王娜等
摘要應(yīng)用鏈脲佐菌素 (Streptozocin, STZ)制備糖尿病 (Diabetes mellitus, DM)大鼠模型,采用離體的核磁共振磷譜 (31P Magnetic resonance spectroscopy, MRS)方法檢測糖尿病大鼠腦組織的生化改變。全腦的31P MRS譜圖結(jié)果顯示,STZ誘導(dǎo)1周后,磷酸單酯和磷酸二酯的含量無明顯改變,表明糖尿病大鼠腦中并沒有發(fā)生膜性結(jié)構(gòu)的改變。二磷酸腺苷峰增高,磷酸肌酸 (Phosphocreatine, PCr)和三磷酸腺苷 (Adenosine triphosphate, ATP)含量無明顯改變,但是PCr/ATP降低,說明PCr作為能量緩沖底物維持能量平衡。此外,pH值降低,表明在糖尿病大鼠腦中細(xì)胞內(nèi)環(huán)境改變。當(dāng)糖尿病發(fā)展到15周時(shí),磷脂膜代謝和腦能量代謝紊亂。31P MRS 不僅能夠無創(chuàng)性提供磷脂代謝情況及能量狀況,還可以測得細(xì)胞內(nèi)pH值等方面的生化信息,有助于理解糖尿病腦病的發(fā)病機(jī)制,并為臨床的早期診斷和治療提供理論依據(jù)。
1引言
糖尿病 (Diabetes mellitus, DM)是一種以血糖升高為特征的代謝紊亂綜合征,其并發(fā)癥遍及全身各處\[1\]。其中,糖尿病腦病是糖尿病三大并發(fā)癥之一,主要表現(xiàn)為認(rèn)知功能障礙和神經(jīng)行為缺陷\[2\]。研究表明,糖尿病患者腦中蛋白質(zhì)結(jié)構(gòu)和功能異常\[3\]以及灰質(zhì)的體積和密度減少\[4\], 并且,糖尿病患者出現(xiàn)癡呆的危險(xiǎn)性增加\[5\],并發(fā)抑郁癥的幾率是正常人的2倍\[6\]。目前,應(yīng)用各種先進(jìn)技術(shù)研究腦能量代謝與腦病的關(guān)系已成為當(dāng)今腦病研究的熱點(diǎn)之一。然而,糖尿病腦病與腦能量代謝變化的機(jī)制尚不清楚。
核磁共振波譜 (Magnetic resonance spectroscopy, MRS)是目前唯一可以用作活體無損傷的檢測細(xì)胞水平能量代謝變化的非侵入性技術(shù),對了解多種疾病的生化、病理生理變化以及疾病的早期診斷都具有極其重要的應(yīng)用價(jià)值。本研究組已利用MRS技術(shù)對肝硬化、糖尿病等疾病的發(fā)病機(jī)制進(jìn)行了研究[7,8],結(jié)果表明,MRS技術(shù)能夠很好地描述不同疾病狀態(tài)的代謝模式。31P MRS不僅能夠測得生理、病理狀態(tài)下能量代謝產(chǎn)物,如三磷酸腺苷 (Adenosine triphosphate, ATP)、磷酸肌酸 (Phosphocreatine, PCr)和無機(jī)磷 (Inorganic phosphate, Pi),還可根據(jù)Pi與PCr化學(xué)位移的相對差值計(jì)算細(xì)胞內(nèi)的pH值。以此判斷細(xì)胞目前的能量代謝狀況及細(xì)胞的受損傷情況。此外,31P MRS 還可以檢測到磷酸單酯 (Phosphomonoester, PME)和磷酸二酯 (Phosphodiester, PDE),借以判斷細(xì)胞膜結(jié)構(gòu)的完整性。本研究應(yīng)用31P MRS檢測不同時(shí)期糖尿病大鼠腦代謝的變化,以期進(jìn)一步了解糖尿病腦損傷的病理機(jī)制,為糖尿病腦病的臨床早期診斷和治療提供理論依據(jù)。
2實(shí)驗(yàn)部分
2.1儀器與試劑
Bruker AVANCE III 600核磁共振譜儀 (Bruker BioSpin International AG);血糖儀 (德國貝朗醫(yī)療國際貿(mào)易有限公司);冷凍干燥機(jī) (FD1,北京德天佑科技發(fā)展有限公司);勻漿機(jī) (上海弗魯克流體機(jī)械制造有限公司)。
甲醇和氯仿 (分析純,上海國藥集團(tuán)化學(xué)試劑有限公司);鏈脲佐菌素 (Streptozocin, STZ)\, 檸檬酸和檸檬酸鈉(美國SigmaAldrich公司);重水 (D2O,99.9%氘代,劍橋同位素實(shí)驗(yàn)室);純水由MilliQ 超純水系統(tǒng) (Millipore, Billerica, MA, USA)制得;SpragueDawley (SD)大鼠 (上海斯萊克實(shí)驗(yàn)動(dòng)物有限責(zé)任公司)。
2.2I型糖尿病模型的建立
取32只雄性SD大鼠 (180 ± 20) g,分籠飼養(yǎng),室溫(25±3)℃,相對濕度為 50%±10%,12 h交替照明。實(shí)驗(yàn)期間大鼠自由飲水、進(jìn)食。適應(yīng)喂養(yǎng)1周后,隨機(jī)分為兩組,一組大鼠腹腔注射新鮮配制的STZ檸檬酸鈉混懸溶液(70 mg/kg),另一組大鼠注射同體積的檸檬酸鈉混懸溶液 (0.10 mol/L,pH 4.5) 作為對照組。STZ注射72 h后測其血糖水平,選取血糖值大于16.70 mmol/L大鼠為糖尿病大鼠。
2.3SD大鼠腦組織的收集和制備
大鼠在STZ誘導(dǎo)1周和15周后斷頭處死,并將收集的腦組織樣本迅速浸入液氮中急凍,做好標(biāo)記后置于
Symbolm@@ 80 ℃保存。冰凍的腦組織樣本稱重后,采用甲醇氯仿水提取法提取水溶性的小分子代謝物。在液氮中冷凍后放入真空凍干機(jī)中凍干24 h,得到腦代謝物粉末。
