国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高山林線交錯(cuò)帶高山杜鵑的凋落物分解

2015-03-11 06:41鄧長(zhǎng)春蔣先敏陳亞梅和潤(rùn)蓮
生態(tài)學(xué)報(bào) 2015年6期
關(guān)鍵詞:交錯(cuò)帶針葉林草甸

鄧長(zhǎng)春, 蔣先敏, 劉 洋, 張 健,*, 陳亞梅, 和潤(rùn)蓮

1 四川農(nóng)業(yè)大學(xué)生態(tài)林業(yè)研究所/林業(yè)生態(tài)工程重點(diǎn)實(shí)驗(yàn)室, 成都 611130 2 四川省阿壩州川西林業(yè)局, 理縣 623102

高山林線交錯(cuò)帶高山杜鵑的凋落物分解

鄧長(zhǎng)春1, 蔣先敏2, 劉 洋1, 張 健1,*, 陳亞梅1, 和潤(rùn)蓮1

1 四川農(nóng)業(yè)大學(xué)生態(tài)林業(yè)研究所/林業(yè)生態(tài)工程重點(diǎn)實(shí)驗(yàn)室, 成都 611130 2 四川省阿壩州川西林業(yè)局, 理縣 623102

凋落物分解是維持生態(tài)系統(tǒng)生產(chǎn)力、養(yǎng)分循環(huán)、土壤有機(jī)質(zhì)形成的關(guān)鍵生態(tài)過(guò)程。高山林線交錯(cuò)帶是陸地生態(tài)系統(tǒng)中對(duì)氣候變化響應(yīng)的敏感區(qū)域。季節(jié)變化和海拔梯度上的植被類型差異可能會(huì)影響該區(qū)域凋落物的分解,進(jìn)而對(duì)高山生態(tài)系統(tǒng)的碳氮循環(huán)產(chǎn)生重要影響。采用凋落物分解袋的方法,研究了川西高山林線交錯(cuò)帶優(yōu)勢(shì)種高山杜鵑(Rhododendronlapponicum)凋落葉在雪被期和生長(zhǎng)季的分解特征。結(jié)果顯示:(1)季節(jié)變化和植被類型對(duì)高山杜鵑凋落物的分解均具有顯著影響(P<0.05),凋落葉的質(zhì)量損失主要發(fā)生在生長(zhǎng)季且在高山林線最大,暗針葉林中雪被期的質(zhì)量損失略高于生長(zhǎng)季,但差異不顯著;(2)林線交錯(cuò)帶上高山杜鵑凋落葉分解緩慢,一年干物質(zhì)失重率為9.62%,擬合分解系數(shù)k為0.145;(3)高山杜鵑凋落葉的質(zhì)量變化主要體現(xiàn)在纖維素降解顯著且集中在雪被期,木質(zhì)素?zé)o明顯降解,在高山林線上C/N、C/P、木質(zhì)素/N變化幅度較小且C、N、P的釋放表現(xiàn)得穩(wěn)定而持續(xù)。結(jié)果表明,季節(jié)性雪被對(duì)林線交錯(cuò)帶內(nèi)高山杜鵑分解的影響不僅局限在雪被期內(nèi),雪被融化期間頻繁的凍融作用和雪融水淋洗作用可能會(huì)促進(jìn)高山杜鵑凋落物在生長(zhǎng)季初期的分解。總的來(lái)看,在氣候變暖的情景下,雪被的縮減、生長(zhǎng)季的延長(zhǎng)和高山杜鵑群落的擴(kuò)張可能加速高山林線交錯(cuò)帶高山杜鵑凋落物的分解。

凋落物分解; 林線交錯(cuò)帶; 高山杜鵑; 氣候變暖; 雪被

凋落物分解是維持生態(tài)系統(tǒng)生產(chǎn)力、養(yǎng)分循環(huán)、土壤有機(jī)質(zhì)形成的關(guān)鍵生態(tài)過(guò)程[1-3]。迄今,國(guó)內(nèi)外科學(xué)家開(kāi)展了大量的凋落物分解研究[4-5],研究對(duì)象涉及到不同氣候帶、不同植物類型,涉及到的環(huán)境因子包括土壤溫濕度、土壤類型、植物種類、光照、雪被等[5-7]。目前,比較一致的結(jié)論是“氣候控制著區(qū)域尺度的凋落物分解速率,而由物種決定的凋落物基質(zhì)質(zhì)量控制著小尺度的凋落物分解過(guò)程[8]”。一般生態(tài)學(xué)的理論認(rèn)為,環(huán)境的溫度、濕度越高,凋落物分解速率越快,而在冬季低溫狀況下,凋落物的分解速率很低[9]。然而,近年來(lái)不斷增加的冬季凋落物分解實(shí)驗(yàn)[10-15]表明,實(shí)際情況并非如此。高寒生態(tài)系統(tǒng)頻繁的凍融循環(huán)是影響凋落物分解的重要因子[11],雪被能為凋落物分解者提供了相對(duì)穩(wěn)定的環(huán)境[13],因此,冬季的凋落物質(zhì)量損失也可能高于生長(zhǎng)季。那么,究竟是生長(zhǎng)季較高的溫度還是冬季雪被的絕熱保溫作用對(duì)凋落物分解的影響更為重要?這在全球氣候變化十分敏感的高山林線區(qū)域還缺乏應(yīng)有的關(guān)注。

高山林線是高山森林、灌叢與草甸之間的生態(tài)過(guò)渡帶,是高山植被垂直帶譜中重要的過(guò)渡區(qū)域,指示著森林分布的極限環(huán)境[16],是研究高山生態(tài)系統(tǒng)結(jié)構(gòu)、功能和過(guò)程對(duì)全球氣候變化及人類干擾的理想研究區(qū)域[17]。川西高山林線交錯(cuò)帶季節(jié)性雪被覆蓋的時(shí)間一般為5—6個(gè)月[14,18],在季節(jié)性雪被覆蓋期間可能存在較大的凋落物質(zhì)量損失和養(yǎng)分釋放,這為研究冬季凋落物分解提供了良好的天然實(shí)驗(yàn)室。高山杜鵑(Rhododendronlapponicum(L.) Wahl.)為杜鵑花科高山常綠灌木或小喬木植物,自然生長(zhǎng)狀態(tài)下樹(shù)高約1—3 m,主要分布在我國(guó)西南部2500 m至4500 m的高海拔,常見(jiàn)于山地冷杉林中或林緣草坡上,是我國(guó)西部地區(qū)高山/亞高山濕潤(rùn)山坡灌木群落的建群種或優(yōu)勢(shì)種。

