劉盛業(yè) 付勤
糖皮質(zhì)激素性骨質(zhì)疏松致病機(jī)制最新研究進(jìn)展
劉盛業(yè)付勤
糖皮質(zhì)激素類;骨質(zhì)疏松;成骨細(xì)胞
糖皮質(zhì)激素 (glucocorticoid,GC)在臨床醫(yī)療中廣泛被使用,主要表現(xiàn)其在免疫抑制、抗炎癥反應(yīng)、抗休克、解除支氣管痙攣哮喘等疾病的藥理學(xué)作用[1]。長期或者高劑量使用 GC 會(huì)導(dǎo)致一些不良反應(yīng),如:肌肉骨組織紊亂,如骨質(zhì)疏松癥、骨壞死、肌病、肌肉減少癥等以及代謝作用導(dǎo)致的葡萄糖耐受不良、糖尿病、血脂異常、脂肪異常增長等疾?。?]。這些副作用已經(jīng)成為臨床治療棘手的問題。
其中 GC 誘導(dǎo)性骨質(zhì)疏松癥 (glucocorticoid osteoporosis,GIO)已成為如今熱議的話題[3]。其作為最常見的繼發(fā)性骨質(zhì)疏松,即使每日使用低至 2.5 mg 潑尼松龍治療也會(huì)增加骨質(zhì)疏松性骨折的風(fēng)險(xiǎn)[4],吸入性 GC 治療也與骨量流失極為相關(guān),在高劑量的情況下易造成系統(tǒng)性副作用如骨質(zhì)減少、骨質(zhì)疏松最終骨壞死。多項(xiàng)報(bào)告顯示[5],運(yùn)用 GC 治療數(shù)周后,骨量開始逐漸流失,最初數(shù)個(gè)月內(nèi)的骨量丟失迅速,每年達(dá) 5%~15%,而長期接受 GC 治療(至少 1 年)的患者骨質(zhì)疏松發(fā)生率高達(dá) 30%~50%。伴隨其發(fā)生的將是骨質(zhì)疏松性骨折的發(fā)生,最常發(fā)生于脊柱椎體、股骨近端和肋骨等部位。盡管臨床實(shí)踐中人們對(duì) GIO的防范意識(shí)有所增加,但是對(duì)其所帶來的副作用災(zāi)難性的損害還有所欠缺,對(duì)其致病機(jī)制以及防治方法的了解還有所不足。在此筆者對(duì) GC 在骨組織生理以及病理學(xué)方面的作用機(jī)制研究的新進(jìn)展,GC 性骨質(zhì)疏松的防治策略概述如下。
GC 作用信號(hào)傳導(dǎo)在調(diào)控骨組織細(xì)胞的分化、增殖與凋亡過程中至關(guān)重要[6]。生理水平的 GC 可以調(diào)節(jié)電解質(zhì)、體液穩(wěn)態(tài)和免疫應(yīng)激反應(yīng)等,對(duì)于組織的生長發(fā)育是必要的,GC 受體 (GR)廣泛缺失的小鼠導(dǎo)致出生后早期死亡[7],細(xì)胞特異性 GC 信號(hào)的缺失導(dǎo)致了對(duì) GC 在骨組織生理作用的中斷。GR 表達(dá)水平和配體結(jié)合的親和性可以影響 GC 在組織中發(fā)揮的作用。GR 配體復(fù)合體通過兩種方式調(diào)控相關(guān)靶基因:transactivation 與 transrepression,即反式激活與反式抑制作用[8]。反式激活是指在 GR 靶基因的調(diào)控序列中 GR 單二聚體與 GC 反應(yīng)元件 (GREs)結(jié)合,促進(jìn)基因的轉(zhuǎn)錄與表達(dá)。而反式抑制則是指其它轉(zhuǎn)錄因子的抑制作用,如激活蛋白 1 (AP-1)或 NF-κB。兩種方式相互作用調(diào)節(jié) GC 信號(hào)通路,但是對(duì)其具體分子機(jī)制的了解還有待深入研究。