2.4腦組織提取物的31P MRS檢測
在進(jìn)行NMR實(shí)驗(yàn)前,將得到的腦代謝物粉末再重新溶解于550 μL D2O中,在低溫離心機(jī)中離心10 min后取上清液,轉(zhuǎn)入NMR樣品管中進(jìn)行測試。使用本實(shí)驗(yàn)室的Bruker AVANCE III 600 MHz NMR譜儀采集腦組織樣本的31P NMR譜,31P的共振頻率為242.9 MHz。實(shí)驗(yàn)溫度為298 K,累加次數(shù)8192,實(shí)驗(yàn)中的脈沖翻轉(zhuǎn)角為30°,重復(fù)時(shí)間為3.5 s,譜寬為20000 Hz,WALTZ16脈沖去耦,采樣點(diǎn)數(shù)為16 K, 傅里葉變換前FID充零至32 K。所得的31P NMR譜圖經(jīng)傅里葉變換,指定PCr的化學(xué)位移為δ
Symbolm@@ 2.33\[9\], 從而確定31P NMR譜上PME、PDE和ATP等信號(hào)的化學(xué)位移。
實(shí)驗(yàn)數(shù)據(jù)應(yīng)用SPSS 13.0統(tǒng)計(jì)軟件處理,以均值±標(biāo)準(zhǔn)差表示,兩組間比較采用獨(dú)立樣品t檢驗(yàn)。
3結(jié)果與討論
3.1造模結(jié)果
STZ誘導(dǎo)的糖尿病大鼠模型是一種與胰島素水平顯著減少相關(guān)的I型糖尿病模型,其代謝特征類似于I型糖尿病病人,能較好地模擬人類糖尿病狀態(tài)下的各種變化\[10,11\]。如表1所示,本實(shí)驗(yàn)中對照組大鼠體重隨著時(shí)間的延長逐漸增加,血糖值與實(shí)驗(yàn)前相比無明顯變化。相對于年齡匹配的正常組大鼠,1周和15周DM組大鼠體重隨糖尿病病程的延長顯著下降 (p<0.001),血糖值顯著升高 (p<0.001)。在7~8周,有些糖尿病大鼠的眼睛出現(xiàn)晶狀體混濁;在11~12周后晶狀體完全混濁,發(fā)展成白內(nèi)障,這個(gè)結(jié)果與文獻(xiàn)\[1\]一致。
3.3糖尿病大鼠腦中代謝物含量變化
通過對各組峰面積的積分,得出各種化合物的相對濃度,根據(jù)這些化合物相對濃度的比值,可以提供組織代謝的某些信息。表2是年齡匹配的對照組大鼠和糖尿病1周和15周組大鼠t檢驗(yàn)統(tǒng)計(jì)學(xué)分析的結(jié)果。
通過對這些物質(zhì)相對含量的檢測以及細(xì)胞內(nèi)pH值的計(jì)算,可判斷細(xì)胞目前的能量代謝狀況以及細(xì)胞的受損傷情況。本實(shí)驗(yàn)結(jié)果 (表2)表明,糖尿病1周大鼠腦中pH值降低,說明大鼠患糖尿病1周后,腦中細(xì)胞內(nèi)環(huán)境發(fā)生了改變。
綜上所述,31P NMR避免了對細(xì)胞等生物樣品的破壞和損傷, 減少復(fù)雜的分離純化等操作,在不影響細(xì)胞代謝變化的條件下,給出了細(xì)胞內(nèi)ATP、PCr、PME等含磷化合物的信號(hào)。研究結(jié)果表明,STZ誘導(dǎo)1周后,患糖尿病大鼠的腦中未發(fā)現(xiàn)膜結(jié)構(gòu)改變,PCr作為能量緩沖底物維持腦能量代謝處于平衡狀態(tài),而細(xì)胞內(nèi)環(huán)境發(fā)生改變。當(dāng)大鼠患糖尿病15周后,磷脂膜代謝和腦能量代謝嚴(yán)重紊亂。因此,31P MRS方法不僅能夠無創(chuàng)性提供磷脂代謝情況及能量狀況,還可以測得細(xì)胞內(nèi)pH值等方面的生化信息。這些結(jié)果有助于理解糖尿病腦病的發(fā)病機(jī)制,并為臨床的早期診斷和治療提供理論依據(jù)。
References
1Guan M M, Xie L Y, Diao C F, Wang N, Hu W Y, Zheng Y Q, Jin L T, Yan Z H, Gao H C. PLOS ONE, 2013, 8(4): 1-10
2Mijnhout G S, Scheltens P, Diamant M, Biessels G J, Wessels A M, Simsek S, Snoek F J, Heine R J. Diabetologia, 2006, 49(6): 1447-1448
3Kodl C T, Franc D T, Rao J P, Anderson F S, Thomas W, Mueller B A, Lim K O, Seaquist E R. Diabetes., 2008, 57(11): 3083-3089
4Musen G, Lyoo I K, Sparks C R, Weinger K, Hwang J, Ryan C M, Jimerson D C, Hennen J, Renshaw P F, Jacobson A M. Diabetes, 2006, 55(2): 326-333
5Velayudhan L, Poppe M, Archer N, Proitsi P, Brown R G, Lovestone S. Br. J. Psychiatry, 2010, 196(1): 36-40
6Anderson R J, Freedland K E, Clouse R E, Lustman P J. Diabetes Care, 2001, 24(6): 1069-1078
7LU Qiang, HUANG YiHong, CONG Hui, LIU Xia, GAO HongChang, LIN DongHai, WANG HuiMin. Chinese J. Anal. Chem., 2009, 37(2): 194-198
