趙晨 王蕾
組織工程修復(fù)肩袖損傷促進(jìn)腱骨愈合的研究進(jìn)展
趙晨王蕾
組織工程;干細(xì)胞;胞間信號(hào)肽類和蛋白質(zhì)類;肩關(guān)節(jié);腱損傷;創(chuàng)傷和損傷
肩關(guān)節(jié)已成為繼腰背、膝關(guān)節(jié)之后運(yùn)動(dòng)系統(tǒng)疼痛的第三大好發(fā)部位[1],特別是在 60 歲以上的老年人群中,肩袖損傷是引起肩關(guān)節(jié)疼痛的最主要原因[2],并且常伴有功能減退及睡眠障礙等。普通人群調(diào)查顯示[3],肩袖全層撕裂的患病率為 22.1% (147 / 664),其中無癥狀患者約為有癥狀的兩倍,并隨年齡的增長而增加[4-9]。肩袖損傷的處理是復(fù)雜的,對(duì)于非手術(shù)治療失敗的患者可行手術(shù)一期修補(bǔ)[10]。關(guān)節(jié)鏡下肩袖修補(bǔ)術(shù)已成為肩袖損傷修復(fù)的“金標(biāo)準(zhǔn)”,具有創(chuàng)傷小、并發(fā)癥少等優(yōu)點(diǎn)[11],可以使絕大多數(shù)患者肩關(guān)節(jié)功能恢復(fù)以及長期的疼痛緩解[4,12-19]。隨著對(duì)疾病認(rèn)識(shí)的不斷加深和外科技術(shù)的發(fā)展,肩袖修補(bǔ)術(shù)在臨床中取得令人滿意的效果,但術(shù)后影像學(xué)隨訪發(fā)現(xiàn)解剖結(jié)構(gòu)的生物學(xué)修復(fù)成功率較低[4],肩袖再撕裂的發(fā)生率文獻(xiàn)報(bào)道也不盡相同[5,8,19-27],但仍然較高,尤其是長期的退變性大面積破裂的修復(fù)更容易失敗,可高達(dá)94%[7,28]。失敗的原因是多方面的,可能與患者的年齡及身體狀況、撕裂的大小部位及持續(xù)性、肌腱的質(zhì)量、肌肉萎縮及退變、肌腹脂肪浸潤、修復(fù)的技術(shù)和術(shù)后康復(fù)等因素有關(guān)[5,14,19-20,27,29-36]。最主要的原因是很難重建正常的腱骨界面且過程緩慢。
肩袖是包繞在肱骨頭維持肱盂關(guān)節(jié)運(yùn)動(dòng)和穩(wěn)定性的一組肌肉,肩袖損傷常涉及到一個(gè)或多個(gè)肌腱逐漸退變而導(dǎo)致與肱骨相結(jié)合的部位撕裂[33,37]。正常的腱骨結(jié)合結(jié)構(gòu)由四層細(xì)胞類型、組織成分、機(jī)械性能及功能各不相同的過渡區(qū)域構(gòu)成:致密纖維結(jié)締組織、未鈣化的纖維軟骨、鈣化的纖維軟骨和骨組織。盡管進(jìn)行適當(dāng)?shù)氖中g(shù)干預(yù)以及經(jīng)歷正常的愈合過程,肩袖殘端與其肱骨插入點(diǎn)重新愈合的能力卻是有限的,無法再生成損傷前正常組織學(xué)腱骨結(jié)合結(jié)構(gòu)[23-24,26,38-41]。為了使愈合的肌腱成功的重新整合到骨組織,需要提供一個(gè)理想的條件,提高肌腱細(xì)胞的活性增強(qiáng)新陳代謝,重建組織的生物力學(xué)特性,進(jìn)而加速腱骨愈合,最終形成正常的腱骨插入點(diǎn)[33,35,42-44]。
因此,尋找有效促進(jìn)肩袖腱骨愈合的最佳策略成為目前臨床及實(shí)驗(yàn)室研究的熱點(diǎn),新穎的生物學(xué)方法及材料應(yīng)運(yùn)而生:生長因子[45]、修補(bǔ)支架[20,46]以及干細(xì)胞[47]的應(yīng)用等?,F(xiàn)就組織工程技術(shù)治療肩袖損傷促進(jìn)腱骨愈合問題綜述如下。