研究稱小鼠成骨細(xì)胞靶向 GR 的缺失導(dǎo)致骨組織總體積下降,通過靶向使 11β- 二型羥化類固醇脫氫酶 (11β-HSD2)過表達(dá),使成熟成骨細(xì)胞和骨細(xì)胞 GC 信號(hào)的失活,導(dǎo)致皮質(zhì)骨和小梁骨骨量下降,這些動(dòng)物實(shí)驗(yàn)結(jié)果說明內(nèi)源性 GC 信號(hào)在骨組織骨量積累和骨發(fā)育中發(fā)揮重要作用[9],同時(shí) GC 信號(hào)傳導(dǎo)可抑制 11β- 二型羥化類固醇脫氫酶 (11β-HSD1)的表達(dá)抑制其對(duì)成骨細(xì)胞的正向作用[10]。有研究報(bào)道靶向敲除成骨細(xì)胞 GR 或 HSD2 轉(zhuǎn)基因小鼠礦化結(jié)節(jié)形成數(shù)量極少,說明在生理濃度下,GC通過直接作用于細(xì)胞調(diào)節(jié)成骨細(xì)胞的分化,并且刺激成骨細(xì)胞分泌 Wnt 信號(hào)通路相關(guān)蛋白激活經(jīng)典 Wnt 信號(hào)通路,其中 Wnt 7b、Wnt 9a 和 Wnt 10b mRNA 也發(fā)揮了重要作用[11],使 β-catenin 蛋白聚集以及 runt 相關(guān)轉(zhuǎn)錄因子 2(RUNX2)等成骨細(xì)胞分化相關(guān)因子上調(diào)進(jìn)而調(diào)控間充質(zhì)干細(xì)胞 (MSC)的分化,使多能干細(xì)胞成骨分化[12]。GC 下調(diào) Wnt 信號(hào)通路抑制因子分泌卷曲相關(guān)蛋白 1 (sFRP1),進(jìn)而促進(jìn) MSC 中 Wnt 信號(hào)通路級(jí)聯(lián)反應(yīng)。同時(shí)旁分泌Wnt 信號(hào)通路通過誘導(dǎo)金屬蛋白酶 14 (MMP14)的表達(dá),使細(xì)胞外基質(zhì)降解,影響軟骨組織改建和骨化[13]。GC 的存在也可表現(xiàn)在 CCAAT 增強(qiáng)子連接蛋白 (C / EBPα)CpG位點(diǎn)的低甲基化狀態(tài),組蛋白 3 和 4 的乙?;?,調(diào)控 MSC成骨或成脂分化的平衡。
由此可見,內(nèi)源性生理濃度 GC 不僅驅(qū)動(dòng)間充質(zhì)干細(xì)胞成骨分化、降低成軟骨及成脂分化,同時(shí)促進(jìn)膜內(nèi)成骨,進(jìn)而增加小梁骨和骨量的增加。
與內(nèi)源性 GC 的作用不同,接受治療劑量 GC 治療的患者,第 1 年骨質(zhì)流失可達(dá) 12%,之后每年以 2%~3%的速度骨量繼續(xù)下降,骨密度也明顯減低[14],椎體、肋骨骨折等相應(yīng)并發(fā)癥的幾率也隨之攀升。有報(bào)道指出即使小劑量 GC 會(huì)對(duì)骨組織造成有害的影響,而每日劑量>7.5 mg 的潑尼松龍的治療則可以顯著引起骨質(zhì)流失,增加骨質(zhì)疏松性骨折的風(fēng)險(xiǎn)[15]。當(dāng)停止 GC 治療后幾年,骨折風(fēng)險(xiǎn)逐漸下降到原水平,由此可知 GC 不僅能使骨密度下降,而且能逆轉(zhuǎn)骨組織質(zhì)量從而影響骨健康。最近 Shuai等指出局部 ACE,Ang II,AT1R 和 AT2R mRNA 水平降低與 GIO 相關(guān),同時(shí)也有學(xué)者報(bào)道,GC 通過 AngII 通路引發(fā) SOST 基因表達(dá)致 GIO,這種通路可被培哚普利等藥物抑制改善骨質(zhì)疏松進(jìn)程,顯示 GC 誘導(dǎo)的骨密度 (bone mineral density,BMD)的改變與血管緊張素腎素系統(tǒng)存在密切的關(guān)系[16],同時(shí) GC 還可通過參與免疫系統(tǒng),作用于T 和 B 淋巴細(xì)胞,進(jìn)而參與骨的重建,其具體作用機(jī)制還有待深入探究[17]。