目前,有關(guān)林線交錯(cuò)帶位置、物種組成、生物多樣性、植被格局和生理生態(tài)特征已開(kāi)展了大量的科學(xué)研究[19-20],但有關(guān)全球氣候變化背景下,林線交錯(cuò)帶凋落物分解及區(qū)域物質(zhì)循環(huán)的研究工作卻鮮見(jiàn)報(bào)道。因此,基于林線交錯(cuò)帶不同海拔梯度形成的3個(gè)植被帶在不同季節(jié)(雪被期、生長(zhǎng)季節(jié))可能對(duì)高山杜鵑凋落物分解產(chǎn)生顯著影響的假設(shè),以地處青藏高原東緣的灌木優(yōu)勢(shì)種高山杜鵑為研究對(duì)象,研究林線交錯(cuò)帶雪被期與生長(zhǎng)季凋落物分解的特征及兩者間的聯(lián)系,為進(jìn)一步認(rèn)識(shí)高山林線交錯(cuò)帶生態(tài)系統(tǒng)的生物元素循環(huán)提供理論依據(jù)。

1 實(shí)驗(yàn)方法

1.1 研究區(qū)域概況

四川省理縣米亞羅林區(qū) (31°43′—31°51′N,102°40′—103°02′E),位于青藏高原東緣褶皺帶最外緣及岷江支流雜谷腦河的上游,海拔2200—5500 m,年平均氣溫6—12 ℃,1月平均氣溫-8 ℃,7月平均氣溫12.6 ℃,年積溫為1200—1 400 ℃,年降水量為600—1100 mm,年蒸發(fā)量為1000—1900 mm,具有降水次數(shù)多、強(qiáng)度小的特點(diǎn)。地形以石質(zhì)山地為主,土壤具有粗骨(石礫含量高)和薄層。從低海拔到高海拔,土壤類型依次為山地暗棕壤、棕色針葉林土、高山草甸土。本研究選擇米亞羅鷓鴣山(31°51′428″N,102°41′230″E)高山林線交錯(cuò)帶。鷓鴣山位于雜谷腦河北側(cè),海拔3200—4800 m,是大渡河與岷江的分水嶺。山地垂直地帶性明顯,自河谷至山頂依次分布有針闊混交林、暗針葉林、高山灌叢、高山草甸等植被帶。在山地林線交錯(cuò)帶上,植被類型從低海拔到高海拔由暗針葉林經(jīng)林線灌叢過(guò)渡到高山草甸,地被物厚度逐漸降低,土壤類型由棕色針葉林土過(guò)渡到高山草甸土。該區(qū)域包括了典型的自然條件下形成的高山林線,能較好地反映川西高山林線交錯(cuò)帶植被、土壤及地被物的生態(tài)特征。

1.2 樣地設(shè)計(jì)

圖1 雪被期和生長(zhǎng)季高山林線交錯(cuò)帶凋落物分解日平均溫度動(dòng)態(tài)Fig.1 Dynamics of daily mean temperature of litter during the snowi-ng season and growing season in the alpine timberline ecotone

采用GPS定位, 沿垂直于等高線方向,在高山林線交錯(cuò)帶區(qū)域(海拔3900—4200 m)設(shè)置3條寬度為50 m的定位樣帶,樣帶分別經(jīng)過(guò)針葉林 (CF)(3900 m)、林線(TL) (4000 m)和草甸(MD) (4200 m)。在各樣帶上選擇并固定樣方,采用iButton(DS1921)監(jiān)測(cè)凋落物分解的溫度,每3 h自動(dòng)記錄1次數(shù)據(jù)(圖1)。3個(gè)植被帶雪被期(SS,連續(xù)7 d出現(xiàn)零下溫度的第1天至連續(xù)7 d無(wú)零下溫度的前一天)和生長(zhǎng)季(GS,連續(xù)7 d無(wú)零下溫度的第1天至連續(xù)7 d出現(xiàn)零下溫度的前1天)的平均溫度、天數(shù)及凍融循環(huán)次數(shù)(持續(xù)時(shí)間≥3 h的零上溫度交替到零下溫度并持續(xù)3 h及以上,或持續(xù)時(shí)間≥3 h的零下溫度交替到零上溫度并持續(xù)3 h及以上,計(jì)為凍融1次)見(jiàn)表1。

1.3 凋落物分解實(shí)驗(yàn)

2011年10月初,在高山林線交錯(cuò)帶暗針葉林(海拔3900 m)中,于高山杜鵑凋落高峰期收集新鮮凋落葉,帶回自然風(fēng)干。稱取5份凋落葉10 g于65 ℃烘箱烘至恒重,測(cè)定其自然風(fēng)干后的含水量。稱取10 g自然風(fēng)干的凋落葉裝入尼龍網(wǎng)材質(zhì)、大小20 cm×20 cm,網(wǎng)孔大小為底部(貼地面)0.055 mm表面層為1 mm的凋落物袋中,共制備30袋備用。剩余凋落葉65 ℃24 h烘干,磨碎并分析凋落葉初始基質(zhì)質(zhì)量。2011年10月底將凋落袋放回林線交錯(cuò)帶的3個(gè)植被帶的固定樣方中,每個(gè)樣方內(nèi)放置10袋,凋落袋平鋪于樣地地表,各凋落袋間間隔至少5 cm。于2012年5月9日和10月26日采集凋落物分解袋,每個(gè)植被帶樣地每次采集5袋,采集后立即用封口袋封裝,翌日帶回實(shí)驗(yàn)室,去除雜質(zhì)、土壤,烘干至恒重,供相關(guān)分析測(cè)試。有機(jī)碳含量采用重鉻酸鉀-外加熱法測(cè)定[21];全氮含量采用半微量凱氏定氮法測(cè)定[21];全磷含量采用鉬銻鈧比色法測(cè)定[21];木質(zhì)素和纖維素采用改進(jìn)的范氏酸性洗滌纖維法測(cè)定[22]。

表1 雪被期與生長(zhǎng)季凋落物分解的平均溫度、雪被期與生長(zhǎng)季天數(shù)和凍融循環(huán)次數(shù)

Table 1 Mean temperature of litter decomposition in snow season and growing season, days of snow season and growing season and frequency of freeze-thaw cycle in alpine timberline ecotone