生長因子是一組細(xì)胞因子及蛋白,具有誘導(dǎo)有絲分裂、產(chǎn)生細(xì)胞外基質(zhì)、促進(jìn)血管形成及細(xì)胞成熟分化等作用[29,41,48-49]。在肩袖修復(fù)愈合的早期,可發(fā)現(xiàn)多種生長因子短暫的特異性表達(dá),包括:血小板源性生長因子 (platelet derived growth factor,PDGF)、骨形成蛋白(bone morphogenetic proteins,BMPs)、成纖維細(xì)胞生長因子 (basic fibroblast growth factor,bFGF)、轉(zhuǎn)化生長因子 β(transforming growth factor-β,TGF-β)等[4,29,36,41-42,50-51]。腱骨愈合的過程常經(jīng)歷三個(gè)連續(xù)的時(shí)相:炎癥反應(yīng)期、修復(fù)期及重塑期[24,26,44],在不同的階段,不同的生長因子發(fā)揮不同的作用。
PDGF 來源于血小板和平滑肌細(xì)胞,在肌腱損傷后7~14 天釋放達(dá)到最高峰,參與炎癥反應(yīng)的終末期和修復(fù)期的起始[52]。PDGF 由 A、B 兩個(gè)亞基構(gòu)成,有三個(gè)主要的亞型:AA,AB 和 BB。在過去的研究中,PDGF-BB被證實(shí)具有促進(jìn)細(xì)胞增殖分化,刺激趨化作用,促進(jìn)細(xì)胞外基質(zhì)的產(chǎn)生、表面信號(hào)分子表達(dá)及新生血管形成的作用[53]。Hoppe 等[54]發(fā)現(xiàn),與正常人類肩袖的插入點(diǎn)相似,在體外 PDGF 同樣可以促進(jìn)腱細(xì)胞增殖及細(xì)胞外基質(zhì)的合成。運(yùn)用大鼠肩袖急性損傷模型,Kovacevic 等[55]將 rhPDGF-BB 附載于 I 型膠原支架直接經(jīng)骨隧道縫合肌腱斷端,證實(shí)在損傷修復(fù)的早期 PGGF-BB 可以刺激細(xì)胞增殖,誘導(dǎo)新生血管形成。組織形態(tài)學(xué)檢查在術(shù)后第 5 天表現(xiàn)出劑量依賴的促進(jìn)作用,而至第 28 天與對(duì)照組相比PGGF-BB 對(duì)纖維軟骨的形成和膠原纖維的成熟沒有太大影響。
BMPs 是一類屬于 TGF-β 超家族,對(duì)骨、軟骨、肌腱和韌帶發(fā)育和再生有重要作用的細(xì)胞因子,超過 20 余種[56-57]。研究表明 BMP7、BMP12 和 BMP13 可以促進(jìn)肌腱形成及肩袖損傷的修復(fù)[58-60]。Kabuto 等[59]在 SD 大鼠肩袖損傷修復(fù)模型的研究中,利用水凝明膠薄膜持續(xù)釋放 BMP7 促進(jìn)腱骨愈合。以腱骨成熟度評(píng)分最大負(fù)荷拉力為標(biāo)準(zhǔn)來評(píng)價(jià)組織修復(fù)的好壞,在第 8 周組織形態(tài)學(xué)檢驗(yàn)發(fā)現(xiàn)插入點(diǎn)形成良好的軟骨基質(zhì)及肌腱,相對(duì)于對(duì)照組生物力學(xué)及組織學(xué)都得到恢復(fù)。同樣以大鼠為動(dòng)物模型,Lamplot 等[61]設(shè)計(jì)外源性表達(dá) BMP13 與富血小板血漿(PRP)實(shí)驗(yàn)室對(duì)照試驗(yàn),結(jié)果表明肌腱損傷后 2 周,只有腱骨界面局部注射 BMP13 組有效促進(jìn)肌腱愈合,與陰性對(duì)照及 PRP 組相比 BMP13 更有效的上調(diào) III 型膠原形成,具有更好的抗張力強(qiáng)度。外源性表達(dá) BMP13 可以有效地促進(jìn)肌腱愈合降低再撕裂的發(fā)生率。
bFGF 不僅由血液中的白細(xì)胞產(chǎn)生,肌腱細(xì)胞及成纖維細(xì)胞也可釋放。在肩袖修復(fù)的整個(gè)過程中都表達(dá)高度上調(diào),促進(jìn)新血管形成及成纖維細(xì)胞增殖[23,29]。Zhao 等[62]建立大鼠慢性肩袖損傷模型,將 bFGF 附載聚乳酸-羥基乙酸共聚物 (PLGA)靜電紡絲膜經(jīng)骨隧道縫合離斷的崗上肌附著點(diǎn),在第 2、4、8 周分別進(jìn)行組織學(xué)和生物力學(xué)檢測,bFGF-PLGA 顯著提高腱骨界面膠原組織形成,促進(jìn)纖維軟骨化,最大載荷及剛度優(yōu)于對(duì)照及單純 PLGA 組。