1. GC 參與的代謝作用:GC 可以通過一些間接途徑致骨質(zhì)疏松,如降低小腸鈣離子吸收,增加腎臟鈣離子清除率[18-19],導(dǎo)致負(fù)鈣平衡促進(jìn)繼發(fā)性甲狀旁腺功能亢進(jìn),影響骨的礦化。GC 還可以通過直接或間接途徑拮抗性腺功能,抑制性腺激素、GH 和 IGF-1 的骨形成作用[20-21]。最近有學(xué)者指出[22]:GC 導(dǎo)致近端肌病和肌無力也可使骨強(qiáng)度下降,降低了平衡能力,容易發(fā)生摔倒最終增加骨折的風(fēng)險(xiǎn)。雖然以上作用導(dǎo)致骨質(zhì)的流失,但是最主要的還是其對(duì)骨組織細(xì)胞直接作用,在 GIO 的小鼠中骨髓間充質(zhì)干細(xì)胞的增殖、成骨分化能力均下降,同時(shí)成骨分化誘導(dǎo)活性因子和腎 Klotho mRNA 表達(dá)下降,GC 也可直接對(duì)成骨細(xì)胞、骨細(xì)胞和破骨細(xì)胞產(chǎn)生作用。有研究稱 β 蛻皮激素(βEcd)通過增加細(xì)胞自噬抑制 GC 對(duì)骨基質(zhì)細(xì)胞的作用,表明 GIO 與細(xì)胞自噬存在相應(yīng)關(guān)系,這也為逆轉(zhuǎn) GIO 提供了新的靶點(diǎn)。
2. GC 對(duì)成骨細(xì)胞的作用:GC 導(dǎo)致骨質(zhì)疏松表現(xiàn)在對(duì)成骨細(xì)胞的作用上,有文獻(xiàn)證實(shí)可以同時(shí)抑制成骨細(xì)胞分化和功能并且誘導(dǎo)其凋亡,進(jìn)而導(dǎo)致對(duì)骨組織發(fā)育強(qiáng)大的抑制作用[23]。對(duì)其分子機(jī)制的探究也成為相關(guān)領(lǐng)域的熱點(diǎn)方向,在治療劑量或者高濃度的 GCs 水平下,GC可抑制 Wnt 相關(guān)轉(zhuǎn)錄因子的合成與釋放,下調(diào) β-catenin蛋白與 RUNX2 蛋白的轉(zhuǎn)錄因子的表達(dá),導(dǎo)致下游通路傳遞失效。同時(shí)高水平的 GCs 通過糖原合成酶激酶 3β(GSK-3β)泛素化功能和蛋白酶 β-catenin 蛋白增強(qiáng)了其降解作用,這些 GC 誘導(dǎo)的可溶性拮抗因子致使 MSC 成骨分化下降。與此同時(shí)大劑量的 GCs 也增加了過氧化物增殖物激活受體 (PPARγ),促進(jìn) MSC 的成脂分化,但其具體作用機(jī)制還有待進(jìn)一步研究[13,24]。另一方面,骨生成蛋白BMP-2 作為成骨分化重要調(diào)節(jié)因子[25],在 GC 的影響下,其下游信號(hào)被抑制,干預(yù)成骨分化的過程。最近有研究指出,單 GC-GR 復(fù)合體可很大程度上損傷成骨細(xì)胞分化,妨礙促炎轉(zhuǎn)錄因子 AP-1 和抑制白介素 11 (IL-11)的轉(zhuǎn)錄[26],也導(dǎo)致 BMP-2 信號(hào)的失活。以上作用最終導(dǎo)致MSC 的成骨分化的障礙,通過反式抑制作用使膠原和骨鈣蛋白等成骨分泌蛋白的減少。
GC 還可以對(duì)成骨細(xì)胞周期發(fā)揮作用,中斷細(xì)胞的生理進(jìn)程。使用地塞米松降低細(xì)胞周期蛋白 D2 和 A[26],增加周期蛋白依賴性激酶抑制劑 1B,同時(shí)也增加雙特異性磷酸酶 1 (DUSP1),提高劑量也會(huì)下調(diào)淋巴樣增強(qiáng)結(jié)合因子 1 和轉(zhuǎn)錄因子 7 (LEF / TCF)表達(dá),抑制經(jīng)典 Wnt 信號(hào)通路的下傳,抑制 G1 期向 S 期的轉(zhuǎn)化,中斷細(xì)胞周期,抑制骨發(fā)育[27]。
