徐慶彩等
摘要采用干灰化法與離子交換樹脂色譜法聯(lián)用,建立了植物中氯的分離方法,消除了有機(jī)質(zhì)對氯同位素測定的影響,能夠滿足氯同位素正熱電離質(zhì)譜法測定的需求,沒有造成氯的損失和氯同位素的分餾。結(jié)果表明,青藏高原和山東兩個地區(qū)的5種植物組織器官的δ
1引言
氯是植物生長必需的一種微量營養(yǎng)元素,氯在維持植物細(xì)胞的膨壓及電荷平衡方面起著重要作用。氯參與植物光合作用中水的光解反應(yīng),促進(jìn)光合磷酸化作用和三磷酸腺苷(ATP)的合成;氯能維持細(xì)胞液的緩沖性及液泡的滲透調(diào)節(jié),激活質(zhì)子泵ATP酶;通過氣孔開閉,氯能間接影響植物的光合作用和生長。氯與其它微量的陽離子結(jié)合,可保持植物體電荷平衡,同時還能促進(jìn)碳水化合物的合成\[1~4\]。
在植物吸收利用氯的過程中,由于氯的遷移、轉(zhuǎn)化和生物生理作用,可能產(chǎn)生與其生長環(huán)境相關(guān)的同位素(35Cl和37Cl)組成變化。隨著植物組織器官的凋落,引起植物區(qū)域生長環(huán)境中氯同位素平衡和氯循環(huán)的改變。因此,研究陸生植物和海洋植物對氯的吸收利用,對重新認(rèn)識全球氯同位素平衡變化和氯循環(huán)改變具有重要意義。
氯的分離是影響氯同位素地球化學(xué)應(yīng)用研究的關(guān)鍵。有兩種常用的氯分離方法能夠滿足其同位素質(zhì)譜分析需求。其一是Xiao等\[5\]建立的基于Cs2Cl+離子正熱電離質(zhì)譜法,采用離子交換色譜法進(jìn)行氯分離,將樣品溶液分別通過H+型、Ba2+型和Cs+型強(qiáng)陽離子交換樹脂后,溶液中CsCl用于同位素質(zhì)譜分析\[6~8\]。其二為基于CH3Cl+離子的氣體質(zhì)譜法分析氯同位素組成\[9~11\]所采用的方法,該方法首先采用Ag+沉淀Cl
Symbolm@@ ,然后AgCl在暗處與CH3I反應(yīng),轉(zhuǎn)化成CH3Cl后,用于氯同位素的質(zhì)譜分析。第二種方法比較耗時,尤其是無機(jī)態(tài)氯向有機(jī)態(tài)氯的轉(zhuǎn)化過程,操作繁瑣。結(jié)合這兩種方法的特點(diǎn),孫愛德等\[12,13\]建立了低氯含量樣品中氯的分離方法,先用Ag+型樹脂將氯富集,然后用氨水洗脫,再通過Ba2+和Cs+型樹脂,有效去除SO2-4、NO-3對氯同位素測試的影響,實(shí)現(xiàn)了雨水和雪水等樣品中Cl同位素質(zhì)譜分析。
而對于植物樣品而言,植物中存在的大量有機(jī)質(zhì)是限制植物氯同位素應(yīng)用研究的瓶頸問題,因?yàn)橛袡C(jī)質(zhì)的存在能夠抑制質(zhì)譜測定過程中Cs2Cl+離子流的發(fā)射,導(dǎo)致其強(qiáng)度在短時間內(nèi)大幅衰減,同時引起氯同位素分餾。傳統(tǒng)去除有機(jī)質(zhì)的方法是采用HNO3/H2O2濕法消解,這種方法能夠有效去除植物中大量有機(jī)質(zhì),但是容易引起氯損失,導(dǎo)致氯同位素分餾。
本實(shí)驗(yàn)在文獻(xiàn)\[12,13\]基礎(chǔ)上,建立能夠滿足正熱電離質(zhì)譜法需求的氯的分離方法,能有效消除了植物中大量有機(jī)質(zhì)對氯同位素質(zhì)譜測定的影響,并對植物中氯同位素的分餾及其應(yīng)用前景進(jìn)行了探討。
2實(shí)驗(yàn)部分
21樣品采集
本實(shí)驗(yàn)選取青藏高原地區(qū)的兩種植物川西獐芽菜、花錨和山東地區(qū)的兩種植物紅王子錦帶、紫松果菊為研究對象。川西獐芽菜為龍膽科獐芽菜屬兩年生草本植物,可以全草入藥,花果期為7~10月,主要生于海拔1900~3800 m的山坡、河谷、林下、灌叢、水邊?;ㄥ^為龍膽科、花錨屬一年生草本植物,主要生長于中性或偏堿性的壤土或灌叢草甸土中,花果期為7~9月\[14\]。這兩種植物分別采自青海省玉樹和斑馬縣,采樣時間為2012年8月。紫松果菊為菊科紫松果菊屬多年生草本植物,花期為6~7月,喜生于溫暖向陽處,喜肥沃、深厚、富含有機(jī)質(zhì)的土壤。紅王子錦帶為忍冬科錦帶花屬落葉灌木植物,花期為4~6月。這兩種植物分別采自山東省臨沂市平邑縣和蘭山區(qū),采樣時間為2012年6月。
氯同位素組成的測定在中國科學(xué)院青海鹽湖研究所鹽湖地質(zhì)與環(huán)境實(shí)驗(yàn)室進(jìn)行。采用Xiao等\[5\]建立的基于Cs2Cl+離子的正熱電離質(zhì)譜法測定氯同位素組成。鉭帶(075 cm× 0076 cm× 00025 cm)在3 A電流下真空去氣1 h。涂樣時,先將1 μL石墨懸浮液涂于鉭帶表面,在12 A電流下蒸至近干,再加入1 μL樣品溶液,蒸發(fā)至近干,用于質(zhì)譜測定。
3結(jié)果與討論
31分離過程氯的回收
植物樣品干灰化過程氯的揮發(fā)或損失將造成氯同位素的分餾,因此要保證在干灰化過程中沒有氯損失。干灰化后樣品用HNO3溶解后,采用離子色譜法進(jìn)行氯含量測定,用以檢測回收率。一般認(rèn)為,氯在植物體內(nèi)以Cl