TGF-β 有三個(gè)亞型:TGF-β1,TGF-β2,TGF-β3。動(dòng)物實(shí)驗(yàn)顯示[63],在肩袖撕裂后岡上肌中 TGF-β 大量釋放促進(jìn)纖維化,在腱骨愈合中具有重要的作用。然而 Kim等[64]認(rèn)為盡管 TGF-β 亞型在腱骨界面重建過程中扮演重要角色,在崗上肌止點(diǎn)局部緩釋外源性 TGF-β 卻很難促進(jìn)腱骨界面形成生物學(xué)結(jié)構(gòu)正常的插入點(diǎn)。
當(dāng)前,補(bǔ)片支架已被美國食品藥品監(jiān)督管理局批準(zhǔn)為人用肩袖修補(bǔ)醫(yī)療器械[20]。新一代肩袖修補(bǔ)支架技術(shù)迅速發(fā)展,利用仿生學(xué)在分子結(jié)構(gòu)和形態(tài)學(xué)一定程度上模仿細(xì)胞外基質(zhì)結(jié)構(gòu)和功能。肩袖修補(bǔ)術(shù)應(yīng)用支架裝置增強(qiáng)修復(fù),而不僅僅是連接不可修補(bǔ)性撕裂的肌腱缺損,支架可由生物學(xué)材料和高分子合成材料或二者混合制成,每種材料各有優(yōu)缺點(diǎn)[46]。
生物學(xué)支架依照其來源可分為自體、同種異體和異種移植物[65],具有良好的內(nèi)在生物學(xué)特性,對(duì)細(xì)胞觸發(fā)降解、重塑敏感,可傳遞生物信息等優(yōu)點(diǎn)。然而生物學(xué)支架存在制作材料純化、相關(guān)并發(fā)癥、免疫原性、病原體傳播可能以及較差的力學(xué)特性等問題,促使新型合成材料的興起[66]。這些合成支架一類主要成分是耐久的非可降解高分子聚合物:聚碳酸酯、聚氨基甲酸乙酯和聚四氟乙烯等,具有卓越的可塑性及抗?fàn)坷瓘?qiáng)度,但較易碎裂,在組織中持續(xù)存在常影響肌腱生長并可引起持續(xù)性感染[46]。另一類是可生物降解合成材料,它隨著新組織的形成 (同時(shí)繼續(xù)維持生物力學(xué)性能)逐漸消失,為組織細(xì)胞提供基質(zhì)支架,具有良好的生物相容性、可塑性??缮锝到庵Ъ艹S勺笮廴樗?(PLLA)、PLGA、聚乙酸內(nèi)酯等新型高分子材料合成[67]。
Breidenbach 等[68]利用功能性組織工程學(xué)技術(shù)設(shè)計(jì)具有適當(dāng)機(jī)械性能的支架,并依據(jù)細(xì)胞表型、細(xì)胞外基質(zhì)及組織超微結(jié)構(gòu)將正常肌腱的生物學(xué)參數(shù)標(biāo)識(shí)分類,然后優(yōu)選在肌腱正常發(fā)育和自然愈合過程中相對(duì)重要的生物學(xué)參數(shù),模擬體內(nèi)環(huán)境下肌腱的機(jī)械和生物學(xué)性能設(shè)計(jì)出適當(dāng)?shù)闹Ъ堋? D 靜電紡絲納米纖維支架具有和細(xì)胞外基質(zhì)(ECM)相似的形態(tài)學(xué)結(jié)構(gòu)可有效促進(jìn)細(xì)胞生長,有利于組織愈合[69-71]。Zhao 等[72]報(bào)道,在大鼠慢性肩袖撕裂模型中局部應(yīng)用明膠 PLLA 靜電紡絲支架修復(fù)腱骨結(jié)合點(diǎn),與對(duì)照組相比有大量纖維軟骨和膠原基質(zhì)形成,生物力學(xué)評(píng)價(jià)同樣明顯優(yōu)于對(duì)照組。
