”“"/>
霍艷
前段時間,我校有兩位老師進(jìn)行了一次同課異構(gòu)教學(xué)研討活動,他們教學(xué)的內(nèi)容是蘇教版一年級下冊第51頁的練習(xí)七。這是一節(jié)練習(xí)課,之前學(xué)生剛剛學(xué)完了兩位數(shù)加一位數(shù)和兩位數(shù)加整十?dāng)?shù),且看他們是如何處理練習(xí)七第3題的。(題目如下)
[3.不計算,你能在○里填上“>”“<”或“=”嗎?
47+2○47+20 4+75○75+4
50+48○40+48 30+66○3+66]
[甲老師教學(xué)過程]
(出示題目)談話:小山羊要過獨(dú)木橋,她只有答對以下題目才能順利過橋,你能幫幫她嗎?
學(xué)生先獨(dú)立完成,然后同桌交流一下。
最后集體匯報,一生說出答案,并說出想法,老師統(tǒng)計全班全對人數(shù)。
[乙教師教學(xué)過程]
(出示題目)讓一生讀題,然后說一說要注意什么,生答:要注意“不計算”這三個字。師追問:不計算要比較兩道算式結(jié)果的大小是有難度的,你們愿意接受挑戰(zhàn)嗎?請認(rèn)真思考第1小題。
學(xué)生獨(dú)立思考,稍過一會,不少學(xué)生喜形于色,躍躍欲試。
這時老師并沒有急于讓學(xué)生回答,他提示道:“從你們燦爛的笑臉上老師知道有不少同學(xué)已經(jīng)有了答案,你還能想出別的方法嗎?比一比,看誰的方法多?!?/p>
一石激起千層浪,老師的一個追問挑起了學(xué)生的斗志,學(xué)生又陷入了沉思之中……
過了一會兒,學(xué)生又漸漸地舉起了小手。
生1:“47+2,這個2是2個一,要與個位上的7相加,得數(shù)應(yīng)是四十多;47+20,這個2是2個十,要與4相加,得數(shù)應(yīng)是六十多,四十多小于六十多,填小于號。”
生2:“47+2和47+20都是用47加另一個數(shù),這個47先不看,比較2與20的大小,2比20小,那47+2就比47+20小。”
生3:“47+2和47+20兩邊都去掉47,剩余誰大原來誰就大,所以47+2小于47+20?!?/p>
生4:“47+2只加了2,而47+20要加的多得多,加的越多,得數(shù)就越大?!?/p>
生5:“我們班有47人,如果再來2個同學(xué)與再來20個同學(xué)相比,來得越多,總?cè)藬?shù)就越多。”
……
老師適時點(diǎn)撥:“如果我們先計算再比較,答案還是填小于號嗎?”
學(xué)生搶著回答:“47+2得49,47+20得67,49小于67,填小于號是正確的?!?/p>
老師繼續(xù)說道:“請你用以上方法完成其余三小題?!?/p>
[思考]
一道看似簡單的習(xí)題,乙老師不惜花費(fèi)七八分鐘的時間進(jìn)行處理,值得嗎?他究竟要達(dá)到什么目的呢?
一、練習(xí)首先是鞏固知識、提升技能
基礎(chǔ)知識和基本技能簡稱“雙基”,它要求學(xué)生做到“基礎(chǔ)知識扎實(shí),基本技能熟練”,這是我國數(shù)學(xué)教學(xué)的優(yōu)良傳統(tǒng),也是我國數(shù)學(xué)教學(xué)的重要特色?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》(2011年版)繼續(xù)保留了“雙基”,并且把“雙基”列為“四基”的前兩條,進(jìn)而也強(qiáng)調(diào)了“雙基”。的確,沒有基礎(chǔ)知識和基本技能,學(xué)生的數(shù)學(xué)思維就成了無緣之水、無本之木。一般地,學(xué)生在學(xué)習(xí)新知之后,往往需要安排一定量的習(xí)題進(jìn)行練習(xí),才能促進(jìn)學(xué)生深化理解所學(xué)知識,不斷提升技能。毫無疑問,練習(xí)七的安排是為了鞏固兩位數(shù)加一位數(shù)和兩位數(shù)加整十?dāng)?shù)的。甲老師處理練習(xí)七第3題時,以故事激發(fā)學(xué)生的學(xué)習(xí)欲望,讓學(xué)生獨(dú)立完成,培養(yǎng)了學(xué)生的自主學(xué)習(xí)能力,讓學(xué)生說出想法鞏固了兩位數(shù)加一位數(shù)與兩位數(shù)加整十?dāng)?shù)的估算,提升了計算技能。乙老師的教學(xué)也很重視通過練習(xí)鞏固兩位數(shù)加一位數(shù)和兩位加整十?dāng)?shù)的估算方法,而且重視算法的多樣化,從鞏固知識提升技能這一點(diǎn)上看兩位老師都做得不錯。
二、練習(xí)不只是鞏固知識、提升技能
特級老師徐斌曾經(jīng)說過這樣一句話:教什么比怎么教更重要。一節(jié)課只有準(zhǔn)確定位了培養(yǎng)目標(biāo),才能讓一節(jié)課定準(zhǔn)了方向。數(shù)學(xué)課尤其是練習(xí)課通過練習(xí)究竟要達(dá)到哪些目標(biāo)呢?
