郭 楊,馮帥帥,王 昕
(西北農(nóng)林科技大學(xué)動(dòng)物科技學(xué)院,陜西楊凌712100)
表觀遺傳學(xué)是20世紀(jì)80年代逐漸興起的一門學(xué)科,是研究在DNA序列不發(fā)生改變的情況下,基因功能發(fā)生可遺傳的改變并最終導(dǎo)致表型變化的現(xiàn)象和本質(zhì)。2014年國(guó)際遺傳學(xué)大學(xué)(ISAG)的主題是“遺傳學(xué)走向基因組學(xué)和表觀遺傳學(xué)”(Genetics goes to genomics and epigenetics),可見表觀遺傳學(xué)的作用越來越受到重視。表觀遺傳學(xué)主要研究“表觀遺傳現(xiàn)象”建立和維持的機(jī)制,大致內(nèi)容包括:一方面為基因選擇性轉(zhuǎn)錄調(diào)控,主要有DNA甲基化、基因印記、組蛋白修飾、染色質(zhì)重塑等[1]。另一方面是基因轉(zhuǎn)錄后調(diào)控,包括基因組中的非編碼RNA、微小RNA、反義RNA、內(nèi)含子及核糖開關(guān)等[2]。
長(zhǎng)鏈非編碼RNAs(lncRNAs)是一類轉(zhuǎn)錄本長(zhǎng)度超過200nt的RNA分子,它們并不編碼蛋白[3-5],通過允許蛋白復(fù)合物、基因和染色體等結(jié)合在適當(dāng)?shù)奈恢眉せ罨蛞种破浠钚裕?],從而以RNA的形式在表觀遺傳調(diào)控、轉(zhuǎn)錄調(diào)控以及轉(zhuǎn)錄后調(diào)控等多種層面上調(diào)控基因的表達(dá)水平[3,7]。
科學(xué)家已經(jīng)對(duì)基因組中的表觀遺傳學(xué)修飾進(jìn)行了廣泛的研究,不過對(duì)表觀遺傳學(xué)修飾如何指向靶位點(diǎn)仍然未知。由于細(xì)胞和生物面臨的壓力不同,表觀遺傳學(xué)修飾的位點(diǎn)也不同,顯然有某種物質(zhì)負(fù)責(zé)指引表觀遺傳學(xué)修飾。有研究提出,這一物質(zhì)就是lncRNAs,它介導(dǎo)了表觀遺傳學(xué)修飾及其跨代遺傳的現(xiàn)象。lncRNAs的功能多種多樣,目前已知的lncRNAs最重要的功能是參與編碼基因表達(dá)調(diào)控的表觀遺傳學(xué)機(jī)制[8-9]。lncRNAs通過募集組蛋白修飾酶和DNA甲基轉(zhuǎn)移酶DNMT3a等對(duì)基因組相關(guān)位點(diǎn)進(jìn)行修飾,通過染色質(zhì)重塑參與表觀調(diào)控的過程,最終調(diào)控基因的表達(dá)(圖1)。此外,lncRNAs還可以直接修飾附近的組蛋白,對(duì)組蛋白尾部進(jìn)行甲基化;有些lncRNAs在正常轉(zhuǎn)錄過程中與蛋白編碼基因的轉(zhuǎn)錄本相結(jié)合,相關(guān)染色質(zhì)重塑蛋白隨即對(duì)該位點(diǎn)上的染色質(zhì)和DNA進(jìn)行修飾,從而抑制基因表達(dá)。
近年來的研究表明,lncRNAs參與了基因組印記、X染色體沉默、染色質(zhì)修飾、轉(zhuǎn)錄激活、轉(zhuǎn)錄干擾以及核內(nèi)運(yùn)輸?shù)榷喾N重要的調(diào)控過程,因此lncRNAs的調(diào)控作用也引起了人們的廣泛關(guān)注。lncR NAs可以被聚腺苷酸化或非聚腺苷酸化積累在細(xì)胞核和細(xì)胞質(zhì)中[10-11],也可以被RNA聚合酶II轉(zhuǎn)錄和5'加帽而發(fā)揮作用[12]。lncRNAs被分為基因間的lncRNAs(lincRNA),增強(qiáng)RNAs(eRNAs),內(nèi)含子lncRNAs和反義lncRNAs[13]。
圖1 lncRNAs通過激活或抑制染色質(zhì)修飾復(fù)合物結(jié)合特異基因組位點(diǎn)[8]Fig.1 lncRNAs as guides for activation or repressing chromatin modifier complexes towards specific genomic loci