骨髓是最常用的干細(xì)胞提取資源,通常情況下,BMSCs 通過髂棘穿刺獲取,然而在臨床中,可能會(huì)給患者帶來額外的創(chuàng)傷[73]。因此,新近研究表明,在進(jìn)行關(guān)節(jié)鏡下肩袖修補(bǔ)術(shù)的同時(shí)運(yùn)用肱骨頭穿刺[74]或骨髓刺激技術(shù)使肱骨大結(jié)節(jié)微骨折[75],同樣可以獲取 BMSCs,不再需要額外的手術(shù)操作及在其它部位進(jìn)行手術(shù)。Kida 等[76]在大鼠肩袖損傷模型中運(yùn)用肱骨頭穿刺技術(shù)研究發(fā)現(xiàn),機(jī)體 BMSCs 可以穿過肌腱插入點(diǎn)的鉆孔,爬入待修復(fù)的肩袖,促進(jìn)腱骨愈合,但臨床研究證據(jù)尚不充足。最近,Hernigou 等[47]報(bào)告了 10 年的隨訪結(jié)果,45 例接受關(guān)節(jié)鏡下標(biāo)準(zhǔn)肩袖修補(bǔ)術(shù) (單排)濃縮 BMSCs 輔助治療者,術(shù)后10 年,與配對(duì)對(duì)照組未接受濃縮 BMSCs 治療的 45 例,比較預(yù)后結(jié)果。BMSCs 治療組有 39 例 (87%)肌腱完整,而對(duì)照組只有 20 例 (44%);再撕裂率也明顯低于對(duì)照組。
肌腱干細(xì)胞 (ten don stem cells,TDSCs)來源于肌腱組織,有研究證實(shí),肌腱中含有少量具有普通干細(xì)胞特性的細(xì)胞群,它可以自我更新克隆生成,并有多向分化的能力[77]。盡管相關(guān)機(jī)制不清,理論上 TDSCs 能夠促進(jìn)腱骨界面的再生。Cheng 等[78]報(bào)道,TDSCs 促進(jìn)腱骨愈合可能跟分泌 TNF-α 刺激基因 / 蛋白 6 (TSG6)有關(guān),TSG6 可以機(jī)體對(duì)損傷信號(hào)的反應(yīng),降低炎癥反應(yīng),并能夠阻止纖維化,因此可以增強(qiáng)腱骨界面的結(jié)構(gòu)和附著強(qiáng)度。
隨著組織工程技術(shù)的飛速進(jìn)展,新的治療策略合理應(yīng)用是促進(jìn)腱骨愈合必需的條件。生長因子激活肌腱修復(fù)起始的級(jí)聯(lián)反應(yīng),修復(fù)支架模仿肩袖肌腱的結(jié)構(gòu)、功能及生物力學(xué)特性,細(xì)胞療法直接將干細(xì)胞置放于損傷部位促進(jìn)腱骨界面的重建。每種治療方式都有各自的優(yōu)點(diǎn),多種策略聯(lián)合應(yīng)用或許是最有效的方法:生物支架為種子細(xì)胞生長提供基質(zhì),同時(shí)作為藥物載體緩釋生長因子,各種生物活性因子調(diào)節(jié)細(xì)胞增殖分化,誘導(dǎo)不同的細(xì)胞活動(dòng)。在這些策略成為骨科標(biāo)準(zhǔn)治療措施之前,嚴(yán)格的臨床前轉(zhuǎn)化研究和臨床試驗(yàn)來檢驗(yàn)它們的安全性及效能是至關(guān)重要的。應(yīng)用這些干預(yù)措施促進(jìn)肩袖腱骨愈合同樣面臨更多的挑戰(zhàn),各方法具體作用機(jī)制尚未完全明確,在臨床中可操作性有待改進(jìn),以及個(gè)體化應(yīng)用指征缺乏權(quán)威標(biāo)準(zhǔn)等??傊缧鋼p傷修復(fù)重建腱骨界面過程較為復(fù)雜,目前運(yùn)用組織工程學(xué)方法促進(jìn)腱骨愈合在動(dòng)物實(shí)驗(yàn)中取得一定進(jìn)展,有著巨大的研究空間和潛力,為運(yùn)動(dòng)醫(yī)學(xué)發(fā)展提供廣闊的應(yīng)用前景。
[1]Tekavec E, J?ud A, Rittner R, et al. Population-based consultation patterns in patients with shoulder pain diagnoses. BMC Musculoskelet Disord, 2012, 13:238.