對于學(xué)生的培養(yǎng)目標(biāo),《數(shù)學(xué)課程標(biāo)準(zhǔn)》(2011年版)這樣表述:“通過義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會生活和進(jìn)一步發(fā)展所必需的數(shù)學(xué)的基礎(chǔ)知識、基本技能、基本思想、基本活動經(jīng)驗?!边@里由“雙基”要求發(fā)展為“四基”要求。如何讓學(xué)生獲得基本數(shù)學(xué)思想和基本活動經(jīng)驗?zāi)??乙老師在這節(jié)課上作了很好的回答。
1.以知識和技能為載體,感悟數(shù)學(xué)基本思想
《數(shù)學(xué)課程標(biāo)準(zhǔn)》(2011年版)指出:“數(shù)學(xué)思想蘊(yùn)含在數(shù)學(xué)知識形成、發(fā)展和應(yīng)用的過程中,是數(shù)學(xué)知識和方法在更高層次上的抽象與概括,如抽象、分類、歸納、演繹、模型等?!逼渲校罨镜臄?shù)學(xué)思想是抽象的思想、推理的思想和模型的思想。本節(jié)課上,學(xué)生回答說:“47不變,另一個加數(shù)越大,得數(shù)越大?!庇械膶W(xué)生還用班級學(xué)生人數(shù)來證明這個結(jié)論的正確??梢?,學(xué)生在鞏固兩位數(shù)加一位數(shù)和兩位數(shù)加整十?dāng)?shù)計算方法的基礎(chǔ)上,數(shù)學(xué)思想更上一層,他們抽象出“一個加數(shù)不變,另一個加數(shù)越大,和越大”這樣深刻的規(guī)律,多么難能可貴呀!乙老師引導(dǎo)學(xué)生聚焦處理第1小題,然后讓學(xué)生運(yùn)用剛習(xí)得的推理方法解決其余三小題,不知不覺又滲透了數(shù)學(xué)模型的建構(gòu)與應(yīng)用思想。以上這些具體的教學(xué)過程,不但使學(xué)生感悟到抽象思想,而且發(fā)展了學(xué)生的推理思想和模型思想。所以,各類數(shù)學(xué)活動是數(shù)學(xué)教學(xué)的形式,重要的數(shù)學(xué)思想應(yīng)該在數(shù)學(xué)教學(xué)過程中實(shí)現(xiàn)。只有讓學(xué)生體驗一些數(shù)學(xué)知識的獲取和經(jīng)歷問題解決的過程,并在其中獲得對基本數(shù)學(xué)思想方法的感悟,才能使學(xué)生體會到數(shù)學(xué)思想的作用,才能理解數(shù)學(xué)思想的精髓,進(jìn)行知識的有效遷移。
2.在學(xué)習(xí)和掌握知識與技能的過程中注重數(shù)學(xué)基本活動經(jīng)驗的積累
《數(shù)學(xué)課程標(biāo)準(zhǔn)》(2011年版)特別強(qiáng)調(diào):“數(shù)學(xué)活動經(jīng)驗的積累是提高學(xué)生數(shù)學(xué)素養(yǎng)的重要標(biāo)志。幫助學(xué)生積累數(shù)學(xué)活動經(jīng)驗是數(shù)學(xué)教學(xué)的重要目標(biāo),是學(xué)生不斷經(jīng)歷、體驗各種數(shù)學(xué)活動過程的結(jié)果。”學(xué)生只有在教師的引導(dǎo)下,參與數(shù)學(xué)的觀察、訓(xùn)練、猜測、驗證、推理與交流、抽象與概括、符號表示、運(yùn)算求解、數(shù)據(jù)處理、反思與建構(gòu)等活動,才能逐步達(dá)成對數(shù)學(xué)知識的意會、感悟,才能積累分析問題和解決問題的基本經(jīng)驗,感悟數(shù)學(xué)的理性精神,形成創(chuàng)新能力。本節(jié)課乙老師上得很淡定也很從容,他不急于得到結(jié)果,而是引導(dǎo)學(xué)生用多種方法解決問題,在學(xué)生想出多種不計算就能比較大小的方法后,他又引導(dǎo)學(xué)生用計算的方法加以驗證。這兩次精妙的點(diǎn)撥,發(fā)散了學(xué)生的數(shù)學(xué)思維,深化了學(xué)生的數(shù)學(xué)思考。學(xué)生在不知不覺中積累了不計算比較兩位數(shù)加一位數(shù)和兩位加整十?dāng)?shù)的大小數(shù)學(xué)經(jīng)驗,同時也感悟到解決問題應(yīng)該多方向進(jìn)行思考,并且要及時驗證,解決問題的經(jīng)驗也得到了發(fā)展和提高。
看來,數(shù)學(xué)練習(xí)只有建立在“四基”這樣的認(rèn)識高度上進(jìn)行充分挖掘,合理取舍,才能全面發(fā)揮數(shù)學(xué)練習(xí)的潛在作用,才能真正提升學(xué)生的數(shù)學(xué)素養(yǎng)。endprint