Symbolm@@ 的形式存在\[17\],因此以準(zhǔn)確稱量的基準(zhǔn)試劑NaCl作為參考試劑,采用稱重法,比較在干灰化過程前后其質(zhì)量變化,估算Cl的回收率。5次平行實(shí)驗(yàn)中,NaCl回收率變化為999%~1002%,表明干灰化過程中不會引起Cl-損失\[15\]。
孫愛德等\[12\]認(rèn)為,由于Ag+型樹脂粒徑非常小,其樹脂床能夠阻止AgCl沉淀的滲漏,同時將NO-3完全去除,Ba2+型樹脂能夠去除SO2-4,因?yàn)樵诼韧凰氐馁|(zhì)譜測定過程中,當(dāng)\[NO-3\]/\[Cl-\]>10、\[SO2-4\]/\[Cl-\]>30時,NO-3和SO2-4將影響到質(zhì)譜中Cs2Cl+的發(fā)射強(qiáng)度\[8,19\]。孫愛德等\[12,13\]對低氯含量雨水等樣品中氯的研究結(jié)果表明,采用Ag+型、Ba2+型Cs+型離子交換樹脂色譜過程對氯的回收率能達(dá)到100%,沒有造成氯的損失和氯同位素的分餾的產(chǎn)生。干灰化過程和整個分離過程的樣品氯的回收率見表1。從表1可見,干灰化過程和全流程過程中氯的回收率變化范圍為960%~1059%,這說明在干灰化過程和全流程未造成氯的損失,也不會造成氯同位素分餾。
32分離過程中的氯同位素分餾
引起氯同位素比值變化的因素可能是分離過程中空白的引入和分離過程中氯同位素的分餾\[20\]。以基準(zhǔn)試劑NaCl溶液通過全流程,分別測定過程之前和之后氯同位素組成的變化,相對ISL 354 NaCl同位素標(biāo)準(zhǔn),其δ37Cl分別為+042‰和+041‰,說明在整個分離過程中未出現(xiàn)氯同位素的分餾。
采用標(biāo)準(zhǔn)加入法和同位素稀釋法測定全流程空白的Cl-,全流程中空白氯的量小于16 ng,空白氯的影響是可以忽略的??傊?,干灰化能夠完全去除植物中大量有機(jī)質(zhì)對氯同位素質(zhì)譜測定的影響,干灰化和離子交換樹脂色譜聯(lián)用對氯的回收能達(dá)到95%以后,沒有造成氯損失,不會引起氯同位素分餾。
33植物樣品中氯同位素組成測定
孫愛德, 肖應(yīng)凱, 王慶忠, 張崇耿, 魏海珍, 廖步勇 分析化學(xué), 2004, 32(10): 1362-1364
13Sun A D, Xiao Y K, Wang Q Z, Zhang C G, Wei H Z BCEIA, 2003: B121-B122
14YANG YongChang Flora of Tibetan Medicine, Qinghai People Press, Xining, 1991: 110-114
楊永昌 藏藥志, 青海人民出版社,西寧,1991: 110-114
15Kashparov V, Colle C, Zvarich S, Yoschenko V, Levchuk S, Lundin S J Environ Radioactiv, 2005, 79(3): 233-253
16JIANG RongRong, GU YaZhong, YAO ZhenQin. Heilongjiang Envorin J, 2005, 29(4): 47-48
蔣榮榮, 顧亞中, 姚振琴 黑龍江環(huán)境通報, 2005, 29(4): 47-48
17White P J, Broadley M R. Chloride in Soil and its Uptake and Movement within the Plant: a Review, Ann Bot, 2001, 88(Suppl): 967-988
18IAEA Reference Products for Environment and Trade, ISL354, Sodium Chloride, Material with Known 37Cl/35Cl Isotopic Composition Website: http://nucleusiaeaorg/rpst/ReferenceProducts/ReferenceMaterials/Stable_Isotopes/37Cl35l/ISL354htm Accessed 12/2013
19LU Hai, XIAO YingKai. J Salt Lake Res, 2001, 9(2): 7-12
逯 海, 肖應(yīng)凱 鹽湖研究, 2001, 9(2): 7-12
20Rosner M, Pritzkow W, Vog J, Voerkelius S Anal Chem, 2011, 83(7): 2562-2568
21LIU CongQiang, LANG YunChao. Bull Mineral Petrol Geochem, 2006, 25(Suppl): 101-103
劉叢強(qiáng), 郎赟超 礦物巖石地球化學(xué)通報, 2006, 25(增刊): 101-103