[2]Murrell GA Walton JR, Diagnosis of rotator cuff tears. Lancet,2001, 357(9258):769-770.
[3]Minagawa H, Yamamoto N, Abe H, et al. Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: From mass-screening in one village. J Orthop,2013, 10(1):8-12.
[4]McCormack RA, Shreve M, Strauss EJ. Biologic augmentation in rotator cuff repair--should we do it, who should get it, and has it worked? Bull Hosp Jt Dis (2013), 2014, 72(1):89-96.
[5]Le BT, Wu XL, Lam PH, et al. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs. Am J Sports Med, 2014, 42(5):1134-1142.
[6]Yamaguchi K, Ditsios K, Middleton WD, et al. The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am, 2006, 88(8):1699-1704.
[7]Teunis T, Lubberts B, Reilly BT, et al. A systematic review and pooled analysis of the prevalence of rotator cuff disease with increasing age. J Shoulder Elbow Surg, 2014, 23(12):1913-1921.
[8]Duquin TR, Buyea C, Bisson LJ. Which method of rotator cuff repair leads to the highest rate of structural healing?A systematic review. Am J Sports Med, 2010, 38(4):835-841.
[9]Leal MF, Belangero PS, Figueiredo EA, et al. Identifcation of suitable reference genes for gene expression studies in tendons from patients with rotator cuff tear. PLoS One, 2015, 10(3):e0118821.
[10]Marx RG, Koulouvaris P, Chu SK, et al. Indications for surgery in clinical outcome studies of rotator cuff repair. Clin Orthop Relat Res, 2009, 467(2):450-456.
[11]Randelli P, Bak K, Milano G. State of the art in rotator cuff repair. Knee Surg Sports Traumatol Arthrosc, 2015, 23(2):341-343.
[12]Spennacchio P, Banf G, Cucchi D, et al. Long-term outcome after arthroscopic rotator cuff treatment. Knee Surg Sports Traumatol Arthrosc, 2015, 23(2):523-529.
[13]Chuang MJ, Jancosko J, Nottage WM. Clinical outcomes of single-row arthroscopic revision rotator cuff repair. Orthopedics, 2014, 37(8):e692-698.
[14]Paxton ES, Teefey SA, Dahiya N, et al. Clinical and radiographic outcomes of failed repairs of large or massive rotator cuff tears: minimum ten-year follow-up. J Bone Joint Surg Am, 2013, 95(7):627-632.
[15]Stuart KD, Karzel RP, Ganjianpour M, et al. Long-term outcome for arthroscopic repair of partial articular-sided supraspinatus tendon avulsion. Arthroscopy, 2013, 29(5):818-823.
[16]Denard PJ, Jiwani AZ, Ladermann A, et al. Long-term outcome of a consecutive series of subscapularis tendon tears repaired arthroscopically. Arthroscopy, 2012, 28(11):1587-1591.
[17]Jarrett CD, Schmidt CC. Arthroscopic treatment of rotator cuff disease. J Hand Surg Am, 2011, 36(9):1541-1552.
[18]Boughebri O, Roussignol X, Delattre O, et al. Small supraspinatus tears repaired by arthroscopy: are clinical results infuenced by the integrity of the cuff after two years?Functional and anatomic results of forty-six consecutive cases.J Shoulder Elbow Surg, 2012, 21(5):699-706.
[19]Schmidt CC, Jarrett CD, Brown BT. Management of rotator cuff tears. J Hand Surg Am, 2015, 40(2):399-408.
[20]Ricchetti ET, Aurora A, Iannotti JP, et al. Scaffold devices for rotator cuff repair. J Shoulder Elbow Surg, 2012, 21(2):251-265.