GCs 還可通過誘導(dǎo)成骨細(xì)胞凋亡,有報(bào)道指出:地塞米松給藥后增加成骨細(xì)胞 Bcl-2 家族的促凋亡因子 Bim與 Bak 表達(dá),而敲除 Bim 可顯著降低 GC 誘導(dǎo)的細(xì)胞凋亡[28-29]。另外,GC 通過下調(diào) β1- 整合素而誘導(dǎo)細(xì)胞與基質(zhì)的分離最終導(dǎo)致細(xì)胞死亡。還有學(xué)者認(rèn)為:GC 還與活性氧 (ROS)有關(guān),激活 JNK 通路,也可以抑制 Nrf2 通路下調(diào)下游 HO1 與 NQO1 效應(yīng)蛋白,進(jìn)而誘導(dǎo)成骨細(xì)胞凋亡,這種作用可被吲哚 -3- 甲醇逆轉(zhuǎn),也可被一些植物化學(xué)物質(zhì)逆轉(zhuǎn),如蘿卜硫素[30-31]。細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激作用也會(huì)增加 ROS,抑制 Eif2α 去磷酸化進(jìn)而促進(jìn)成骨細(xì)胞與骨細(xì)胞凋亡[32]。程序性壞死抑制劑 Necrostatin-1 可以加速 GIO中骨生成[33]。而纖溶酶原激活物抑制因子 1 (PAI-1)恰恰可以抑制成骨細(xì)胞的凋亡而促進(jìn) GIO 骨的流失。同樣,Cbfa1 是成骨細(xì)胞充當(dāng)保護(hù)角色的轉(zhuǎn)錄因子,地塞米松的使用可以降低 Cbfa1 mRNA 的表達(dá),加速的 ROS 對(duì)骨組織破壞作用[34]。
綜上所述,超出生理濃度的 GCs 通過抑制成骨細(xì)胞分化和功能以及誘導(dǎo)其凋亡,打破骨生成與骨吸收的平衡穩(wěn)態(tài),降低骨量,增加骨折風(fēng)險(xiǎn)。
3. GC 對(duì)骨細(xì)胞的作用:骨細(xì)胞是骨組織中數(shù)量最多的細(xì)胞種類,占總體細(xì)胞數(shù)量的 90%~95%,GC 對(duì)骨細(xì)胞的作用主要體現(xiàn)在對(duì)骨強(qiáng)度的影響下,降低內(nèi)膜骨血管生成和降低骨陷窩微管系統(tǒng)的血運(yùn),促進(jìn)骨細(xì)胞的死亡,組織壞死,這也恰恰表明 GIO 與其它骨質(zhì)疏松最大特點(diǎn)是造成骨壞死,最常發(fā)生于股骨頸[35]。GC 導(dǎo)致骨重建功能減退,骨微損傷后修復(fù)能力下降,骨脆性增加,易發(fā)生骨折和骨壞死。
在高濃度的 GCs 作用下,細(xì)胞內(nèi)自噬體的形成創(chuàng)造了一個(gè)對(duì)于細(xì)胞的毒性環(huán)境。通過自噬的作用骨細(xì)胞修復(fù)細(xì)胞損傷,導(dǎo)致細(xì)胞死亡。同 GC 誘導(dǎo)成骨細(xì)胞凋亡相似的作用機(jī)制,GC 誘導(dǎo)的促凋亡激酶 Pyk2 和 JNK 的活化,進(jìn)入活性氧誘導(dǎo)的細(xì)胞凋亡程序[36]。Liu 等[37]指出鈣結(jié)合蛋白 D28k 可以抑制 GC 誘導(dǎo)的骨細(xì)胞和成骨細(xì)胞凋亡,并且增加 ERK1、2 的磷酸化,說明 GC 致骨質(zhì)疏松與骨組織細(xì)胞的凋亡機(jī)制相關(guān)。
由此可見,GC 對(duì)骨細(xì)胞的作用不僅體現(xiàn)在對(duì)細(xì)胞活性的抑制,同時(shí)也反映出對(duì)骨陷窩微管等骨組織結(jié)構(gòu)方面的影響。
4. GC 對(duì)破骨細(xì)胞的作用:骨細(xì)胞是惟一發(fā)揮骨吸收作用的細(xì)胞[38]。GC 治療人或動(dòng)物的將會(huì)出現(xiàn)早期骨吸收的一過性增強(qiáng),這是由于 GC 誘導(dǎo)的破骨細(xì)胞數(shù)量以及活性的上升[39]。這是基于 GCs 刺激 RANKL 的產(chǎn)生,同時(shí)使 RANKL 誘餌受體骨保護(hù)素 (OPG)的下降。RANKL 作用在破骨細(xì)胞前體細(xì)胞表面 RANK 結(jié)合,誘導(dǎo)其向成熟的破骨細(xì)胞分化,繼而參與骨的吸收與改建。