交錯(cuò)帶Ecotone雪被期平均溫度Snowingseasonmeantemperature/℃生長(zhǎng)季平均溫度Growingseasonmeantemperature/℃雪被期天數(shù)Daysofsnowingseason/d生長(zhǎng)季天數(shù)Daysofsnowingseason/d凍融循環(huán)次數(shù)Frequencyoffreeze—thawcycle/time草甸Meadow-0.408.3216619963林線Timberline-1.937.0417019598森林Coniferousforest-3.136.1417718848

表中溫度為凋落物袋內(nèi)監(jiān)測(cè)的凋落物分解溫度

1.4 計(jì)算與統(tǒng)計(jì)分析

用改進(jìn)的Olson[23]經(jīng)典指數(shù)模型擬合凋落物分解過(guò)程:

y=ae-kt

式中,y為凋落物殘留率(%);k為分解系數(shù);t為時(shí)間(a);a為擬合參數(shù);e為自然對(duì)數(shù)底。

運(yùn)用差量法計(jì)算凋落物失重率[24]:

Li(%)=100×(Mi-1-Mi)/M0

式中,Li為凋落物失重率(%);M0為凋落物初始重(g);Mi為不同時(shí)間點(diǎn)采樣的瞬時(shí)殘留量(g)。

凋落物全碳、全氮、全磷、木質(zhì)素和纖維素的釋放率(降解率)[24]:

Ri(%)=100×(Mi-1Ci-1-MiCi)/M0C0

式中,Ri為各組分釋放率(降解率)(%);Ci為各組分在i時(shí)間采樣時(shí)的含量(實(shí)測(cè)濃度)(g/kg)或(%);Mi為不同時(shí)間點(diǎn)采樣的瞬時(shí)殘留量(g);C0為各組分初始含量(初始濃度)(g/kg)或(%);M0為凋落物初始重(g)。

數(shù)據(jù)統(tǒng)計(jì)與分析采用SPSS 20.0和Excel2007,圖表繪制采用Excel2007和Origin8.1。采用單因素方差分析(one-way ANOVA)和最小顯著差數(shù)法(LSD),分析檢驗(yàn)凋落物各分解參數(shù)植被類型間的差異性;采用T檢驗(yàn),檢驗(yàn)各分解參數(shù)兩個(gè)分解階段(雪被期和生長(zhǎng)季)間的差異性;采用雙因素方差分析(two-way ANOVA)植被類型和季節(jié)及其交互作用對(duì)高山杜鵑凋落物各分解參數(shù)的影響。

2 結(jié)果

2.1 凋落物的質(zhì)量損失

2.1.1 凋落物的失重率

高山杜鵑凋落物分解1a后的干物質(zhì)失重率和去灰分失重率趨勢(shì)一致(圖2)。平均干物質(zhì)損失率為9.62%,去灰分的平均失重率為10.09%,都表現(xiàn)為林線>高山草甸>針葉林。方差分析表明,植被帶間凋落物的年失重率差異極顯著(P<0.01)。多重比較發(fā)現(xiàn),第1年失重率林線極顯著高于草甸與針葉林(P<0.01),且草甸極顯著高于針葉林。

方差分析表明,季節(jié)對(duì)各植被帶凋落物的干物質(zhì)失重率及去灰分失重率影響極顯著 (P<0.01 )。雪被期內(nèi)干物質(zhì)失重率表現(xiàn)為高山草甸3.78%顯著高于林線2.23%,而草甸與針葉林2.68%及林線與針葉林間均無(wú)顯著差異;生長(zhǎng)季表現(xiàn)為林線11.85%極顯著高于草甸6.03%與針葉林2.30%,且草甸顯著高于針葉林。對(duì)各植被帶雪被期和生長(zhǎng)季凋落物的干物質(zhì)失重率進(jìn)行比較,針葉林表現(xiàn)為雪被期略高于生長(zhǎng)季(P>0.05),林線和高山草甸都表現(xiàn)為生長(zhǎng)季顯著高于雪被期(P<0.01)。全年總體來(lái)看,生長(zhǎng)季干物質(zhì)失重率的占第1年干物質(zhì)失重率的近80%,質(zhì)量損失主要在發(fā)生生長(zhǎng)季。

2.1.2 凋落物分解系數(shù)

用Olson經(jīng)典分解模型擬合高山林線交錯(cuò)帶高山杜鵑凋落物的分解過(guò)程,結(jié)果如表2所示,模型擬合的干物質(zhì)質(zhì)量損失和去灰分質(zhì)量損失的分解系數(shù)k非常接近,分別為0.145和0.156。計(jì)算得出凋落物分解一半的時(shí)間約為5a,凋落物分解95%的時(shí)間約為20a。

圖2 雪被期和生長(zhǎng)季高山杜鵑凋落物的質(zhì)量損失Fig.2 Litter decomposition of R. lapponicum measured as mass loss over snow season and growing season in alpine timberline ecotone

表2 高山杜鵑凋落物干物質(zhì)質(zhì)量損失和去灰分質(zhì)量損失的回歸分解模型

Table 2 Litter dry matter mass loss and ash-free mass loss regression decomposition model ofR.lapponicumduring a year in alpine timberline ecotone

類型Type干物質(zhì)分解模型Drymatterdecompositionmodel去灰分分解模型Ash-freedecompositionmodel回歸方程Regressionmodelsy=1.044e-0.145ty=1.049e-0.156t分解系數(shù)k Decompositionconstantk0.1450.156相關(guān)系數(shù)R CorrelationcoefficientR0.7440.735半分解時(shí)間T0.5TimeofhalfdecompositionT0.5/a5.084.7595%分解時(shí)間T0.95TimeofhalfdecompositionT0.95/a20.9619.51顯著性SignificanceP<0.0001<0.0001

2.2 凋落物質(zhì)量變化

如表3所示,高山杜鵑凋落物分解1a后,全C、全N、全P、木質(zhì)素和纖維素的含量均發(fā)生了不同程度的變化。C含量呈持續(xù)下降趨勢(shì),年平均降低了12.81%(雪被期2.48%、生長(zhǎng)季10.33%),且主要發(fā)生在生長(zhǎng)季。經(jīng)雪被期后,暗針葉林與林線C含量均顯著下降,而高山草甸C含量無(wú)顯著變化。凋落物N含量總體上升,海拔梯度之間差異顯著,暗針葉林與林線上升幅度顯著,而草甸上升幅度較小。凋落物P含量總體下降,下降集中在生長(zhǎng)季。經(jīng)雪被期后,P含量草甸顯著高于暗針葉林;經(jīng)生長(zhǎng)季后,暗針葉林與林線均顯著高于草甸。木質(zhì)素含量小幅升高,雪被期3個(gè)植被帶平均升高1.72%,生長(zhǎng)季平均升高了2.00%,季節(jié)之間及植被帶間均無(wú)顯著差異。纖維素含量總體大幅下降,雪被期3個(gè)植被帶平均下降22.95%,生長(zhǎng)季平均下降1.38%,下降主要發(fā)生在雪被期。