[21]Nho SJ, Delos D, Yadav H, et al. Biomechanical and biologic augmentation for the treatment of massive rotator cuff tears. Am J Sports Med, 2010, 38(3):619-629.
[22]DeFranco MJ, Bershadsky B, Ciccone J, et al. Functional outcome of arthroscopic rotator cuff repairs: a correlation of anatomic and clinical results. J Shoulder Elbow Surg, 2007,16(6):759-765.
[23]Weeks 3rd KD, Dines JS, Rodeo SA, et al. The basic science behind biologic augmentation of tendon-bone healing: a scientifc review. Instrcourse Lect, 2014, 63:443-450.
[24]Smith L, Xia Y, Galatz LM, et al. Tissue-engineering strategies for the tendon/ligament-to-bone insertion. Connect Tissue Res,2012, 53(2):95-105.
[25]Lubiatowski P, Kaczmarek P, Dzianach M, et al. Clinical and biomechanical performance of patients with failed rotator cuff repair. Int Orthop, 2013, 37(12):2395-2401.
[26]Thomopoulos S, Genin GM, Galatz LM. The development and morphogenesis of the tendon-to-bone insertion-what development can teach us about healing. J Musculoskelet Neuronal Interact, 2010, 10(1):35-45.
[27]McElvany MD, McGoldrick E, Gee AO, et al. Rotator cuff repair: published evidence on factors associated with repair integrity and clinical outcome. Am J Sports Med, 2015, 43(2):491-500.
[28]Vastamaki M, Lohman M, Borgmastars N. Rotator cuff integrity correlates with clinical and functional results at a minimum 16 years after open repair. Clin Orthop Relat Res,2013, 471(2):554-561.
[29]Ahmad Z, Henson F, Wardale J, et al. Review article: Regenerative techniques for repair of rotator cuff tears. J Orthop Surg(Hong Kong), 2013, 21(2):226-231.
[30]Bjornsson HC, Norlin R, Johansson K, et al. The infuence of age, delay of repair, and tendon involvement in acute rotator cuff tears: structural and clinical outcomes after repair of 42 shoulders. Acta Orthop, 2011, 82(2):187-192.
[31]Abtahi AM, Granger EK, Tashjian RZ. Factors affecting healing after arthroscopic rotator cuff repair. World J Orthop,2015, 6(2):211-220.
[32]Mall NA, Tanaka MJ, Choi LS, et al. Factors affecting rotator cuff healing. J Bone Joint Surg Am, 2014, 96(9):778-788.
[33]Huegel J, Williams AA, Soslowsky LJ. Rotator cuff biology and biomechanics: a review of normal and pathological conditions. Curr Rheumatol Rep, 2015, 17(1):476.
[34]Lorbach O, Tompkins M. Rotator cuff: biology and current arthroscopic techniques. Knee Surg Sports Traumatol Arthrosc,2012, 20(6):1003-1011.
[35]Factor D, Dale B. Current concepts of rotator cuff tendinopathy. Int J Sports Phys Ther, 2014, 9(2):274-288.
[36]Lorbach O, Baums MH, Kostuj T, et al. Advances in biology and mechanics of rotator cuff repair. Knee Surg Sports Traumatol Arthrosc, 2015, 23(2):530-541.
[37]Cheung EV, Silverio L, Sperling JW. Strategies in biologic augmentation of rotator cuff repair: a review. Clin Orthop Relat Res, 2010, 468(6):1476-1484.
[38]Maffulli N, Longo UG, Loppini M, et al. Tissue engineering for rotator cuff repair: an evidence-based systematic review. Stem Cells Int, 2012, 2012:418086.
[39]Hernigou P, Merouse G, Duffiet P, et al. Reduced levels of mesenchymal stem cells at the tendon-bone interface tuberosity in patients with symptomatic rotator cuff tear. Int Orthop, 2015,39(6):1219-1225.
[40]Apostolakos J, Durant TJ, Dwyer CR, et al. The enthesis: a review of the tendon-to-bone insertion. Muscles Ligaments Tendons J, 2014, 4(3):333-342.
[41]Montgomery SR, Petrigliano FA, Gamradt SC. Biologic augmentation of rotator cuff repair. Curr Rev Musculoskelet Med, 2011, 4(4):221-230.