同時(shí) GC 刺激集落刺激因子的產(chǎn)生促進(jìn)破骨細(xì)胞分化,也有文獻(xiàn)指出骨細(xì)胞凋亡的細(xì)胞體本身也促進(jìn)了破骨細(xì)胞的生成[40],GC抑制了破骨前體細(xì)胞的增生,但其具體作用機(jī)制還有待深入研究和討論。近期 Shi 等[41]指出:GC 下調(diào) microRNA-17-92a 和 microRNA-17 / 20a 促進(jìn)成骨細(xì)胞源性 RANKL的表達(dá),與破骨前體細(xì)胞共培養(yǎng)后可促進(jìn)其向成熟破骨細(xì)胞分化,這也標(biāo)志著 mRNA 局部靶向治療與 GIO 進(jìn)一步強(qiáng)烈相關(guān)性。
總之,在長期的外源性 GC 的作用下,GC 誘導(dǎo)了破骨細(xì)胞的生成,并且延長其壽命,加速了骨吸收作用,對(duì)骨組織結(jié)構(gòu)框架產(chǎn)生破壞作用。
GIO 引起的嚴(yán)重后果不容忽視,其早期癥狀卻較為隱匿,多數(shù)患者僅出現(xiàn)酸痛乏力等癥狀,加重后出現(xiàn)骨骼疼痛,在輕微損傷后發(fā)生脊柱、髖部、肋骨或長骨的骨折。因此,有效防治 GIO 是現(xiàn)代醫(yī)學(xué)亟待解決的重要問題。在改善生活習(xí)慣如戒煙、限制酒等方式的基礎(chǔ)上,補(bǔ)充維生素 D,新版指南推薦預(yù)防和治療 GIO 的藥物包括:阿侖膦酸鈉、唑來膦酸、利塞膦酸鈉、特立帕肽。也有資料顯示:其它藥物如羥乙膦酸鈉、降鈣素、雄激素、雷洛昔芬、雷尼酸鍶等可能有效[42],但還需要大樣本和高質(zhì)量的文獻(xiàn)支持。
綜上所述,GIO 是嚴(yán)重影響生命質(zhì)量的一大不良因素,對(duì)于 GIO 的防治還要對(duì)其致病機(jī)理進(jìn)行探究,隨著研究的不斷加深,其分子水平以及基因水平,或表觀遺傳學(xué)等方面的致病機(jī)制將逐漸明朗,為逆轉(zhuǎn) GIO 提供新的治療靶點(diǎn),為積極預(yù)防和治療 GIO 提供確切依據(jù)。
[1]Buttgereit F, Burmester GR, Straub RH, et al. Exogenous and endogenous glucocorticoids in rheumatic diseases. Arthritis Rheum, 2011, 63(1):1-9.
[2]Weinstein RS. Glucocorticoid-induced osteonecrosis. Endocrine, 2012, 41(2):183-190.
[3]Reid DM, Devogelaer JP, Saag K, et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoidinduced osteoporosis (HORIZON): a multicentre, double-blind,double-dummy, randomised controlled trial. Lancet, 2009,373(9671):1253-1263.
[4]van Staa TP, Leufkens HG, Abenhaim L, et al. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford), 2000, 39(12):1383-1389.
[5]Rauch A, Seitz S, Baschant U, et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab, 2010,11(6):517-531.
[6]Hardy R, Cooper MS. Glucocorticoid-induced osteoporosis-a disorder of mesenchymal stromal cells? Front Endocrinol(Lausanne), 2011, 2:24.