染色質(zhì)在細(xì)胞間期負(fù)責(zé)DNA包裝、基因表達(dá)和DNA復(fù)制等。染色質(zhì)的結(jié)構(gòu)變化被認(rèn)為是表觀遺傳的控制機(jī)制[14-16],組蛋白在乙?;?、甲基化、類泛素化和泛素化進(jìn)程中進(jìn)行化學(xué)修飾,最終導(dǎo)致染色質(zhì)結(jié)構(gòu)變異[17]。lncRNAs在癌癥的發(fā)展過程中具有重要作用[20]。一些與癌癥相關(guān)的lncRNAs可與DNA、RNA、蛋白分子或它們的結(jié)合體相互作用,在染色質(zhì)結(jié)構(gòu)變化、轉(zhuǎn)錄調(diào)節(jié)和轉(zhuǎn)錄后調(diào)節(jié)等機(jī)制中起到重要的調(diào)控作用。研究發(fā)現(xiàn),lncRNAs幾乎參與了生命發(fā)育周期每一階段中相關(guān)基因的調(diào)控,一旦表達(dá)異常就可能導(dǎo)致體內(nèi)生物學(xué)功能的紊亂,進(jìn)而引發(fā)疾病甚至癌癥。有研究人員發(fā)現(xiàn),lncRNA-LET(lncRNA Low Expression in Tumor)在肝癌、結(jié)腸癌、直腸癌、肺鱗狀細(xì)胞癌等多種癌組織中普遍下調(diào),表明lncRNA-LET在多種癌癥的致癌過程中有著相同的調(diào)控機(jī)制[19]。lncRNAs在癌癥的診斷與治療中起作用,有報(bào)道指出,許多尿路上皮腫瘤細(xì)胞癌中的lncRNA表達(dá)狀況都不同[20]。因此lncRNAs可以作為預(yù)測(cè)這些癌癥的生物學(xué)標(biāo)志。哺乳動(dòng)物基因組中4%~9%的序列產(chǎn)生的轉(zhuǎn)錄本是lncRNAs(相應(yīng)的蛋白編碼RNA的比例是1%)[21-22]。lncRNAs幾乎參與每一個(gè)表觀遺傳調(diào)控事件,表觀遺傳標(biāo)記的錯(cuò)誤調(diào)節(jié)可能會(huì)引起不適當(dāng)?shù)募せ罨蛞种聘鞣N基因,并可能導(dǎo)致癌癥[23]。
DNA甲基化是表觀遺傳的一種主要修飾形式,是一個(gè)動(dòng)態(tài)和可逆的過程,一般發(fā)生胞嘧啶-磷酸-鳥嘌呤(CpG)甲基化。DNA甲基化可通過抑制甲基轉(zhuǎn)移酶DNMT1或者激活酶促反應(yīng),導(dǎo)致甲基化消失,以此來應(yīng)對(duì)發(fā)育和環(huán)境信號(hào)[24]。基因啟動(dòng)子區(qū)CpG島的甲基化主要受多種酶和復(fù)合物的調(diào)控,如染色體修飾復(fù)合物PRC1和PRC2[25-26]。lncRNAs通過募集染色質(zhì)重塑復(fù)合物并結(jié)合在特異的基因組位點(diǎn),通過抑制基因的表達(dá)而介導(dǎo)表觀遺傳調(diào)控。研究表明,Xist(X chromosome inactive specific transcript)lncRNAs可以通過募集染色體修飾復(fù)合物PRC2至特異性的基因位點(diǎn),導(dǎo)致染色體上的CpG島啟動(dòng)甲基化,從而抑制X染色體的基因表達(dá)而介導(dǎo)X染色體失活[27],X染色體失活會(huì)導(dǎo)致神經(jīng)系統(tǒng)疾病和精神疾病在不同性別間存在明顯的差異[28]。越來越多的證據(jù)表明,環(huán)境能夠通過表觀遺傳學(xué)機(jī)制對(duì)基因組做出永久性的改變,而這些改變可以在世代間遺傳下去。例如,轉(zhuǎn)錄抑制基因FLC具有阻止擬南芥某些花期基因轉(zhuǎn)換的作用。