王 夢,段德超,徐 辰,于明革,2,*,施積炎
1 浙江大學(xué)環(huán)境與資源學(xué)院, 杭州 310058 2 杭州市環(huán)境集團有限公司, 杭州 310022
茶樹根細胞壁不同組分對鉛的吸附性能及其功能團的傅里葉紅外光譜學(xué)研究
王 夢1,段德超1,徐 辰1,于明革1,2,*,施積炎1
1 浙江大學(xué)環(huán)境與資源學(xué)院, 杭州 310058 2 杭州市環(huán)境集團有限公司, 杭州 310022
選擇我國重要的經(jīng)濟作物之一茶樹(CamelliasinensisL.)為研究對象,考察了茶樹根細胞壁中不同多糖組分在吸附鉛(Pb)過程中的作用差異以及與其發(fā)生交互作用的主要功能團。結(jié)果表明,在茶樹根細胞壁吸附Pb過程中,絕大多數(shù)的Pb(68.42%)是吸附在纖維素以及木質(zhì)素上;其次是果膠(20%)、半纖維素2類(5.26%);半纖維素1類的貢獻可以忽略不計。同時,通過細胞壁不同組分吸附Pb前后的傅立葉紅外光譜表征結(jié)果得出,在吸附Pb的過程中,果膠中起作用的功能團主要有羥基、羧基;半纖維素1類中起作用的功能團主要是羧基;半纖維素2類中起作用的功能團主要為羥基。
Pb毒; 細胞壁組分; 傅立葉紅外; 功能團; 茶樹
茶樹(CamelliasinensisL.)是我國重要的經(jīng)濟作物之一,相關(guān)的研究報道表明,我國茶葉產(chǎn)品Pb含量已呈現(xiàn)逐年升高的趨勢[1],是茶葉質(zhì)量安全監(jiān)控的重要指標之一[2-4]。在茶樹根系吸收Pb的過程中,細胞壁是Pb離子跨膜進入細胞質(zhì)的第一道屏障,在茶樹吸收累積Pb的過程中起著重要的作用??得侠韧ㄟ^組分分級提取法研究發(fā)現(xiàn),浙農(nóng)117品種茶樹根、葉細胞中的Pb主要分布在細胞壁中[5]。徐劼等采用亞細胞分離方法發(fā)現(xiàn),龍井43和迎霜品種茶樹根細胞壁累積的Pb高達細胞總含量的51.2%[6]。
細胞壁中存在金屬離子,早在植物細胞與金屬離子作用的研究初期就有所報道[7-11],近期的研究表明細胞壁也是積累金屬離子的重要亞細胞組分之一[12-16],可以容納大量的金屬離子[15, 17-20]。植物細胞壁是由糖、蛋白質(zhì)和芳香族化合物等組成,其中糖含量占到初生壁總量的90%[21],可見,糖類對細胞壁功能有著至關(guān)重要的作用。研究表明,在重金屬脅迫下,細胞壁組分,如半纖維素、多糖、蛋白質(zhì)、胼胝質(zhì)等物質(zhì)含量顯著提高,從而增強了對重金屬的吸附固定能力[22]。細胞壁中各種化學(xué)組分(果膠、纖維素、半纖維素、木質(zhì)素、結(jié)構(gòu)蛋白等)中的負電基團通過沉淀、吸附、絡(luò)合等作用將金屬離子固定在細胞壁中,從而減少金屬離子通過跨膜運輸進入原生質(zhì)體,在一定程度上降低了金屬脅迫對植物正常生理活動的干擾[23-24]。而細胞壁結(jié)合二價金屬離子的能力取決于富含官能團羧基、羥基和巰基 的多糖數(shù)量[25-28]。然而目前關(guān)于植物重金屬污染方面的研究工作大部分限于農(nóng)作物、經(jīng)濟作物等生長期短的草本植物,關(guān)于木本植物也有關(guān)于紅樹植物的相關(guān)報道[29],但是針對茶樹的研究則鮮見報道。
因此,本文選擇木本植物茶樹為研究對象,分別通過吸附動力學(xué)和傅立葉紅外光譜表征,探究了茶樹根細胞壁中不同多糖組分在吸附Pb過程中的作用差異以及與其發(fā)生交互作用的主要功能團,揭示茶樹根系細胞壁組分吸收累積Pb的內(nèi)在機制,從而闡明茶樹根細胞壁Pb累積的適應(yīng)性分子機制。
1.1 細胞壁的提取
試驗所用樣品來自浙江省新昌縣某未污染茶園。選取植株高度在10 cm到20 cm之間長勢均一的茶樹幼苗,收集根部用去離子水沖洗后,根據(jù)Zhong和Lauchi的方法稍加修改提取細胞壁[30]。冰凍的根在研缽中加液氮磨碎,用冰乙醇(75%)浸提植物粉末,每次冰乙醇用量為10 mL/g根鮮重,浸提3次,混合物置于50 mL離心管,混勻,靜置20 min后于4 ℃下1000 g離心10 min。沉淀物再用1∶7(根重(g)/體積(mL))的丙酮(4 ℃)、甲醇-三氯甲烷混合液(體積分數(shù)1∶1)及甲醇溶液依次洗滌,每次洗滌后,懸浮液在4 ℃下1000 g離心10 min。棄去上清液,沉淀冷凍干燥后,加液氮磨碎,作為粗細胞壁,保存于4 ℃?zhèn)溆谩?/p>