[7]Cole TJ, Blendy JA, Monaghan AP, et al. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffn cell development and severely retards lung maturation. Genes Dev, 1995, 9(13):1608-1621.
[8]Cooper MS, Zhou H, Seibel MJ. Selective glucocorticoid receptor agonists: glucocorticoid therapy with no regrets?J Bone Miner Res, 2012, 27(11):2238-2241.
[9]Sher LB, Harrison JR, Adams DJ, et al. Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling. Calcif Tissue Int, 2006, 79(2):118-125.
[10]Wu L, Qi H, Zhong Y, et al. 11beta-Hydroxysteroid dehydrogenase type 1 selective inhibitor BVT. 2733 protects osteoblasts against endogenous glucocorticoid induced dysfunction. Endocr J, 2013, 60(9):1047-1058.
[11]Mak W, Shao X, Dunstan CR, et al. Biphasic glucocorticoiddependent regulation of Wnt expression and its inhibitors in mature osteoblastic cells. Calcif Tissue Int, 2009, 85(6):538-545.
[12]Zhou H, Mak W, Zheng Y, et al. Osteoblasts directly control lineage commitment of mesenchymal progenitor cells through Wnt signaling. J Biol Chem, 2008, 283(4):1936-1945.
[13]Zhou H, Mak W, Kalak R, et al. Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Development, 2009, 136(3):427-436.
[14]LoCascio V, Bonucci E, Imbimbo B, et al. Bone loss in response to long-term glucocorticoid therapy. Bone Miner,1990, 8(1):39-51.
[15]Murphy DR, Smolen LJ, Klein TM, et al. The cost effectiveness of teriparatide as a first-line treatment for glucocorticoidinduced andpostmenopausal osteoporosis patients in Sweden. BMC Musculoskelet Disord, 2012, 13:213.
[16]Afroze SH, Munshi MK, Martínez AK, et al. Activation of the renin-angiotensin system stimulates biliary hyperplasia during cholestasis induced byextrahepatic bile duct ligation. Am J Physiol Gastrointest Liver Physiol, 2015, 308(8):G6691-6701.
[17]Prologo JD, Patel I, Buethe J, et al. Ablation zones and weightbearing bones: points of caution for the palliative interventionalist. J Vasc Interv Radiol, 2014, 25(5):769-775.
[18]Pérez AV, Picotto G, Carpentieri AR, et al. Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway. Digestion,2008, 77(1):22-34.
[19]Ritz E, Kreusser W, Rambausek M. Effects of glucocorticoids on calcium and phosphate excretion. Adv Exp Med Biol, 1984,171:381-397.
[20]Mazziotti G, Giustina A. Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol, 2013, 9(5):265-276.
[21]Manolagas SC. Steroids and osteoporosis: the quest for mechanisms. J Clin Invest, 2013, 123(5):1919-1921.
[22]Zhou DA, Zheng HX, Wang CW, et al. Infuence of glucocorticoids on the osteogenic differentiation of rat bone marrowderived mesenchymal stem cells. BMC Musculoskelet Disord,2014, 15:239.
[23]Kauh E, Mixson L, Malice MP, et al. Prednisone affects inflammation, glucose tolerance, and bone turnover within hours of treatment in healthy individuals. Eur J Endocrinol,2012, 166(3):459-467.
[24]Yao W, Cheng Z, Busse C, et al. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum, 2008, 58(6):1674-1686.
[25]Hayashi K, Yamaguchi T, Yano S, et al. BMP/Wnt antagonists are upregulated by dexamethasone in osteoblasts and reversed by alendronate and PTH: potential therapeutic targets for glucocorticoid induced osteoporosis. Biochem Biophys Res Commun, 2009, 379(2):261-266.
[26]Rauch A, Gossye V, Bracke D, et al. An anti-inflammatory selective glucocorticoid receptor modulator preserves osteoblast differentiation. FASEB J, 2011, 25(4):1323-1332.
[27]Jia D1, O'Brien CA, Stewart SA, et al. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology, 2006, 147(12):5592-5599.
[28]Chang JK, Li CJ, Liao HJ, et al. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts. Toxicology, 2009, 258(2-3):148-156.