從表3可以看出,C/N和L/N(木質(zhì)素/N)呈雪被期上升生長(zhǎng)季下降的趨勢(shì),而C/P呈持續(xù)上升趨勢(shì)。雪被期C/N 3個(gè)植被帶平均升高了16.60%,而生長(zhǎng)季3個(gè)植被帶都顯著下降,草甸C/N下降幅度顯著大于暗針葉林。經(jīng)雪被期后3個(gè)植被帶L/N均升高,經(jīng)生長(zhǎng)季后暗針葉林和林線L/N顯著降低(P<0.05),草甸L(zhǎng)/N保持穩(wěn)定狀態(tài)。暗針葉林中,C/P雪被期小幅升高,生長(zhǎng)季顯著下降;高山草甸上,剛好與其相反;而林線上C/P無(wú)明顯變化,保持基本穩(wěn)定。

表3 經(jīng)雪被期和生長(zhǎng)季分解后凋落物C、N、P、木質(zhì)素及纖維素含量和C/N、木質(zhì)素/N及C/P 值

Table 3 Litter decomposition measured as content of C, N, P, lignin, cellulose and value of C/N, lignin/N, C/P over snow season and growing season during a year in alpine timberline ecotone

組分ConstituentC/(g/kg)N/(g/kg)P/(g/kg)木質(zhì)素Lignin(L)/%纖維素Cellulose/%C/N木質(zhì)素(L)/NC/P初始值Initialvalue546.1±12.72.56±0.520.53±0.1133.53±1.9615.33±1.86220.113.531054針葉林CF雪被期SS520.2±13.4aB2.03±0.20bA0.42±0.07bB33.94±3.09aA11.41±1.08aA258.8aA16.91aA1287aA生長(zhǎng)季GS467.8±40.59bA3.141±0.3843aA0.6785±0.1263aA33.69±2.427aA10.76±0.6012aA150.6bB10.87bC717.6bB林線TL雪被期SS528.873±6.657aB2.082±0.1524bA0.5200±0.0821aBA33.972±2.658aA11.79±1.086aA255.1aA16.36aA1040aA生長(zhǎng)季GS485.2±23.42bA2.645±0.2927aB0.5305±0.1147aA34.35±2.091aA12.32±1.439aA185.9bAB13.16bB942.4aB草甸MD雪被期SS548.6±6.751aA2.166±0.2312aA0.6421±0.2517aA34.41±3.240aA12.24±1.228aA256.0aA16.16aA974.1bA生長(zhǎng)季GS475.4±40.35bA2.265±0.1120aB0.2758±0.1398bB36.29±3.043aA11.73±1.556aA210.9bA16.03aA2122aA

含量數(shù)據(jù):平均值±標(biāo)準(zhǔn)誤差;比值數(shù)據(jù):平均值(不同小寫字母表示同一海拔季節(jié)間差異顯著(P<0.05,n=5);不同大寫字母表示同一季節(jié)海拔間差異顯著(P<0.05,n=5));SS: snow season;GS: growing season;CF: coniferous forest;TL: timberline;MD: meadow

2.3 元素釋放及木質(zhì)素和纖維素的降解

2.3.1 C、N、P的釋放

從圖3可以看出,高山杜鵑凋落物C總體呈凈釋放狀態(tài),暗針葉林、林線和草甸C年釋放率分別為18.65%、23.69%和21.47%,植被帶間無(wú)顯著差異。3個(gè)植被帶,雪被期平均C釋放率為5.31%,生長(zhǎng)季為15.95%,C釋放率生長(zhǎng)季顯著高于雪被期(P<0.01)。雪被期暗針葉林的C釋放率高于草甸(P<0.05),暗針葉林與林線及林線與草甸間均無(wú)顯著差異;生長(zhǎng)季C釋放率海拔之間無(wú)顯著差異。

暗針葉林N年釋放率為-16.47%,呈富集狀態(tài);林線和草甸分別為11.31%和20.35%,均呈釋放狀態(tài)。3個(gè)植被帶,雪被期平均N釋放率為20.81%,生長(zhǎng)季為-15.75%,呈先釋放后富集狀態(tài)。雪被期N均呈釋放態(tài),3個(gè)植被帶間無(wú)顯著差異;生長(zhǎng)季3個(gè)植被帶N的變化差異極其顯著,暗針葉林與林線N都不同程度富集,暗針葉林富集程度高于林線(P<0.01),而高山草甸N經(jīng)過(guò)一個(gè)生長(zhǎng)季后無(wú)明顯變化,僅少量釋放。

暗針葉林P年釋放率為-20.75%,呈富集態(tài);林線和草甸分別為14.91%和53.45%,均呈釋放態(tài)。3個(gè)植被帶,雪被期P平均釋放率為4.47%,生長(zhǎng)季為11.20%,呈持續(xù)釋放態(tài)。暗針葉林中,雪被期釋放,生長(zhǎng)季富集,這與N趨勢(shì)一致;林線上,兩個(gè)季節(jié)均釋放,生長(zhǎng)季釋放程度略高于雪被期(P>0.05);高山草甸上,雪被期富集,生長(zhǎng)季大量釋放。林線以上與林線以下兩個(gè)分解階段P的變化趨勢(shì)剛好相反,而林線P的釋放表現(xiàn)得相對(duì)平和。

圖3 一年中雪被期和生長(zhǎng)季凋落物碳、氮、磷的釋放率Fig.3 Litter decomposition measured as net release rate of C, N, P over snowing season and growing season during a year in alpine timberline ecotone

2.3.2 木質(zhì)素和纖維素的降解

如圖4所示,凋落物的木質(zhì)素第1年降解微弱,林線年降解率最高,這與失重率相吻合。凋落物木質(zhì)素的年降解率林線11.93%顯著高于草甸2.42%,林線與暗針葉林4.64%及草甸與暗針葉林間均無(wú)顯著差異。雪被期木質(zhì)素降解率為1.26%,占全年降解率的19.95%;生長(zhǎng)季為5.07%,占全年降解率的80.05%,生長(zhǎng)季的降解占據(jù)重要比例。統(tǒng)計(jì)分析表明,雪被期和生長(zhǎng)季的木質(zhì)素降解率無(wú)顯著差異,植被帶間也無(wú)顯著差異。