1.2 細胞壁多糖組分的分離和測定
參照Zhong和Lauchi的方法進行部分修改,稱取干燥的細胞壁樣品,加入超純水(5 mg干CW/1 mL提取劑),沸水浴1 h,然后17000 g離心10 min,取上清液,重復(fù)3次后認為果膠提取完全,上清液即為果膠提取組分;沉淀用去離子水沖洗2次,用4% NaOH(內(nèi)含0.1% NaHB4)于室溫下分3次提取,上清液即為半纖維素1類(HC1);沉淀用去離子水沖洗2次,用24% NaOH(內(nèi)含0.1% NaHB4)于室溫下分3次提取,上清液即為半纖維素2類(HC2)。
1.3 Pb的吸附動力學(xué)實驗
本實驗分4部分進行,其實驗主體分別為茶樹根細胞壁(CW)、細胞壁去果膠pectin(CW-pectin(CW-1))、細胞壁去果膠去半纖維素1類HC1(CW-pectin-HC1(CW-2))、細胞壁去果膠去半纖維素1類HC1去半纖維素2類HC2(CW-pectin-HC1-HC2(CW-3))。
吸附溶液為15 μmol/L Pb(NO3)2溶液,0.01 mol/L NaNO3溶液作為電解液(pH 5.0)。4個實驗主體分別取0.05 g置于底部有濾紙的濾頭中,濾頭上下均有接口用以連接吸附溶液或收集流出液。吸附溶液用蠕動泵以8 mL/10 min的流速泵入小管中,經(jīng)細胞壁后用自動收集器收集,每10 min收集1管,直到流出液中Pb濃度與吸附液中Pb濃度相同,本研究中約在400 min時達到吸附平衡。用原子吸收光譜儀AAS測定每管中Pb含量。動力學(xué)實驗重復(fù)3次,取平均值做曲線,為防止圖中曲線不清晰,誤差線未在圖中標出,誤差均在10%之內(nèi)。
1.4 細胞壁多糖組分的傅立葉紅外光譜(FTIR)測定
利用傅立葉變換紅外光譜儀(FTIR-IR Prestige-21 島津)對Pb吸附前后的根細胞壁樣品CW、CW-1、CW-2和CW-3進行紅外光譜表征。分別稱取1 mg凍干后根細胞壁樣品,按1∶150的比例加入150 mg KBr于瑪瑙研缽中充分研磨均勻,壓片后放入FTIR樣品工作室,在相同條件下測定紅外光譜圖。光譜分辨率為4 cm-1,記錄樣品在4000—500 cm-1范圍內(nèi)的紅外光譜信號。
2.1 細胞壁不同多糖組分對Pb的吸附動力學(xué)
圖1 茶樹根細胞壁不同組分對Pb2+的吸附動力學(xué) Fig.1 Pb adsorption kinetics of different CW components in tea tree roots
圖1是茶樹根細胞壁不同組分對Pb2+的吸附曲線。從圖中可以看出,茶樹根細胞壁組分對Pb2+的吸附過程分為3個階段:初期是快速過程,100 min后,吸附速率明顯減慢,進入中速過程,200 min后進入慢速過程,吸附400 min后基本達到平衡。吸附平衡后,與CW相比去果膠后的CW-1吸附量降低了26.31%,可知果膠的吸附量占整個細胞壁吸附量的26.31%。同理可知,絕大多數(shù)的Pb(68.42%)是吸附在纖維素以及木質(zhì)素上;HC2的吸附量占有率為5.26%;HC1的貢獻可以忽略不計。
2.2 不同細胞壁組分的紅外光譜分析
圖2為對照組不同的茶樹根細胞壁組分的FTIR圖譜,自上而下,按順序分別為茶樹根CW、 CW-1、CW-2和CW-3。
圖2 茶樹根細胞壁不同組分對Pb2+的吸附動力學(xué) Fig.2 The FTIR spectra of different CWcomponents in tea tree roots
根據(jù)FTIR譜圖進行半定量分析,對每個譜圖分別以2924 cm-1處—HC3中C—H特征吸收峰的吸光度(A2924)為基準,其他特征峰如3385 cm-1、1738 cm-1、1651 cm-1和1512 cm-1等處的吸光度A與A2924的比值,來半定量分析茶樹根細胞壁不同組分的功能團含量差異。即可以通過A/A2924比值的變化來半定量分析官能團數(shù)目變化[32]。