[42]Isaac C, Gharaibeh B, Witt M, et al. Biologic approaches to enhance rotator cuff healing after injury. J Shoulder Elbow Surg, 2012, 21(2):181-190.
[43]Liu YX, Thomopoulos S, Birman V, et al. Bi-material attachment through a compliant interfacial system at the tendon-to-bone insertion site. Mech Mater, 2012, 44.
[44]Edwards SL, Lynch TS, Saltzman MD, et al. Biologic and pharmacologic augmentation of rotator cuff repairs. J Am Acad Orthop Surg, 2011, 19(10):583-589.
[45]Akyol E, Hindocha S, Khan WS. Use of stem cells and growth factors in rotator cuff tendon repair. Curr Stem Cell Res Ther,2014, 10(1):5-10.
[46]Nossov S, Dines JS, Murrell GA, et al. Biologic augmentation of tendon-to-bone healing: scaffolds, mechanical load, vitamin D, and diabetes. Instr Course Lect, 2014, 63:451-462.
[47]Hernigou P, Flouzat Lachaniette CH, Delambre J, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop, 2014, 38(9):1811-1818.
[48]Angeline ME, Rodeo SA. Biologics in the management of rotator cuff surgery. Clin Sports Med, 2012, 31(4):645-663.
[49]Nixon AJ, Watts AE, Schnabel LV. Cell- and gene-based approaches to tendon regeneration. J Shoulder Elbow Surg,2012, 21(2):278-294.
[50]Longo UG, Rizzello G, Berton A, et al. Biological strategies to enhance rotator cuff healing. Curr Stem Cell Res Ther, 2013,8(6):464-470.
[51]Randelli P, Randelli F, Ragone V. Regenerative medicine in rotator cuff injuries. Biomed Res Int, 2014, 2014:129515.
[52]Oliva F, Via AG, Maffulli N. Role of growth factors in rotator cuff healing. Sports Med Arthrosc, 2011, 19(3):218-226.
[53]Bedi A, Maak T, Walsh C, et al. Cytokines in rotator cuff degeneration and repair. J Shoulder Elbow Surg, 2012, 21(2):218-227.
[54]Hoppe S, Alini M, Benneker LM, et al. Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors. J Shoulder Elbow Surg, 2013, 22(3):340-349.
[55]Kovacevic D, Gulotta LV, Ying L, et al. rhPDGF-BB promotesearly healing in a rat rotator cuff repair model. Clin Orthop Related Res, 2015, 473(5):1644-1654.
[56]Ratko TA, Belinson SE, Samson DJ, et al. AHRQ technology assessments. Bone morphogenetic protein: The state of the evidence of on-label and off-label use. Agency Healthcare Research Quality (US), 2010.
[57]Lorda-Diez CI, Montero JA, Garcia-Porrero JA, et al. Divergent differentiation of skeletal progenitors into cartilage and tendon: lessons from the embryonic limb. ACS Chem Biol,2014, 9(1):72-79.
[58]Chamberlain CS, Lee JS, Leiferman EM, et al. Effects of BMP-12-releasing sutures on Achilles tendon healing. Tissue Eng Part A, 2015, 21(5-6):916-927.
[59]Kabuto Y, Morihara T, Sukenari T, et al. Stimulation of rotator cuff repair by sustained release of bone morphogenetic protein-7 using a gelatinhydrogel sheet. Tissue Eng Part A,2015, 21(13-14):2025-2033.
[60]Schwarting T, Benolken M, Ruchholtz S, et al. Bone morphogenetic protein-7 enhances bone-tendon integration in a murine in vitro co-culture model. Int Orthop, 2015, 39(4):799-805.
[61]Lamplot JD, Angeline M, Angeles J, et al. Distinct effects of platelet-rich plasma and BMP13 on rotator cuff tendon injury healing in a rat model. Am J Sports Med, 2014, 42(12):2877-2887.
[62]Zhao S, Zhao J, Dong S, et al. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly (lactideco-glycolide) fibrous membranes. Int J Nanomedicine, 2014,9:2373-2385.
[63]Liu X, Joshi SK, Ravishankar B, et al. Upregulation of transforming growth factor-beta signaling in a rat model of rotator cuff tears. J Shoulder Elbow Surg, 2014, 23(11):1709-1716.