lncRNAs通過多種途徑調(diào)控FLC,當(dāng)冬天長(zhǎng)時(shí)間暴露在寒冷環(huán)境中導(dǎo)致FLC有義轉(zhuǎn)錄本COLDAIR的表達(dá)。COLDAIR通過募集PRC2復(fù)合物作用在染色質(zhì)的特定位點(diǎn),從而實(shí)現(xiàn)對(duì)FLC基因的表觀調(diào)控。FLC也受反義lncRNACOOLAIR的轉(zhuǎn)錄干擾調(diào)控,并且這些反義RNAs受低溫的上調(diào)控制;反之,溫暖的條件下,COOLAIR選擇性的對(duì)FLC的5'端進(jìn)行多聚腺苷化,從而干擾FLC基因的表達(dá)[29-30]。在一些黑色素瘤形成的過程中,在miR-375的下游區(qū)域CpG島的變化會(huì)導(dǎo)致DNA甲基化異常[31-32]。在人類癌細(xì)胞中,反義lncRNA TARID通過對(duì)TCF21基因啟動(dòng)子區(qū)的甲基化,從而降低TCF21基因的表達(dá)水平[33]。另外,如人類反義lncRNA HOTAIR由HOXC位點(diǎn)轉(zhuǎn)錄而來,通過募集PRC2在HOXD位點(diǎn)反義調(diào)控表觀遺傳的變化[30]。最新的研究表明:源于甲基化敏感基因CEBPA位點(diǎn)的lncRNA(命名為ecCEBPA)和DNA甲基化酶1(DNMT1)相互作用,阻止CEBPA位點(diǎn)上的甲基化,從而促進(jìn)CEBPA基因的表達(dá)[33]。組蛋白修飾和DNA甲基化是調(diào)節(jié)基因表達(dá)的重要的表觀遺傳學(xué)機(jī)制[34]。DNA甲基化和組蛋白修飾導(dǎo)致lncRNAs在癌癥中的表達(dá)異常。白血病人13q14.3的lncRNAs的上調(diào)與cis的下調(diào)都可作為NF-kB的目標(biāo)基因簇[35]。在這個(gè)位點(diǎn),正常的黑色素細(xì)胞、角質(zhì)細(xì)胞和細(xì)胞系都是由一個(gè)黑色素瘤最低的甲基化衍生的[36-37]。人類基因組中近80%的甲基化位點(diǎn)發(fā)生在CpG序列中的C堿基上,在lncRNAs的指引下,表觀遺傳學(xué)修飾對(duì)基因組做出永久可遺傳的改變。
圖2 lncRNAs的靶向調(diào)控機(jī)制[3]Fig.2 Targeting mechanism of lncRNAs
組蛋白修飾是指經(jīng)共價(jià)修飾發(fā)生乙?;?、甲基化和磷酸化等現(xiàn)象,是表觀遺傳研究的一個(gè)重要內(nèi)容。lncRNAs可通過使組蛋白發(fā)生不同類型的修飾而影響其轉(zhuǎn)錄區(qū)下游基因的表達(dá),常見的是啟動(dòng)子區(qū)域H3K4me3、H3K9me2及H3K27me3等的修飾,這些組蛋白修飾會(huì)改變?nèi)旧|(zhì)活性,促進(jìn)或抑制轉(zhuǎn)錄,從而控制基因的表達(dá)[38]。lncRNA HOTAIR通常與組蛋白H3K27的甲基化酶復(fù)合體PRC2結(jié)合,當(dāng)HOTAIR上調(diào)時(shí),出現(xiàn)H3K27me3組蛋白修飾,從而改變了染色質(zhì)的狀態(tài),促進(jìn)癌癥轉(zhuǎn)移。在細(xì)胞發(fā)生損傷時(shí),損傷信號(hào)會(huì)刺激細(xì)胞周期蛋白D1(CCND1)基因5'端啟動(dòng)子區(qū)的調(diào)控序列轉(zhuǎn)錄出一種低拷貝的lncRNAs。該lncRNAs通過募集RNA結(jié)合蛋白TLS到CCND1基因的啟動(dòng)子區(qū),使TLS蛋白變?yōu)榛钚詷?gòu)象后與組蛋白乙?;窩BP/P300結(jié)合并抑制酶的活性,進(jìn)而下調(diào)CCND1基因的表達(dá)而阻礙細(xì)胞由G1期到S期的復(fù)制過程[39]。