茶樹根細胞壁不同組分含量差異如表1和圖2所示。由A/A2924比值可知,茶樹根CW中含量最高的為纖維素多糖鏈C—C,其次為羥基、羧基和氨基。同CW相比,CW-1、CW-2和CW-3的A3385/A2924和A1258/A2924比值依次降低,由此可知茶樹根細胞壁果膠、HC1和HC2中均含有一定量的羥基和羧基。其中,羥基和羧基均以纖維素中含量最多;羥基含量除纖維素以外以果膠中最多;其次為HC1和HC1;羧基在果膠、HC1和HC2 3個組分中含量相當。
表1 茶樹根細胞壁不同組分(CW:細胞壁;CW-1:細胞壁去果膠;CW-2細胞壁去果膠去半纖維素1類;CW-3:細胞壁去果膠去半纖維素1和2類)紅外光譜特征峰的半定量分析(峰的序號對應(yīng)于圖2)
Table 1 Semi_quantitative analysis of FTIR spectra of different CW components in tea tree roots (CW: cell wall,CW-1: CW-pectin, CW-2: CW-pectin-hemicellulose 1(HC1), CW-3: CW-pectin-HC1-HC2)
序號Number官能團FunctiongroupCW波數(shù)/cm-1WavenumberA/A2924細胞壁不同組分CWcomponentsCW-1CW-2吸光度比值A(chǔ)/A2924A/A2924CW-3A/A29241羥基/氨基—OH/—NH33851.891.391.231.082甲基—CH3292411113酯基C O17380.790.840.670.714酰胺1帶C—N16511.460.791.040.995酰胺2帶N—N15121.081.021.041.026羧酸鹽C O不對稱收縮震動14271.120.981.051.057硫酸鹽或羧基或磷酸鹽12581.181.11.050.988多糖鏈C—C10572.851.71.591.33
A: 吸光度Adsorption
2.3 不同多糖組分在吸附Pb過程中起主要作用的官能團
FTIR譜圖可以表征那些能夠離子化的基團如羧基、羥基、氨基等在重金屬吸附過程中的作用。當官能團參與金屬結(jié)合時,其吸收峰會發(fā)生偏移,因此可以通過峰位的位移來判斷參與Pb結(jié)合的官能團。例如,谷殼吸附Pb2+以后,由于取代了部分羥基中的氫,引起羥基伸縮振動峰的位置向高波數(shù)移動[33]。
茶樹根細胞壁不同組分在Pb2+處理前后FTIR譜圖(圖3—圖6)和表2所示。CW的羥基伸縮振動峰位與對照組相比向高頻位移動了23 cm-1,CW-1和CW-2分別移動了10 cm-1和11 cm-1,CW-3移動了4 cm-1,可見羥基的作用隨著果膠和HC2的去除是依次減弱。Pb處理后CW和CW-1的羧基分別向低頻位移動了5 cm-1和7 cm-1,而隨著果膠和HC1的去除這種變化也相應(yīng)減弱。處理后的CW-1和CW-2的蛋白質(zhì)氨基中的C—N分別向低頻位移動了6 cm-1和4 cm-1同時CW-3中蛋白質(zhì)氨基中的N—N向高頻位移動了10 cm-1,可見隨著果膠的去除CW中蛋白質(zhì)氨基的作用也隨之加強。處理后的CW-2和CW-3的糖類C—C伸縮振動峰位變化顯著增強,分別移動了-8 cm-1和19 cm-1,說明隨著果膠、HC1和HC2的順次去除,它們的作用逐漸突顯出來。
圖3 細胞壁(CW)Pb2+處理前(a)后(b)的紅外光譜圖Fig.3 The FTIR spectra of cell wall (CW) before (a) and after (b) Pb2+adsorption
圖5 細胞壁去果膠去半纖維素1類(CW-2)Pb2+處理前(a)后(b)的紅外光譜圖Fig.5 The FTIR spectra of CW-pectin —hemicellulose 1 (HC1) (CW-2) before (a) and after (b) Pb2+ adsorption
圖6 細胞壁去果膠去半纖維素1和2類(CW-3)Pb2+處理前(a)后(b)的紅外光譜圖Fig.6 The FTIR spectra of CW-pectin —HC1-HC2 (CW -3) before (a) and after (b) Pb2+ adsorption