[64]Kim HM, Galatz LM, Das R, et al. The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res, 2011, 52(2):87-98.
[65]Papalia R, Franceschi F, Zampogna B, et al. Augmentation techniques for rotator cuff repair. Br Med Bull, 2013, 105:107-138.
[66]Derwin KA, Badylak SF, Steinmann SP, et al. Extracellular matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg, 2010, 19(3):467-476.
[67]BaoLin G, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem, 2014, 57(4):490-500.
[68]Breidenbach AP, Gilday SD, Lalley AL, et al. Functional tissue engineering of tendon: Establishing biological success criteria for improving tendon repair. J Biomech, 2014, 47(9):1941-1948.
[69]Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers for regenerative medicine. Adv Healthc Mater, 2012, 1(1):10-25.
[70]Hakimi O, Murphy R, Stachewicz U, et al. An electrospun polydioxanone patch for the localisation of biological therapies during tendon repair. Eur Cell Mater, 2012, 24:344-357.
[71]Musson DS, Naot D, Chhana A, et al. In vitro evaluation of a novel non-mulberry silk scaffold for use in tendon regeneration. Tissue Eng Part A, 2015, 21(9-10):1539-1551.
[72]Zhao S, Xie X, Pan G, et al. Healing improvement after rotator cuff repair using gelatin-grafted poly (L-lactide) electrospun fbrous membranes. J Surg Res, 2015, 193(1):33-42.
[73]Beitzel K, Solovyova O, Cote MP, et al. The future role of mesenchymal stem cells in the management of shoulder disorders. Arthroscopy, 2013, 29(10):1702-1711.
[74]Beitzel K, McCarthy MB, Cote MP, et al. Comparison of mesenchymal stem cells (osteoprogenitors) harvested from proximal humerus and distal femur during arthroscopic surgery. Arthroscopy, 2013, 29(2):301-308.
[75]Jo CH, Shin JS, Park IW, et al. Multiple channeling improves the structural integrity of rotator cuff repair. Am J Sports Med,2013, 41(11):2650-2657.
[76]Kida Y, Morihara T, Matsuda K, et al. Bone marrow-derived cells from the footprint infltrate into the repaired rotator cuff. J Shoulder Elbow Surg, 2013, 22(2):197-205.
[77]Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med, 2007, 13(10):1219-1227.
[78]Cheng B, Ge H, Zhou J, et al. TSG-6 mediates the effect of tendon derived stem cells for rotator cuff healing. Eur Rev Med Pharmacol Sci, 2014, 18(2):247-251.
(本文編輯:李貴存)
Progress in tissue-engineering for tendon-to-bone healing after rotator cuff repair
ZHAO Chen, WANG Lei. Department of Orthopaedics, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai,200025, PRC
WANG Lei, Email: ray_wangs@hotmail.com
Rotator cuff injury, considered as a resource of pain, disability and dyssomnia to serious decline in the quality of life, is a common disorder of the shoulder joint. Basic principles of rotator cuff repair aim at achieving high initial fxation strength, maintaining mechanical stability and restoring the anatomic healing of the cuff tendon. After the routine surgical procedure for rotator cuff repair, the biology and histology of the normal enthesis are not restored. Tendon-to-bone healing occurs with a fbrovascular scar tissue interface that is mechanically inferior to the native insertion site, which may lead to high re-rupture rate. For these reasons, new approaches are required to improve structural healing. Tissue engineering strategies have been suggested to improve the biological environment around the bone-tendon interface and to promote regeneration of the native insertion site. Although experimental applications of growth factors and scaffolds on animal models demonstrate promising results, techniques which can be used in human rotator cuff repair are still very limited. Tissue engineering to improve tendon-to-bone healing has bright future and requires more research before its clinical applications. This review will outline therapies of growth factors, scaffolds and stem cells in tendon healing and rotator cuff repair.
Tissue engineering;Stem cells;Intercellular signaling peptides and proteins;Shoulder joint;Tendon;Wounds and injuries
10.3969/j.issn.2095-252X.2015.11.009
R318, R684
上海市衛(wèi)生和計(jì)劃生育委員會(huì)重點(diǎn)項(xiàng)目 (201440021)
200025 上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院骨科 (趙晨、王蕾);上海市傷骨科研究所 (趙晨)
王蕾,Email: ray_wangs@hotmail.com
2015-05-18)