基因組印跡(Genomic imprinting)是指來自父母雙方的等位基因在遺傳給子代時(shí)由于發(fā)生DNA甲基化、組蛋白甲基化和乙?;刃揎椥纬傻?,帶有印跡修飾的子代等位基因呈現(xiàn)不同的轉(zhuǎn)錄活性,最終導(dǎo)致其中一方在功能表達(dá)上保持沉默。X染色體失活是基因組印跡的一個(gè)典型例子[40]。印跡基因通常以基因簇的形式存在,形成印跡區(qū)(imprinted region)。印跡區(qū)基因的轉(zhuǎn)錄活性受差異性甲基化區(qū)域(differentially methylated regions,DMRs)的調(diào)控。1個(gè)DMR內(nèi)至少存在1個(gè)非編碼RNA基因,其中l(wèi)ncRNAs基因出現(xiàn)的頻率高,提示lncRNAs基因的轉(zhuǎn)錄受基因組印跡調(diào)控。如印跡區(qū)lncRNA H19是miRNA-675的前體,與胰島素樣生長(zhǎng)因子2(IGF2)反義。H19lncRNA通過miRNA-675反式調(diào)控骨骼肌的分化和再生[41]。在人結(jié)腸癌中,H19轉(zhuǎn)錄基因印跡丟失后導(dǎo)致miRNA-675的上調(diào),而在結(jié)、直腸腫瘤中,miRNA-675下調(diào)腫瘤抑制因子RB1的表達(dá),因此H19的上調(diào)表明其具有促癌作用。但在小鼠畸胎瘤模型中,缺乏H19的畸胎瘤小鼠出現(xiàn)胚胎快速生長(zhǎng)的現(xiàn)象,表明H19又具有抑癌作用,由此推斷H19存在雙向調(diào)節(jié)的功能[42]。
劑量補(bǔ)償效應(yīng)(dosage compensation effect)是在哺乳動(dòng)物中普遍存在的一種現(xiàn)象,指調(diào)控性連鎖的基因在XX和XY兩種性別里以相對(duì)相等的劑量進(jìn)行有效表達(dá)的遺傳學(xué)機(jī)制。具體表現(xiàn)為雌性個(gè)體中1條X染色體隨機(jī)失活后,其上的等位基因完全沉默。該過程由X染色體上的失活中心(X-inactivation center,Xic)控制,Xic缺失將終止X染色體失活現(xiàn)象。Xic功能的啟動(dòng)由lncRNAs基因Xist調(diào)控,其調(diào)控機(jī)制是Xist通過招募并結(jié)合PRC2和H3K27me3而介導(dǎo)X染色體上的基因沉默。Xist由失活的X染色體轉(zhuǎn)錄后并附于該X染色體,Xist具有招募DNA甲基化酶和組蛋白去乙酰化酶等作用,通過H3K27me3和H3K9me2的甲基化對(duì)染色質(zhì)進(jìn)行修飾,使之固縮為異染色質(zhì),從而導(dǎo)致基因沉默。Xist的反義轉(zhuǎn)錄產(chǎn)物Tsix對(duì)其具有負(fù)調(diào)控作用,能夠阻止染色體失活[27,43]。
對(duì)lncRNAs的認(rèn)識(shí)從最初的“轉(zhuǎn)錄噪音”到現(xiàn)在具有重要的調(diào)控作用,包括基因組印跡、X染色體失活、染色質(zhì)修飾及蛋白編碼基因轉(zhuǎn)錄調(diào)控和翻譯調(diào)控等細(xì)胞水平的調(diào)控作用。目前對(duì)lncRNAs調(diào)控機(jī)制的研究仍顯不足,有關(guān)lncRNAs與蛋白質(zhì)、DNA和miRNA等分子間的相互作用有待于深入研究,并逐步揭示lncRNAs在細(xì)胞分化和個(gè)體發(fā)育中的作用[44-46]。并且lncRNAs作為疾病治療的分子標(biāo)記和作用靶點(diǎn),為腫瘤等疾病的預(yù)防和治療及闡述性狀的調(diào)控機(jī)制提供了新的研究手段。
[1] Mercer T R,Mattick J S.Structure and function of long noncoding RNAs in epigenetic regulation[J].Nat Struct Mol Biol,2013,20(3):300-307.