綜上所述,在吸附Pb的過程中,果膠中起作用的功能團主要有羥基、羧基;HC1中起作用的功能團主要是羧基;HC2起作用的功能團主要是羥基。纖維素和木質(zhì)素中起作用的官能團有纖維素多糖鏈中的C—C以及蛋白質(zhì)氨基中的N—N。但在完整CW吸附Pb的過程中,它們并無明顯變化。推測是在當果膠、HC1和HC2去除后由于羥基和羧基的減少使得殘留的蛋白質(zhì)中的氨基和纖維素糖鏈中的C—C成為除羥基外重要的Pb結(jié)合位點。
表2 茶樹根細胞壁不同組分(CW:細胞壁;CW-1:細胞壁去果膠;CW-2細胞壁去果膠去半纖維素1類(HC1);CW-3:細胞壁去果膠去半纖維素1和2類)吸附Pb2+前后紅外光譜表征(峰的序號對應(yīng)于圖2—圖5)
Table 2 FTIR spectra of different CW components in tea tree roots (CW: cell wall,CW-1: cell wall-pectin, CW-2: CW-pectin-hemicellulose 1(HC1), CW-3: CW-pectin-HC1-HC2 before and after Pb2+adsorption)
序號Number官能團Functiongroup對照CW Pb處理CWCk-CWPb-CW波數(shù)cm-1Wavenumber偏移量cm-1Offset對照CW-1Pb處理CW-1Ck-CW-1Pb-CW-1波數(shù)cm-1Wavenumber偏移量cm-1Offset對照CW-2Pb處理CW-2Ck-CW-2Pb-CW-2波數(shù)cm-1Wavenumber偏移量cm-1Offset對照CW-3 Pb處理CW-3Ck-CW-3 Pb-CW-3波數(shù)cm-1Wavenumber偏移量cm-1Offset1羥基/氨基—OH/—NH3385340823338533951033663377113389339342甲基—CH329262924-229242922-229222928629242926-23酯基C O17381738017381734-4------4酰胺1帶C—N16471647016531647-616531649-41653164725酰胺2帶N—N15121512015101510015081510215101420106羧酸鹽C O不對稱收縮振動14271418-914271420-714221420-21427137527硫酸鹽或羧基或磷酸鹽1258126021260126111265126941260126128多糖鏈C—C10571057210571057010571049-81057105719
表中“-”表示未檢出; 表中 Ck(control chech)-CW、Ck -CW-1、Ck -CW-2、Ck -CW-3分別表示對照處理的CW、CW-1、 CW-2、CW-3; 表中 Pb-CW、Pb-CW-1、Pb-CW-2、Pb-CW-3分別表示加Pb處理的CW、CW-1、 CW-2、CW-3
細胞壁多糖主要包含4個組分,分別為果膠、HC1、HC2和纖維素。通過Pb的吸附動力學(xué)實驗表明,在茶樹根細胞壁中,絕大多數(shù)的Pb(68.42%)吸附在纖維素以及木質(zhì)素上。金屬離子可以與細胞壁高分子物質(zhì)結(jié)合在1987年就有報道,Nishizono等人發(fā)現(xiàn)在禾稈蹄蓋蕨根系細胞壁中的Cu、Zn和Cd含量占整個植株累積量的70%—90%,并且認為它們中的大部分是與纖維素以及木質(zhì)素結(jié)合,以結(jié)合狀態(tài)存在[34]。茶樹根細胞壁果膠中Pb的吸附量占整個CW的26.31%,可見在茶樹根細胞壁吸附Pb的過程中,果膠是除纖維素外起最重要作用的多糖組分。與本研究結(jié)論相似,Zheng等人(2004)報道細胞壁中的果膠是細胞壁陽離子結(jié)合的主要位點之一[35]。目前對于果膠研究較多的是與Al3+[36]、Cd2+[37]、Cu2+[38]以及其他金屬陽離子[11, 39]的結(jié)合作用。除果膠和纖維素外,半纖維素也起到了一定的作用,其中HC2的貢獻率為5.26%,HC1的貢獻則可以忽略不計。
對茶樹根細胞壁各個多糖組分FTIR譜圖進行半定量分析得知,茶樹根細胞壁中含量最高的為纖維素多糖鏈C—C,其次依次為羥基、羧基和氨基。對比各個多糖組分所含的功能團差異,羥基和羧基均以纖維素中含量最多。在果膠、HC1和HC2中,果膠中羥基含量最多,其次是HC1和HC2;羧基含量在此三個組分中差異不大。由此可見,果膠、HC1、HC2和纖維素均有吸附Pb2+的潛力,而果膠是除纖維素外最具潛力的多糖組分。