凋落物的纖維素第1年降解明顯,且集中于雪被期。纖維素第1年的降解率暗針葉林33.34%、林線31.11%和草甸31.05%,三者間無(wú)顯著差異。雪被期3個(gè)植被帶纖維素平均降解率為25.21%,占全年降解率的79.20%;生長(zhǎng)季為6.63%,占全年降解率的20.80%,雪被期極顯著高于生長(zhǎng)季,且占據(jù)全年降解率的很大比重。植被帶間纖維降解率均無(wú)顯著差異。

圖4 一年中雪被期和生長(zhǎng)季凋落葉的木質(zhì)素(Lignin)和纖維素(Cellulose)的降解率Fig.4 Leaf litter decomposition measured as net release rate of lignin and cellulose over snowing season and growing season during a year in alpine timberline ecotone

2.4 季節(jié)與植被類型對(duì)凋落物分解的影響

以季節(jié)和植被類型作為自變量,對(duì)干物質(zhì)失重率、C釋放率、N釋放率、P釋放率、木質(zhì)素降解率、纖維素降解率、C/N、L/N和C/P進(jìn)行雙因素方差分析,結(jié)果如表4。可以看出,季節(jié)(雪被期與生長(zhǎng)季)對(duì)干物質(zhì)失重率、C、N、P釋放率、纖維素降解率、C/N和木質(zhì)素/N均有顯著作用,而對(duì)木質(zhì)素降解率和C/P無(wú)顯著作用;植被類型僅對(duì)干物質(zhì)失重率、N釋放率和C/P具有顯著作用,而對(duì)C釋放率、P釋放率、木質(zhì)素降解率、纖維素降解率、C/N和L/N均無(wú)顯著作用;除木質(zhì)素和纖維素降解率外,兩因素的交互作用對(duì)其余指標(biāo)均具有顯著作用。干物質(zhì)失重率和N釋放率對(duì)季節(jié)和植被類型及兩者交互作用響應(yīng)顯著。

3 結(jié)論與討論

3.1 不同季節(jié)和植被類型質(zhì)量損失的差異及成因

從凋落物1a的質(zhì)量損失來(lái)看,高山杜鵑凋落物在林線交錯(cuò)帶的平均干物質(zhì)失重率為9.62%,低于本地區(qū)冷杉[24]、紅樺[15]和窄葉鮮卑花[14]等凋落物的失重率。高山杜鵑凋落物的分解系數(shù)k為0.145,在北極凍原—熱帶森林的k值0.032—3.734范圍[25]中處于較低水平,與川西高山森林的岷江冷杉、紅樺、四川紅杉和方枝柏4種凋落葉的k值0.201—0.338[15]及北美東部阿巴拉契亞山大葉杜鵑凋落葉k值0.657[26]相比均較小??梢?jiàn),分解緩慢和分解速率低是高山杜鵑凋落物葉的主要特征之一,這與Wardle[27]等在瑞典北部的研究結(jié)果一致,葉片革質(zhì)且較厚及可利用碳、氮含量較低[26]可能是高山杜鵑凋落葉分解速率低、分解慢的重要原因。

表4 季節(jié)(雪被期和生長(zhǎng)季)和植被類型及其交互作用對(duì)干物質(zhì)失重率、C釋放率、N釋放率、P釋放率、木質(zhì)素降解率、纖維素降解率、C/N、木質(zhì)素/N和C/P的影響雙因素方差分析

Table 4 Two-way ANOVA of the main effects of season(snow season and growing season), vegetation types and their interactions for dry mass loss, C release rate, N release rate, P release rate, Lignin release rate, Cellulose release rate, C/N, Lignin/N and C/P

變量Variable季節(jié)SeasondfFP植被類型VegetationtypedfFP季節(jié)×植被類型Season×VegetationtypedfFP干物質(zhì)失重率Drymassloss188.12<0.001241.58<0.001253.92<0.001C釋放率Creleaserate157.14<0.00121.070.35625.56<0.01N釋放率Nreleaserate1181.96<0.001216.71<0.001225.23<0.001P釋放率Preleaserate19.43<0.0121.630.21726.58<0.01木質(zhì)素降解率Ligninreleaserate11.150.29520.650.52920.780.472纖維素降解率Cellulosereleaserate197.52<0.00120.160.85221.070.356C/N162.66<0.00123.150.06123.86<0.05Lignin/N116.49<0.00122.780.08224.94<0.05C/P10.850.36624.45<0.0528.63<0.01

高山林線交錯(cuò)帶海拔梯度上形成的不同植被類型對(duì)高山杜鵑凋落物質(zhì)量損失的影響極其顯著(P<0.001)。林線全年凋落物的質(zhì)量損失極顯著高于暗針葉林和草甸,首先可能是因?yàn)榱志€上劇烈波動(dòng)的溫度和最為頻繁的凍融循環(huán)(表1)嚴(yán)重破壞了凋落葉的物理結(jié)構(gòu)[28-29],其次可能是因?yàn)楦呱搅志€處于森林與高山草甸的交接界面,分解者具有較高的生物多樣性[30],能量和物質(zhì)交換更為頻繁。雪被期和生長(zhǎng)季的交替同樣顯著地影響著高山杜鵑凋落物的分解(P<0.001)。從整個(gè)交錯(cuò)帶看來(lái),生長(zhǎng)季較高的平均溫度可能是高山杜鵑凋落物的質(zhì)量損失集中在生長(zhǎng)季的主要原因[8],但值得注意的是,暗針葉林內(nèi)凋落物失重率雪被期略高于生長(zhǎng)季,而林線和高山草甸上生長(zhǎng)季顯著高于雪被期,這可能是森林中兩個(gè)季節(jié)的天數(shù)相差較小,而草甸和林線的生長(zhǎng)季天數(shù)高于雪被期天數(shù)。暗針葉林密閉的林冠削弱了太陽(yáng)輻射,雪被較厚且持續(xù)時(shí)間長(zhǎng),雪被的絕熱保溫作用可能促進(jìn)了凋落物的分解[13],而林線與草甸經(jīng)歷了更為頻繁的凍融循環(huán),且受雪融水淋洗作用強(qiáng)烈,頻繁凍融循環(huán)作用和強(qiáng)烈的雪融水淋洗作用是該區(qū)域凋落物在生長(zhǎng)季初期質(zhì)量大量損失的重要原因[28-29,31]。

