù)理邏輯與證明的基礎(chǔ),并與概念、推理之間存在著密切的聯(lián)系。進行有效地數(shù)學(xué)命題學(xué)習(xí)對于學(xué)生知識的增長具有重要的意義。但數(shù)學(xué)命題的相關(guān)內(nèi)容卻是比較難掌握的一部分知識。因此,教師應(yīng)通過教學(xué)實踐不斷探索與創(chuàng)新有效的教學(xué)策略,設(shè)置適宜的情境化教學(xué)模式,巧用信息技術(shù)來發(fā)現(xiàn)命題與探索規(guī)律,尊重學(xué)生的主體地位,讓學(xué)生在操作與探究中加深對命題知識的理解。
【參考文獻】
[1]耿向紅.新課程與評價改革[M].北京:北京教育科學(xué)出版社,2001.
[2]宋寶和,房元霞,谷煥春.現(xiàn)代數(shù)學(xué)課程理論與實踐[M].山東:山東大學(xué)出版社,2006.