研究表明,細胞壁結(jié)合二價金屬離子的能力取決于富含官能團羧基,羥基和巰基的多糖數(shù)量[25-28]。結(jié)合吸附Pb前后的CW和CW-3的FTIR譜圖結(jié)果可知,在纖維素中含有豐富的羥基基團,在其吸附Pb的過程中,并沒有發(fā)揮顯著的作用。這是由于纖維素是由1,4-糖苷鍵組成的直鏈多糖,這種高分子結(jié)構(gòu)上有大量的羥基存在,這使其分子鏈間和分子鏈的內(nèi)部形成了氫鍵,這種羥基覆蓋的結(jié)構(gòu)影響了其反應(yīng)活性[40]。同時發(fā)現(xiàn)在CW-3組分(纖維素、木質(zhì)素和蛋白質(zhì))吸附Pb的過程中纖維素多糖鏈中的C—C以及蛋白質(zhì)氨基中的N-N作用顯著,但是在完整CW吸附Pb的過程中它們并沒有發(fā)揮作用。推測當果膠、HC1和HC2去除后由于羥基和羧基的減少,使得纖維素和木質(zhì)素中殘留的蛋白質(zhì)中的氨基[41]和纖維素糖鏈中的C-C成為除羥基外重要的Pb結(jié)合位點。在CW吸附Pb的過程中,纖維素中富含的羥基、羧基等功能團與Pb的交互作用并不顯著,由此可知纖維素對Pb的主要吸附作用并不是離子交換、螯合等化學(xué)吸附作用。而從物理結(jié)構(gòu)來看纖維素是一種纖維狀多毛細管的分子聚合物,具有多孔和比表面積大的特點,具有吸附金屬離子的能力。因此推測在完整CW中纖維素對Pb的吸附作用是以物理吸附為主。然而,另外3種多糖組分都存在與Pb發(fā)生明顯交互作用功能團。其中,果膠中起作用的功能團主要有羥基、羧基;HC1中起作用的功能團主要是羧基;HC2起作用的功能團主要是羥基。研究表明,果膠是胞間層以及初生細胞壁的主要組分之一,含有很多負電基團,如羥基、羧基、醛基、氨基等[23]能結(jié)合多種金屬離子。其基本化學(xué)成分主要有同型半乳糖醛酸聚糖(Homogalacturonan(HGA)),鼠李半乳糖醛酸聚糖Ⅰ(RhamnogalacturonanⅠ(RGⅠ))和鼠李半乳糖醛酸聚糖Ⅱ(RhamnogalacturonanⅡ(RGⅡ))。其中綁定二價和三價金屬離子的主要成分是HGA。研究表明在低甲酯化的HGA中,兩個自由羥基間會互通形成鈣離子通道,被稱為蛋殼結(jié)構(gòu)[42]從而導(dǎo)致,鈣凝膠形成和細胞壁的硬化[21, 43]。通過金屬離子與果膠的結(jié)合能力 Al3+> Cu2+> Pb2+> Zn2+= Ca2+或者 Cu2+= Pb2+> Cd2+= Zn2+> Ca2+[25]可以發(fā)現(xiàn)Pb2+的結(jié)合能力要強于Ca2+,所以Ca2+可以被 二價的Pb2+取代[25]。同時Pb2+也可以直接取代羥基中的氫,引起羥基伸縮振動峰的移動[33]。研究表明,半纖維素的主要成分之一阿拉伯木聚糖鏈上富含葡萄糖殘基結(jié)構(gòu),這使其帶一定的負電荷[44]對金屬陽離子具有一定的吸附能力。另外,Marcus等發(fā)現(xiàn),果膠中的HGA成分的存在掩蓋了半纖維素的抗原決定簇[45],從而可能掩蓋了半纖維素上的Pb結(jié)合位點,隨著果膠的去除半纖維素上的結(jié)合位點得到了有效的暴露,從而可以結(jié)合一定量的Pb。因此,推測在CW中Pb2+主要是通過離子交換、螯合等化學(xué)吸附作用與果膠以及半纖維素結(jié)合。在草本植物根系細胞壁中,與金屬離子發(fā)生作用的多糖組分主要是果膠。果膠對于金屬陽離子的作用最早發(fā)現(xiàn)于筍瓜(Cucurbitamaxima) 根系中[46],果膠與鋁耐性的關(guān)系也一直備受關(guān)注[47-48],并且Kasia等發(fā)現(xiàn)擬南芥(Arabidopsisthaliana)中果膠對Pb2+作用顯著[49]。
綜上所述,與絕大多數(shù)草本植物不同,茶樹根細胞壁是以纖維素和木質(zhì)素在吸附總量上作用最為突出。其次是果膠,起作用的功能團主要有羥基和羧基。半纖維素2類也起到一定吸附作用,有效功能團主要為羥基;而半纖維素1類的作用可以忽略不計。
[1] 韓文炎, 韓國柱, 蔡雪雄. 茶葉鉛含量現(xiàn)狀及其控制技術(shù)研究進展. 中國茶葉, 2008, 30(3): 16-17.