3.2 不同季節(jié)和植被類型質(zhì)量變化、元素釋放與組分降解的差異及成因

高山杜鵑凋落物碳、氮、磷的含量變化和釋放效率在兩個(gè)季節(jié)及3個(gè)植被帶間的差異較大。凋落物碳含量持續(xù)降低,碳的釋放主要集中在生長(zhǎng)季,但暗針葉林中雪被期凋落物的碳的釋放量比生長(zhǎng)季更高,這與Saccone[13]等的研究一致。凋落物氮含量總體上升,首先可能是因?yàn)橥庠吹诘蚵湮锷媳晃⑸锕坛諿2],導(dǎo)致氮含量上升;其次劉洋[32]等在該區(qū)域的研究發(fā)現(xiàn),雪被期土壤微生物生物量氮大量增加,這也可能是導(dǎo)致凋落物中氮含量升高的原因之一。該區(qū)域凋落物氮含量與微生物的關(guān)系還有待進(jìn)一步研究。

暗針葉林中雪被期氮、磷均大量釋放,生長(zhǎng)季中都大量富集,這可能是因?yàn)榘滇樔~林中的較厚雪被給雪下生物群落(微生物和土壤動(dòng)物)提供了一個(gè)相對(duì)穩(wěn)定的環(huán)境,土壤生物活性有效促進(jìn)了凋落物養(yǎng)分的釋放[33],生長(zhǎng)季到來(lái)后,溫度上升,暗針葉林陰暗潮濕的環(huán)境下微生物大量爆發(fā),微生物對(duì)養(yǎng)分固持作用明顯,養(yǎng)分在凋落物內(nèi)富集[34]。在高山草甸上,雪被期磷少量富集,但生長(zhǎng)季卻大量釋放,生長(zhǎng)季較高的溫度可能是磷大量釋放的重要原因[35],同時(shí)高山草甸生長(zhǎng)季牧草的生長(zhǎng)需要大量養(yǎng)分,這種植物養(yǎng)分需求與凋落物養(yǎng)分釋放之間可能存在一種相互適應(yīng)的機(jī)制。高山林線上,碳、氮、磷的釋放都表現(xiàn)得更為持續(xù)而平穩(wěn),這可能是高山林線土壤碳、氮、磷含量高于苔原和森林的主要原因[36],而高山林線較高的生物多樣性對(duì)養(yǎng)分的大量需求可能是其內(nèi)在動(dòng)力。

木質(zhì)素在凋落物基質(zhì)中屬難分解成分,而纖維素屬于中等難度分解成分[3]。木質(zhì)素含量是預(yù)測(cè)凋落物分解和失重的良好指標(biāo)[37],凋落物中木質(zhì)素含量一般為5%—30%[38]。本研究發(fā)現(xiàn),高山杜鵑凋落物木質(zhì)素初始含量為33.5%,與地中海區(qū)域百瑞木(CistusIncanus)相當(dāng)[39],高于一般凋落物木質(zhì)素含量的上限,本研究也證實(shí)了高山杜鵑凋落物分解緩慢。經(jīng)1a分解后,木質(zhì)素降解量極低,這也與Duboc[40]等在奧地利北部阿爾卑斯山對(duì)歐洲花木和南歐黑松的結(jié)果相近。林線木質(zhì)素降解高于暗針葉林與草甸,與失重率高度一致。根據(jù)限制因子原理,高山杜鵑凋落物分解緩慢極有可能是因?yàn)槟举|(zhì)素的限制作用。纖維素第1年大幅降解,年降解率為31.8%,在凋落物1a質(zhì)量損失中的貢獻(xiàn)可能是最大的。值得注意是,在3個(gè)植被帶上,雪被期纖維素的降解率均顯著高于生長(zhǎng)季,這是因?yàn)槎狙┫峦寥篮粑廊痪S持、土壤微生物活性較高[29,41]。

C/N、木質(zhì)素/N和C/P都是凋落物分解速率的良好指標(biāo)[42]。Parnas[43]等認(rèn)為氮發(fā)生固持的關(guān)鍵值為C/N值>30,而C/N值<30時(shí)氮發(fā)生礦化,本研究中高山杜鵑凋落物C/N值的初始值為220,即凋落物在分解過(guò)程中將發(fā)生氮固持作用,而研究結(jié)果也證實(shí)凋落物氮含量和絕對(duì)量均上升(表2和圖3)。經(jīng)雪被期后,C/N值、L/N值和C/P值都不同程度升高(表3),說(shuō)明季節(jié)性雪被對(duì)凋落物質(zhì)量產(chǎn)生了重要影響,雪被下的土壤呼吸及生物活性可能是其主要驅(qū)動(dòng)因子。因林線上養(yǎng)分穩(wěn)定持續(xù)釋放,C/N值、L/N值和C/P值的變化幅度與暗針葉林和草甸相比都相對(duì)較小。

綜上所述,高山杜鵑凋落物的分解集中于生長(zhǎng)季,林線交錯(cuò)帶內(nèi)因海拔梯度形成的不同植被類型對(duì)其分解具有顯著影響。季節(jié)性雪被對(duì)林線交錯(cuò)帶內(nèi)高山杜鵑分解的影響不僅局限在雪被期內(nèi),雪被融化期間頻繁凍融作用和雪融水淋洗作用都能顯著促進(jìn)凋落物在生長(zhǎng)季初期的分解。因高山杜鵑凋落物分解集中于生長(zhǎng)季,季節(jié)性雪被的縮減和生長(zhǎng)季的延長(zhǎng)[44]可能加速高山杜鵑凋落物的分解。另一方面,高山杜鵑凋落物林線與高山草甸的分解速率都顯著高于暗針葉林,而高山杜鵑群落可能正向更高海拔擴(kuò)張[16,45],這也可能進(jìn)一步促進(jìn)林線交錯(cuò)帶內(nèi)高山杜鵑凋落物的分解。因此,我們預(yù)測(cè),在全球氣候變暖的情景下,雪被縮減、生長(zhǎng)季的延長(zhǎng)和高山杜鵑群落的擴(kuò)張將加速高山林線交錯(cuò)帶高山杜鵑凋落物的分解。

致謝:四川農(nóng)業(yè)大學(xué)林學(xué)院生態(tài)林業(yè)研究所吳福忠老師在本文寫作過(guò)程中給予幫助,崔寧潔、歐江、李建平、宋小艷和紀(jì)托未等同學(xué)及四川省阿壩州川西林業(yè)局護(hù)林工人周德東在野外采樣工作中給予幫助,特此致謝。

[1] 楊萬(wàn)勤, 鄧仁菊, 張健. 森林凋落物分解及其對(duì)全球氣候變化的響應(yīng). 應(yīng)用生態(tài)學(xué)報(bào), 2007, 18(12): 2889-2895.