[29]Gabet Y, Noh T, Lee C, et al. Developmentally regulated inhibition of cell cycle progression by glucocorticoids through repression of cyclin A transcription in primary osteoblast cultures. J Cell Physiol, 2011, 226(4):991-998.
[30]Lin H, Wei B, Li G, et al. Sulforaphane reverses glucocorticoidinduced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway. Drug Des Devel Ther, 2014, 8:973-982.
[31]Lin H, Gao X, Chen G, et al. Indole-3-carbinol as inhibitors of glucocorticoid-induced apoptosis in osteoblastic cells through blocking ROS-mediated Nrf2 pathway. Biochem Biophys Res Commun, 2015, 460:422-427.
[32]Dischinger HR, Cheng E, Davis LA, et al. Practices and preferences for detecting chronic medication toxicity: a pilot cross-sectional survey of health care providers focusing on decision support systems. J Eval Clin Pract, 2014, 20(6):1086-1089.
[33]Feng M, Zhang R, Gong F, et al. Protective effects of necrostatin-1 on glucocorticoid-induced osteoporosis in rats. J Steroid Biochem Mol Biol, 2014, 144 Pt B:455-462.
[34]Feng YL, Tang XL. Effect of glucocorticoid-induced oxidative stress on the expression of Cbfa1. Chem Biol Interact, 2014,207:26-31.
[35]Weinstein RS, Jilka RL, Almeida M, et al. Intermittent parathyroid hormone administration counteracts the adverse effects of glucocorticoids on osteoblast and osteocyte viability,bone formation, and strength in mice. Endocrinology, 2010,151(6):2641-2649.
[36]Bellido T. Antagonistic interplay between mechanical forces and glucocorticoids in bone: a tale of kinases. J Cell Biochem,2010, 111(1):1-6.
[37]Liu Y, Porta A, Peng X, et al. Prevention of glucocorticoidinduced apoptosis in osteocytes and osteoblasts by calbindin-D28k. J Bone Miner Res, 2004, 19(3):479-490.
[38]Martin TJ. Bone biology and anabolic therapies for bone:current status and future prospects. J Bone Metab, 2014,21(1):8-20.
[39]Henneicke H, Herrmann M, Kalak R, et al. Corticosterone selectively targets endo-cortical surfaces by an osteoblastdependent mechanism. Bone, 2011, 49(4):733-742.
[40]Kogianni G, Mann V, Noble BS. Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J Bone Miner Res, 2008, 23(6):915-927.
[41]Shi C, Qi J, Huang P, et al. MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells. Bone,2014, 68(5):67-75.
[42]Kaufman JM, Lapauw B, Goemaere S. Current and future treatments of osteoporosis in men. Best Pract Res Clin Endocrinol Metab, 2014, 28(6):871-884.
(本文編輯:李貴存)
Recent advances in the glucocorticoid-induced osteoporosis
LIU Sheng-ye, FU Qin. Shengjing Hospital Affliated to China Medical University, Shenyang, Liaoning, 110004, PRC
FU Qin, Email:fuq@sj-hospital.org
Glucocorticoid is widely used in anti-infammatory and immune-modulatory drugs while its related side effects shouldn't allow to be neglected, such as osteoporosis, diabetes, and obesity. Clinical applications of it has also been greatly restricted. Improvement of results of these unnecessary outcomes also become the main challenge of medical work. To explore the pathogenetic mechanisms of glucocorticoid-induced osteoporosis (GIO)and its effects on bone and mineral metabolism are of crucial importance. Endogenous glucocorticoid of physiological-concentration is not only a key regulating factor for differentiation of mesenchymal stem cells and bone development, but also involved in regulating calcium handling by kidney and gastrointestinal tract. As supra-physiological concentration,it acts as a “double-edged sword” role, taking unfavorable effect in the same tissue. Over the years there has been a controversial paradox about GIO mechanism for the anabolic and catabolism of glucocorticoid, which needs to be further in-depth studied. This paper reviews highlighted recent advances on physiology and pathology of glucocorticoid for bone metabolism, and to provide new strategies for prophylaxis and treatment of GIO.
Glucocorticoids;Osteoporosis;Osteoblasts
10.3969/j.issn.2095-252X.2015.11.011
R681, R965
110004沈陽,中國醫(yī)科大學(xué)附屬盛京醫(yī)院
付勤,Email: fuq@sj-hospital.org
2015-04-09)