[2] Han W Y, Zhao F J, Shi Y Z, Ma L F, Ruan J Y. Scale and causes of lead contamination in Chinese tea. Environmental Pollution, 2006, 139(1): 125-132.
[3] 陳宗懋, 阮建云, 蔡典雄, 章力建. 茶樹生態(tài)系中的立體污染鏈與阻控. 中國農(nóng)業(yè)科學(xué), 2007, 40(5): 948-958.
[4] Karak T, Bhagat R M. Trace elements in tea leaves, made tea and tea infusion: A review. Food Research International, 2010, 43(9): 2234-2252.
[5] 康孟利, 薛旭初, 駱耀平, 陳惠云, 石元值, 馬立峰, 韓文炎. 茶樹與土壤中鉛的存在形態(tài)與分布. 浙江農(nóng)業(yè)科學(xué), 2006, (3): 280-282.
[6] 徐劼, 于明革, 陳英旭, 傅曉萍, 段德超. 鉛在茶樹體內(nèi)的分布及化學(xué)形態(tài)特征. 應(yīng)用生態(tài)學(xué)報, 2011, 22(4): 891-896.
[7] Malone C, Koeppe D E, Miller R J. Localization of lead accumulated by corn plants. Plant Physiology, 1974, 53(3): 388-394.
[8] Wozny A, Zatorska B, Mlodzianowski F. Influence of lead on the development of lupin seedllings and ultrastructural localization of this metal in the roots. Acta Societatis Botanicorum Poloniae, 1982, 51(3/4): 345-351.
[9] Wierzbicka M. Lead in the apoplast ofAlliumcepaL. root tips-ultrastructural studies. Plant Science, 1998, 133(1): 105-119.
[10] Samardakiewicz S, Woz′ny A. The distribution of lead in duckweed (LemnaminorL.) root tip. Plant and Soil, 2000, 226(1): 107-111.
[11] Neumann D, zur Nieden U. Silicon and heavy metal tolerance of higher plants. Phytochemistry, 2001, 56(7): 685-692.
[12] Wójcik M, Vangronsveld J, D′Haen J, Tukiendorf A. Cadmium tolerance inThlaspicaerulescens-II. Localization of cadmium inThlaspicaerulescens. Environmental and Experimental Botany, 2005, 53(2): 163-171.
[13] Islam E, Yang X E, Li T Q, Liu D, Jin X F, Meng F H. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes ofElsholtziaargyi. Journal of Hazardous Materials, 2007, 147(3): 806-816.
[14] Malecka A, Piechalak A, Morkunas I, Tomaszewska B. Accumulation of lead in root cells ofPisumsativum. Acta Physiologiae Plantarum, 2008, 30(5): 629-637.
[15] Konno H, Nakashima S, Katoh K. Metal-tolerant mossScopelophilacataractaeaccumulates copper in the cell wall pectin of the protonema. Journal of Plant Physiology, 2010, 167(5): 358-364.
[16] Meyers D E R, Kopittke P M, Auchterlonie G J, Webb R I. Characterization of lead precipitate following uptake by roots of brassica juncea. Environmental Toxicology and Chemistry, 2009, 28(11): 2250-2254.
[17] Kopittke P M, Asher C J, Blamey F P C, Auchterlonie G J, Guo Y N, Menzies N W. Localization and chemical speciation of Pb in roots of signal grass (Brachiariadecumbens) and Rhodes grass (Chlorisgayana). Environmental Science and Technology, 2008, 42(12): 4595-4599.
[18] Kopittke P M, Asher C J, Kopittke R A, Menzies N W. Toxic effects of Pb2+on growth of cowpea (Vignaunguiculata). Environmental Pollution, 2007, 150(2): 280-287.
[19] Krzeslowska M, Lenartowska M, Mellerowicz E J, Samardakiewicz S, Woz′ny A. Pectinous cell wall thickenings formation-A response of moss protonemata cells to lead. Environmental and Experimental Botany, 2009, 65(1): 119-131.
[20] Krzeslowska M, Lenartowska M, Samardakiewicz S, Bilski H, Woz′ny A. Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable -A remobilization can occur. Environmental Pollution, 2010, 158(1): 325-338.