[2] 劉強(qiáng), 彭少麟. 植物凋落物生態(tài)學(xué). 北京: 科學(xué)出版社, 2010: 3-5, 54-56.

[3] 郭劍芬, 楊玉盛, 陳光水, 林鵬, 謝錦升. 森林凋落物分解研究進(jìn)展. 林業(yè)科學(xué), 2006, 42(4): 93-100.

[4] Barrett K. Carbon Accumulation and Storage in Amazonian Ecosystems [D]. Massachusetts: Clark University, 2008.

[5] Parton W, Silver W L, Burke I C, Grassens L, Harmon M E, Currie W S, King J Y, Adair E C, Brandt L A, Hart S C. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 2007, 315(5810): 361-364.

[6] Berg B, McClaugherty C. Plant litter: Decomposition, humus formation, carbon Sequestration. New York: Springer, 2008.

[7] Baptist F, Yoccoz N G, Choler P. Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant and Soil, 2010, 328(1/2): 397-410.

[8] Aerts R. The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 2006, 94(4): 713-724.

[9] Vitousek P M, Turner D R, Parton W J, Sanford R L. Litter decomposition on the Mauna Loa environmental matrix, Hawai′i: patterns, mechanisms, and models. Ecology, 1994, 75(2): 418-429.

[10] Bleak A T. Disappearance of plant material under a winter snow cover. Ecology, 1970, 51(5): 915-917.

[11] Taylor B R, Parkinson D. Does repeated freezing and thawing accelerate decay of leaf litter? Soil Biology and Biochemistry, 1988, 20(5): 657-665.

[12] Wu F Z, Yang W Q, Zhang J, Deng R J. Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 2010, 36(1): 135-140.

[13] Saccone P, Morin S, Baptist F, Bonneville J, Colace M, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clément J C. The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant and Soil, 2012, 363(1/2): 215-229.

[14] 胡霞, 吳寧, 吳彥, 左萬(wàn)慶, 郭海霞, 王金牛. 川西高原季節(jié)性雪被覆蓋對(duì)窄葉鮮卑花凋落物分解和養(yǎng)分動(dòng)態(tài)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(5): 1226-1232.

[15] 武啟騫, 吳福忠, 楊萬(wàn)勤, 徐振鋒, 何偉, 何敏, 趙野逸, 朱劍霄. 季節(jié)性雪被對(duì)高山森林凋落物分解的影響. 植物生態(tài)學(xué)報(bào), 2013, 37(4): 296-305.

[16] 劉洋, 張健, 楊萬(wàn)勤. 高山生物多樣性對(duì)氣候變化響應(yīng)的研究進(jìn)展. 生物多樣性, 2009, 17(1): 88-96.

[17] Li M C, Luo T X, Zhu J J, Kong G Q. Advances in formation mechanism of alpine timberline and associated physio-ecological characteristics of plants. Acta Ecologica Sinica, 2008, 28(11): 5583-5591.

[18] Tan B, Wu F Z, Yang W Q, Liu L, Yu S. Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan during onset of freezing. Acta Ecologica Sinica, 2010, 30(2): 93-99.

[19] Walther G. Plants in a warmer world. Perspectives in Plant Ecology, Evolution and Systematics, 2003, 6(3): 169-185.

[20] Shiyatov S G, Terent Ev M M, Fomin V V, Zimmermann N E. Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century. Russian Journal of Ecology, 2007, 38(4): 223-227.

[21] Lu R K. Soil and Agro-Chemical Analytical Methods. Beijing: China Agricultural Science and Technology Press, 1999: 146-195.

[22] Rowland A P, Roberts J D. Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Communications in Soil Science & Plant Analysis, 1994, 25(3/4): 269-277.

[23] Olson J S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 1963, 44(2): 322-331.

[24] Zhu J X, He X H, Wu F Z, Yang W Q, Tan B. Decomposition ofAbiesfaxonianalitter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China. Scandinavian Journal of Forest Research, 2012, 27(6): 586-596.

[25] Gholz H L, Wedin D A, Smitherman S M, Harmon M E, Parton W J. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 2000, 6(7): 751-765.

[26] Gulis V, Suberkropp K. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology, 2003, 48(1): 123-134.

[27] Wardle D A, Nilsson M, Zackrisson O, Gallet C. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology and Biochemistry, 2003, 35(6): 827-835.

[28] Sulkava P, Huhta V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil. Applied Soil and Ecology, 2003, 22(3): 225-239.

[29] Withington C L, Sanford R L Jr. Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone. Soil Biology and Biochemistry, 2007, 39(1): 68-75.

[30] 黃旭, 文維全, 張健, 楊萬(wàn)勤, 劉洋, 閆幫國(guó), 黃玉梅. 川西高山典型自然植被土壤動(dòng)物多樣性. 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21(1): 181-190.

[31] Bokhorst S, Bjerke J W, Melillo J, Callaghan T V, Phoenix G K. Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland. Soil Biology and Biochemistry, 2010, 42(4): 611-617.

[32] 劉洋, 張健, 閆幫國(guó), 黃旭, 徐振鋒, 吳福忠. 青藏高原東緣高山森林-苔原交錯(cuò)帶土壤微生物生物量碳, 氮和可培養(yǎng)微生物數(shù)量的季節(jié)動(dòng)態(tài). 植物生態(tài)學(xué)報(bào), 2012, 36(5): 382-392.

[33] Campbell J L, Mitchell M J, Groffman P M, Christenson L M, Hardy J P. Winter in northeastern North America: a critical period for ecological processes. Frontiers in Ecology and the Environment, 2005, 3(6): 314-322.

[34] Zhang C F, Trofymow J A, Jamieson R C, Meng F, Gordon R, Bourque C P. Litter decomposition and nitrogen mineralization from an annual to a monthly model. Ecological Modelling, 2010, 221(16): 1944-1953.

[35] Rui Y C, Wang Y F, Chen C G, Zhou X Q, Wang S P, Xu Z H, Duan J C, Kang X M, Lu S B, Luo C Y. Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 2012, 357(1/2): 73-87.