陸 強(qiáng), 黃一紅, 叢 輝, 劉 霞, 高紅昌, 林東海, 王惠民. 分析化學(xué), 2009, 37(2): 194-198
8XIE LiYun, SONG CaiYong, LOU YiYi, XU Zhi, ZHANG MeiLing, DONG BaiJun, GAO HongChang, LI XiaoKun. Acta Chim. Sinica, 2011, 69(19): 2265-2271
謝麗云, 宋才勇, 婁依依, 徐志, 張美玲, 董柏君, 高紅昌, 李校堃. 化學(xué)學(xué)報(bào), 2011, 69(19): 2265-2271
9Zwingmann C, Leibfritz D, Hazell A S. J. Cerebr. Blood F. Met., 2003, 23(6): 756-771
10Lenzen S. Diabetologia, 2008, 51(2): 216-226
11ZHANG JuBiao, SU XiuLan, OUYANG XiaoHui. Medical Recapitulate, 2013, 19(2): 335-337
張巨彪, 蘇秀蘭, 歐陽曉暉. 醫(yī)學(xué)綜述, 2013, 19(2): 335-337
12Sergeeva S, Bagryanskaya E, Korbolina E, Kolosova N. Exp. Gerontol., 2006, 41(2): 141-150
13Shirayama Y, Yano T, Takahashi K, Takahashi S, Ogino T. Eur. J. Neurosci., 2004, 20(3): 749-756
14RuizCabello J, Cohen J S. NMR Biomed., 1992, 5(5): 226-233
15Boutilier R G. J. Exp. Biol., 2001, 204(18): 3171-3181
16Biessels G J, Braun K P, de Graaf R A, van Eijsden P, Gispen W H, Nicolay K. Diabetologia, 2001, 44(3): 346-353
AbstractConsiderable attention has been directed toward studying the impact of diabetes on the central nervous system. The current study investigates the biochemical changes in the brain tissue of streptozotocin (STZ)induced diabetic rat using 31P magnetic resonance spectroscopy (31P MRS). The 31P NMR spectra of the whole brain show no significant changes of phosphomonoesters and phosphodiesters levels one week after STZ induction, suggesting no apparent structural changes in cell membranes. The results identifies the increased level of adenosine diphosphate, negligible changes of phosphocreatine (PCr) and adenosine triphosphate (ATP) , but the decreased ratio of PCr/ATP, indicating that PCr plays a role of balancing the energy. Moreover, the decreased pH value indicates the changes of the intracellular environment in STZdiabetic brains in rats. After 15 weeks of STZ injection, the metabolism of phospholipid membrane and brain energy metabolism has been obviously disturbed. Our study successfully shows that 31P MRS can not only study phospholipid and energy metabolism noninvasively, but also measure intracellular pH and other important biochemical information. All of these spectroscopic characterizations contribute significantly to the understanding of pathogenesis and evolution of diabetes, and provide theoretical basis for early diagnosis and clinical treatment in diabetes.