[21] Gibeaut D M, Carpita N C. Glucan synthesis in membranes fromZeamaysandGlycinemax: interaction of ER and Golgi membranes. Plant Physiology, 1993, 102(1): 51-51.
[23] Haynes R J. Ion exchange properties of roots and ionic interactions within the root apoplasm: their role in ion accumulation by plants. Botanical Review, 1980, 46(1): 75-99.
[24] Allan D L, Jarrell W M. Proton and copper adsorption to maize and soybean root cell walls. Plant Physiology, 1989, 89(3): 823-832.
[25] Dronnet V M, Renard C M G C, Axelos M A V, Thibault J F. Characterisation and selectivity of divalent metal ions binding by citrus and sugar beet pectins. Carbohydrate Polymers, 1996, 30(4): 253-263.
[26] Kartel M T, Kupchik L A, Veisov B K. Evaluation of pectin binding of heavy metal ions in aqueous solutions. Chemosphere, 1999, 38(11): 2591-2596.
[27] Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 2003, 37(18): 4311-4330.
[28] Pelloux J, Rustérucci C, Mellerowicz E J. New insights into pectin methylesterase structure and function. Trends in Plant Science, 2007, 12(6): 267-277.
[29] 張鳳琴, 王友紹, 殷建平, 董俊德. 紅樹植物抗重金屬污染研究進展. 云南植物研究, 2005, 27(3): 225-231.
[30] Zhong H L, Lauchli A. Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. Journal of Experimental Botany, 1993, 44(4): 773-778.
[31] 潘燕飛. 傅立葉紅外光譜法用于茶葉品質(zhì)的鑒定. 煙臺大學(xué)學(xué)報: 自然科學(xué)與工程版, 2008, 21(4): 266-272.
[32] 張曉斌, 劉鵬, 李丹婷, 徐根娣, 蔣敏姣. 鉻誘導(dǎo)植物根細胞壁化學(xué)成分變化的FTIR表征. 光譜學(xué)與光譜分析, 2008, 28(5): 1067-1070.
[33] 韓潤平, 等. 化學(xué)改性與吸附Pb離子前后谷殼的紅外光譜分析比較. 南昌大學(xué)學(xué)報: 理科版, 2006,30:1304-1306.
[34] Nishizono H, Ichikawa H, Suziki S, Ishii F. The role of the root cell wall in the heavy metal tolerance ofAthyriumyokoscense. Plant and Soil, 1987, 101(1): 15-20.
[35] Zheng S J, Lin X Y, Yang J L, Liu Q, Tang C X. The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistant wheat (TriticumaestivumL.) cultivar. Plant and Soil, 2004, 261(1/2): 85-90.
[36] Schmohl N, Horst W J. Cell wall pectin content modulates aluminium sensitivity ofZeamays(L.) cells grown in suspension culture. Plant, Cell and Environment, 2000, 23(7): 735-742.
[37] Lozano-Rodriguez E, Hernandez L E, Bonay P, Carpena-Ruiz R O. Distribution of cadmium in shoot and root tissues of maize and pea plants: Physiological disturbances. Journal of Experimental Botany, 1997, 48(306): 123-128.
[38] Konno H, Nakato T, Nakashima S, Katoh K.Lygodiumjaponicumfern accumulates copper in the cell wall pectin. Journal of Experimental Botany, 2005, 56(417): 1923-1931.
[39] Bringezu K, Lichtenberger O, Leopold I, Neumann D. Heavy metal tolerance ofSilenevulgaris. Journal of Plant Physiology, 1999, 154(4): 536-546.
[40] 鄭慶鋒, 鄭建軍, 陳小娟. 新型螯合纖維對重金屬離子吸附性能的研究. 水處理技術(shù), 2004, 30(4): 211-212, 223-223.
[41] Neumann D, Nieden U Z, Lichtenberger O, Leopold I. How doesArmeriamaritmatolerate high heavy metal concentrations? Journal of Plant Physiology, 1995, 146(5/6): 704-717.
[42] Grant G T, Morris E R, Rees D A, Smith P J C, Thom D. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Letters, 1973, 32(1): 195-198.
[43] Caffall K H, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research, 2009, 344(14): 1879-1900.
[44] Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant Journal, 1993, 3(1): 1-30.
[45] Marcus S E, Verhertbruggen Y, Hervé C, Ordaz-Ortiz J J, Farkas V, Pedersen H L, Willats W G T, Knox J P. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BioMed Centrol Plant Biology, 2008, 8: 60-60.
[46] Le Van H, Kuraishi S, Sakurai N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiology, 1994, 106(3): 971-976.