[2] Djebali S,Davis C A,Merkel A,et al.Landscape of transcription in human cells[J].Nature,2012,689(7414):101-108.
[3] Rinn J L,Chang H Y.Genome regulation by long noncoding RNAs[J].Annu Rev Biochem,2012,81:145-166.
[4] Derrien T,Johnson R,Bussotti G,et al.The GENCODE v7 catalog of human long noncoding RNAs:analysis of their gene structure,evolution,and expression[J].Genome Res,2012,22(9):1 775-1 789.
[5] Mao Y S,Sunwoo H,Zhang B,et al.Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs[J].Nat Cell Biol,2011,13(1):95-101.
[6] Batista P J,Chang H Y.Long Noncoding RNAs:Cellular Address Codes in Development and Disease[J].Cell,2013,152(6):1 298-1 307.
[7] Perkel J M.Visiting“nocodarnia”[J].Biotechniques,2013,54(6):301,303-304.
[8] Yoon J H,Abdelmohsen K,Gorospe M.Posttranscriptional gene regulation by long noncoding RNA[J].J Mol Biol,2013,425(19):3 723-3 730.
[9] Morlando M,Ballarino M,F(xiàn)atica A,et al.The role of long noncoding RNAs in the epigenetic control of gene expression[J].Chem Mde Chem,2014,9(3):505-510.
[10] Schaukowitch K,Kim T K.Emerging epigenetic mechanisms of long non-coding RNAs[J].Neuroscience,2014,264(4):25-38.
[11] Guttman M,Amit I,Garber M,et al.Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J].Nature,2009,458(7235):223-227.
[12] Wang D,Garcia-Bassets I,Benner C,et al.Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA[J].Nature,2011,474(7351):390-394.
[13] Ponting C P.Oliver P L,ReikW.Evolution and functions of long noncoding RNAs[J].Cell,2009,136(4);629-641.
[14] Koike K,Kasamatsu A,Iyoda M,et al.High prevalence of epigenetic inactivation of the human four and a half LIM domains 1gene in human oral cancer[J].Int J Oncol,2013,42(1):141-150.
[15] Chang C P,Bruneau B G.Epigenetics and Cardiovascular Development[J].Annual Review of Physiology,2012,74(1):41-68.
[16] Wutz A.Epigenetic regulation of stem cells:the role of chromatin in cell differentiation[J].Adv Exp Med Biol,2013,786:307-328.
[17] Xie,W,Ames R S,Li H.A cell-based high-throughput screening assay to measure cellular histone h3lys27trimethylation with a modified dissociation-enhanced lanthanide fluorescent immunoassay[J].J Biomol Screen,2012,17(1):99-107.
[18] Liu D,Xu B,Chen S,et al.Long noncoding RANs and prostate cancer[J].J Nanosci Nanotechnol,2013,13(5):3 186-3 194.
[19] Yang F,Huo X S,Yuan S X,et al.Repression of the long noncoding RNA-LET by histone deacetylase 3contributes to hypoxia-mediated metastasis[J].Mol Cell,2013,49(6):1 083-1 096.
[20] Gibb E,Brown C,Lam W.The functional role of long noncoding RNA in human carcinomas[J].Mol Cancer,2011,10(1):1-17.
[21] Ulitsky L,Shkumatava A,Jan C H,et al.Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution[J].Cell,2011,147(7):1 537-1 550.