[36] Liptzin D, Sanford R L Jr, Seastedt T R. Spatial patterns of total and available N and P at alpine treeline. Plant and Soil, 2013, 365(1/2): 127-140.

[37] Dyer M L, Meentemeyer V, Berg B. Apparent controls of mass loss rate of leaf litter on a regional scale. Scandinavian Journal of Forest Research, 1990, 5(1/4): 311-323.

[38] 阿姆森 K A. 森林土壤: 性質(zhì)和作用//林伯群, 周重光, 譯. 北京: 科學(xué)出版社, 1984: 33-46.

[39] Fioretto A, Nardo C D, Papa S, Fuggi A. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biology and Biochemistry, 2005, 37(6): 1083-1091.

[40] Duboc O, Zehetner F, Djukic I, Tatzber M, Berger T W, Gerzabek M H. Decomposition of European beech and Black pine foliar litter along an Alpine elevation gradient: Mass loss and molecular characteristics. Geoderma, 2012, 189-190: 522-531.

[42] Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 1989, 70(1): 97-104.

[43] Parnas H. Model for decomposition of organic material by microorganisms. Soil Biology and Biochemistry, 1975, 7(2): 161-169.

[44] IPCC 2007. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press.

[45] Gavazov K S. Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 2010, 337(1/2): 19-32.

Litter decomposition ofRhododendronlapponicumin alpine timberline ecotone

DENG Changchun1, JIANG Xianmin2, LIU Yang1, ZHANG Jian1,*, CHEN Yamei1, HE Runlian1

1KeyLaboratoryofEcologicalForestryEngineeringinSichuanProvince,InstituteofEcology&Forestry,SichuanAgriculturalUniversity,Chengdu611130,China2ForestryBureauofWesternSichuaninAba,Lixian623102,China

Litter decomposition is one of the key ecological processes in forest ecosystem, which plays an important role in ecosystem productivity, nutrient cycling and the formation of soil organic matter. In alpine ecosystem, freeze-thaw cycle and snow cover play an important role of litter decomposition processes. Climate change has changed the snow cover and circulation pattern of soil freezing and thawing in the alpine area, however, it could cause timberline upward shift and a trend for a shrub expansion, which will change community structure and species composition in the alpine region. Alpine timberline ecotone indicates the limit distribution of the forest and is a sensitive area of global climate change. From alpine coniferous forest to alpine shrub meadows, different vegetation types on snowfall distribution may cause dramatic variations in snow depth and snowmelt timing, soil temperatures and freezing depth in ecosystem, which in turn control litter decomposition process, and subsequently influence carbon and nitrogen cycle in alpine ecosystem.Rhododendronlapponicumis one of constructive species or dominant species in alpine/subalpine of western China, which was common in the fir forest and alpine scrub meadow. We present here one year study ofR.lapponicumleaf litter decomposition in snowing season and growing seasonin alpine timberline ecotone located in the eastern Tibetan Plateau, China, where the ground is completely covered with snow for 5—6 months each year. A field experiment using litterbag method was carried out in different vegetations along an elevation gradient in an alpine timberline ecotone, mass loss, nutrient release and changes of leaf litter were studied. The results showed that: 1) both seasonal variation and vegetation type had significantly effects on leaf litter decomposition ofR.lapponicum. Mass loss mainly occured in the growing season and showed the highest value in timberline compared with other vegetations. This may be relatively higher average temperatures in the growing season than snowing season, and there were the most dramatic temperature fluctuations and most frequent freeze-thaw cycles in the timberline. However, slightly higher mass loss in coniferous forest was observed in snowing season compared with that in growing season. 2)Litter mass loss (9.62%) was relatively slow with a coefficientk(0.145) in the first year decomposition in alpine timberline ecotone. 3)Change in quality of leaf litter was mainly reflected in a significant cellulose degradation that concentrated in snowing season, but not significantly degradation of lignin ofR.Lapponicum. The C/N, C/P, lignin/N ratios changed little and C, N, P release performed stable and sustainable as the first year decomposition process in the timberline. The results suggested that seasonal snow cover do not only affect litter decomposition in the period of snowing season, but may further accelerate leaf litter decomposition ofR.lapponicumin the beginning of the growing season according to frequent freeze-thaw cycles and snow melting in the alpine timberline ectone. In conclusion, with the reduction of snow cover, extension of growing season and the expansion of shrub community asR.lapponicum, would accelerate the litter decomposition ofR.lapponicumin alpine timberline ecotone in the scenario of climate warming.

litter decomposition; timberline ecotone;R.lapponicum; climate warming; snow cover

國(guó)家自然科學(xué)基金項(xiàng)目(31200345, 31000213, 31170423); 國(guó)家科技支撐計(jì)劃課題(2011BAC09B05); 教育部博士點(diǎn)基金項(xiàng)目(20115103120003); 四川省教育廳重點(diǎn)項(xiàng)目(11ZA079)

2013-05-23;

日期:2014-04-17

10.5846/stxb201305231155

*通訊作者Corresponding author.E-mail: sicauzhangjian@163.com

鄧長(zhǎng)春, 蔣先敏, 劉洋, 張健, 陳亞梅, 和潤(rùn)蓮.高山林線交錯(cuò)帶高山杜鵑的凋落物分解.生態(tài)學(xué)報(bào),2015,35(6):1769-1778.

Deng C C, Jiang X M, Liu Y, Zhang J, Chen Y M, He R L.Litter decomposition ofRhododendronlapponicumin alpine timberline ecotone.Acta Ecologica Sinica,2015,35(6):1769-1778.

猜你喜歡
交錯(cuò)帶針葉林草甸
青藏高原高寒草甸的空氣動(dòng)力學(xué)粗糙度特征
山地草甸
武功山山地草甸的成因調(diào)查
大興安嶺主要針葉樹(shù)種移植容器苗的培育技術(shù)與造林效果的研究
施肥對(duì)油松人工林針葉養(yǎng)分變化的影響
結(jié)合Sentinel- 1B和Landsat8數(shù)據(jù)的針葉林葉片含水量反演研究
水陸交錯(cuò)帶生態(tài)功能及其氮素截留效果研究進(jìn)展
小五臺(tái)山亞高山草甸植被現(xiàn)狀與恢復(fù)研究
1987-2010年和林格爾縣農(nóng)牧交錯(cuò)帶土地利用與景觀動(dòng)態(tài)變化研究
綠洲-荒漠交錯(cuò)帶沙漠?dāng)U散研究