[47] Chang Y C, Yamamoto Y, Matsumoto H. Accumulation of aluminium in the cell wall pectin in cultured tobacco (NicotianatabacumL.) cells treated with a combination of aluminium and iron. Plant, Cell and Environment, 1999, 22(8): 1009-1017.
[48] Eticha D, Stass A, Horst W J. Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance. Plant Cell and Environment, 2005, 28(11): 1410-1420.
[49] Polec′-Pawlak K, Ruzik R, Lipiec E, Ciurzyńska M, Gawrońska H. Investigation of Pb(II) binding to pectin inArabidopsisthaliana. Journal of Analytical Atomic Spectrometry, 2007, 22(8): 968-972.
Adsorption ability of cell wall (CW) components in roots of Tea Plant (CamelliasinensisL.) to Pb and FTIR spectra of their functional groups
WANG Meng1,DUAN Dechao1,XU Chen1,YU Mingge1,2,*,SHI Jiyan1
1CollegeofEnvironmentandResource,ZhejiangUniversity,Hangzhou310058,China2HangzhouEnvironmentalGroupCompanyLimited,Hangzhou310022,China
Tea is one of the most important economic crops in China and the relevant research suggests that every year, Pb content in tea products has shown an increasing trend. Pb is also one of the most important indicators of quality and safety monitoring. Recent, research mostly focused on the resistance of plants to heavy metals was limited to short growing herbs. Reports on the study of woody plants are very rare. On the basis of these conditions tea tree was selected as research work. The objective of the present study is to find out the molecular mechanism of Pb stress resistance in roots CW of tea plants.Tea trees grown in the clean tea garden were selected for our experimental design. Tea roots were collected and washed with deionized water. Then extraction of crude CW and subsequent fractionation of CW components were carried out. Adsorption kinetics was carried out to determine the adsorption ability of different CW components to Pb stress. A total of 5 mg of CW materials or its corresponding residues was placed into a 2-ml column equipped with a filter at the bottom.The solution consisted of 15 μmol/L Pb(NO3)2in 0.01 mol/L NaNO3at pH 5.0.The solution was sipped by a peristaltic pump set a speed of 8 ml per 10 min after running through a 2-ml column holding the CW samples. The adsorption solutions were collected at 10-min intervals and Pb in the adsorption solutions was measured by Atomic Absorption Spectroscopy (AAS). At last the Fourier Transform infrared spectroscopy (FTIR) spectra of different CW components before and after Pb2+adsorption was carried out to study the difference in functional groups those can interact with Pb between different CW components.The results of this study shown that the vast majority of Pb (68.42%) adsorbed in the cellulose and lignin,followed by pectin (20%) and hemicellulose2 (HC2) (5.26%).While, the contribution of HC1 was negligible. These results indicated that in the CW of roots cellulose and lignin has a greater ability to accumulate Pb as compared to pectin, HC1 and HC2. But the adsorption capacity of pectin was also very considerable. According to the FTIR spectra of CW-pectin-HC1-HC2 (CW-3) before and after Pb2+adsorption it was found that although the cellulose and lignin contain a mass of —OH and —COOH, when they adsorbed Pb, their characteristic peaks′ positions had no obvious changes. However, the positions of characteristic peaks′ of C—C in cellulose polysaccharide and N—N in protein amino changed significantly, but these didn′t appear at the complete CW. In summary, it was found that when CW adsorbed Pb all these functional groups in cellulose and lignin had hardly interacted with Pb. However, it was different in pectin, HC1 and HC2. For instance in pectin, when CW adsorbed Pb, —OH and —COOH characteristic peaks′ positions changed significantly. It can be indicated that Pb was fixed through interactions with functional groups like —OH and —COOH in pectin. The same approach had yielded the main functional groups in HC1 and HC2 was —COOH and —OH respectively.
lead toxicity; cell wall components; FTIR; functional groups; tea tree
國家自然科學(xué)基金(41201319); 新世紀優(yōu)秀人才支持計劃(NCET-11-0455)
2013-05-29;
日期:2014-04-25
10.5846/stxb201305291222
*通訊作者Corresponding author.E-mail: mgyu_369@163.com
王夢,段德超,徐辰,于明革,施積炎.茶樹根細胞壁不同組分對鉛的吸附性能及其功能團的傅里葉紅外光譜學(xué)研究.生態(tài)學(xué)報,2015,35(6):1743-1751.
Wang M,Duan D C,Xu C,Yu M G,Shi J Y.Adsorption ability of cell wall (CW) components in roots of Tea Plant (CamelliasinensisL.) to Pb and FTIR spectra of their functional groups.Acta Ecologica Sinica,2015,35(6):1743-1751.