KeywordsDiabetes mellitus; Brain energy metabolism; 31P magnetic resonance spectroscopy
14RuizCabello J, Cohen J S. NMR Biomed., 1992, 5(5): 226-233
15Boutilier R G. J. Exp. Biol., 2001, 204(18): 3171-3181
16Biessels G J, Braun K P, de Graaf R A, van Eijsden P, Gispen W H, Nicolay K. Diabetologia, 2001, 44(3): 346-353
AbstractConsiderable attention has been directed toward studying the impact of diabetes on the central nervous system. The current study investigates the biochemical changes in the brain tissue of streptozotocin (STZ)induced diabetic rat using 31P magnetic resonance spectroscopy (31P MRS). The 31P NMR spectra of the whole brain show no significant changes of phosphomonoesters and phosphodiesters levels one week after STZ induction, suggesting no apparent structural changes in cell membranes. The results identifies the increased level of adenosine diphosphate, negligible changes of phosphocreatine (PCr) and adenosine triphosphate (ATP) , but the decreased ratio of PCr/ATP, indicating that PCr plays a role of balancing the energy. Moreover, the decreased pH value indicates the changes of the intracellular environment in STZdiabetic brains in rats. After 15 weeks of STZ injection, the metabolism of phospholipid membrane and brain energy metabolism has been obviously disturbed. Our study successfully shows that 31P MRS can not only study phospholipid and energy metabolism noninvasively, but also measure intracellular pH and other important biochemical information. All of these spectroscopic characterizations contribute significantly to the understanding of pathogenesis and evolution of diabetes, and provide theoretical basis for early diagnosis and clinical treatment in diabetes.
KeywordsDiabetes mellitus; Brain energy metabolism; 31P magnetic resonance spectroscopy
14RuizCabello J, Cohen J S. NMR Biomed., 1992, 5(5): 226-233
15Boutilier R G. J. Exp. Biol., 2001, 204(18): 3171-3181
16Biessels G J, Braun K P, de Graaf R A, van Eijsden P, Gispen W H, Nicolay K. Diabetologia, 2001, 44(3): 346-353
AbstractConsiderable attention has been directed toward studying the impact of diabetes on the central nervous system. The current study investigates the biochemical changes in the brain tissue of streptozotocin (STZ)induced diabetic rat using 31P magnetic resonance spectroscopy (31P MRS). The 31P NMR spectra of the whole brain show no significant changes of phosphomonoesters and phosphodiesters levels one week after STZ induction, suggesting no apparent structural changes in cell membranes. The results identifies the increased level of adenosine diphosphate, negligible changes of phosphocreatine (PCr) and adenosine triphosphate (ATP) , but the decreased ratio of PCr/ATP, indicating that PCr plays a role of balancing the energy. Moreover, the decreased pH value indicates the changes of the intracellular environment in STZdiabetic brains in rats. After 15 weeks of STZ injection, the metabolism of phospholipid membrane and brain energy metabolism has been obviously disturbed. Our study successfully shows that 31P MRS can not only study phospholipid and energy metabolism noninvasively, but also measure intracellular pH and other important biochemical information. All of these spectroscopic characterizations contribute significantly to the understanding of pathogenesis and evolution of diabetes, and provide theoretical basis for early diagnosis and clinical treatment in diabetes.
KeywordsDiabetes mellitus; Brain energy metabolism; 31P magnetic resonance spectroscopy