[22] ENCODE project consortium.Identification and analysis of functional elements in 1%of the human genome by the ENCODE pilot project[J].Nature,2007,447(7146):799-816.
[23] Bergman Y,Cedar H.DNA methylation dynamics in health and disease[J].Nat Struct Mol Biol,2013,20(3):274-281.
[24] Di Ruscio A,Ebralidze A K,Benoukraf T,et al.DNMT1-interacting RNAs block gene-specific DNA methylation[J].Nature,2013,503(7476):371-376.
[25] Simon J A,Kongston R E.Occupying chromatin:polycomb mechanisms for getting to genomic targets,stopping transcriptional traffic,and staying put[J].Mol Cell,2013,49(5):808-824.
[26] Kouzarides T.Chromation modifications and their function[J].Cell,2007,128(4):693-705.
[27] Simon M D,Pinter S F,F(xiàn)ang R,et al.High-resolution Xist binding maps reveal two-step apreading during X-chromosome inactivation[J].Nature,2013,504(7480):465-469.
[28] Timp W,F(xiàn)einberg A P.Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host[J].Nat Rev Cancer,2013,13(7):497-510.
[29] Liu F,Marquardt S,Lister C,et al.Targeted 3'processing of antisense transcripts triggers arabidopsis FLC chromatin silencing[J].Science,2010,327(5961):94-97.
[30] Heo J B,Sung S.Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J].Science,2011,331(6013):76-79.
[31] Khaitan D,Dinger M E,Mazar J,et al.The melanoma-upregulated long noncoding RNA SPRY4-IT1modulates apoptosis and invasion[J].Cancer Res,2011,71(11):3 852-3 862.
[32] Mazar J,DeBlasio D,Govindarajan S S,et al.Epigenetic regulation of microRNA-375and its role in melanoma development in humans[J].FEBS Lett,2011,585(15):2 467-2 476.
[33] Arab K,Park Y J,Lindroth A M,et al.Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21via GADD45A[J].Mol Cell,2014,55(4):604-614.
[34] Dudziec E,Goepel J R,Catto J W.Global epigenetic profiling in bladder cancer[J].Epigenomics,2011,3(1):35-45.
[35] Garding A,Bhattacharya N,Claus R,et al.Epigenetic upregulation of lncRNAs at 13q14.3in leukemia is linked to the in cis downregulation of a gene cluster that targets NF-kB[J].PLoS Genet,2013,9(4):e1003373.
[36] Mazar J,Khaitan D,DeBlasio D,et al.Epigenetic regulation of microRNA genes and the role of miR-34bin cell invasion and motility in human melanoma[J].PLoS One,2011,6(9):e24922.
[37] Chen X,He D,Dong X D,et al.MicroRNA-124ais epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uveal melanoma[J].Invest Ophthalmol Vis Sci,2013,54(3):2 248-2 256.
[38] Gupta R A,Shah N,Wang K C,et al.Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J].Nature,2010,464(7291):1 071-1 076.
[39] Wang X,Arai S,Song X,et al.Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription[J].Nature,2008,454(7200):126-130.
[40] Reik W,Lewis A.Co-evolution of X chromosome inactivation and imprinting in mammals[J].Nat Rev Genet,2005, 6(5):403-410.
[41] Dey B K,Pfeifer K,Dutta A.The H19long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration[J].Genes Dev,2014,28(5):491-501.
[42] Yoshimizu T,Miroqlio A,Ripoche M A,et al.The H19locus acts in vivo as a tumor suppressor[J].Proc Natl Acad Sci U S A,2008,105(34):12 417-12 422.
[43] Nora E P,Lajoie B R,Schulz E G,et al.Spatial partitioning of the regulatory landscape of the X inactivation center[J].Nature,2013,485(7398):381-385.
[44] Lee J T.Epigenetic regulation by long noncoding RNAs[J].Science,2012,338(6113):1 435-1 439.
[45] Fatica A &Bozzoni I.Long non-coding RNAs:new players in cell differentiation and development[J].Nature,2014,15(1):7-21.
[46] Guil S,Esteller M.RNA-RNA interactions in gene regulation:the coding and noncoding players[J].Trends Biochem Sci,2015,40(5):248-256.