AbstractA method using dry ashing combined with triplephase ionexchange chromatography was developed to enrich chlorine in the plant, which could eliminate the effect of organic impurities on the determination of chlorine isotope by thermal ionization mass spectrometry In the procedure, the recoveries indicated that there was no loss of chlorine and no fractionation of chlorine isotopes occur The results showed that the composition of chlorine isotope in the tissues of plants in QinghaiTibet Plateau area and Shandong area ranged from
Symbolm@@ 179‰ to +477‰ with an average of 120‰ δ37Cl values of the two plant samples in Shandong area not more than 0‰ indicated that 35Cl was enriched in the organs of the two plants and δ37Cl values in QinghaiTibet Plateau area more than 0‰ indicated the deficiency of 35Cl Chlorine isotope composition fractionated significantly in the plant samples or in different tissues of a plant This may be caused by the differences of the medium where the plants grow, the transport of chlorine or the physiological effect in the uptake of chlorine by plants, which put forward a new insight for the further investigation of chlorine behavior in plant and the global cycling of chlorine in the biogeochemistry
KeywordsChlorine isotope; Thermal ionization mass spectrometry; Plant; Tissue
采用標(biāo)準(zhǔn)加入法和同位素稀釋法測定全流程空白的Cl-,全流程中空白氯的量小于16 ng,空白氯的影響是可以忽略的??傊?,干灰化能夠完全去除植物中大量有機(jī)質(zhì)對氯同位素質(zhì)譜測定的影響,干灰化和離子交換樹脂色譜聯(lián)用對氯的回收能達(dá)到95%以后,沒有造成氯損失,不會引起氯同位素分餾。
33植物樣品中氯同位素組成測定
孫愛德, 肖應(yīng)凱, 王慶忠, 張崇耿, 魏海珍, 廖步勇 分析化學(xué), 2004, 32(10): 1362-1364
13Sun A D, Xiao Y K, Wang Q Z, Zhang C G, Wei H Z BCEIA, 2003: B121-B122
14YANG YongChang Flora of Tibetan Medicine, Qinghai People Press, Xining, 1991: 110-114
楊永昌 藏藥志, 青海人民出版社,西寧,1991: 110-114
15Kashparov V, Colle C, Zvarich S, Yoschenko V, Levchuk S, Lundin S J Environ Radioactiv, 2005, 79(3): 233-253
16JIANG RongRong, GU YaZhong, YAO ZhenQin. Heilongjiang Envorin J, 2005, 29(4): 47-48
蔣榮榮, 顧亞中, 姚振琴 黑龍江環(huán)境通報, 2005, 29(4): 47-48
17White P J, Broadley M R. Chloride in Soil and its Uptake and Movement within the Plant: a Review, Ann Bot, 2001, 88(Suppl): 967-988
18IAEA Reference Products for Environment and Trade, ISL354, Sodium Chloride, Material with Known 37Cl/35Cl Isotopic Composition Website: http://nucleusiaeaorg/rpst/ReferenceProducts/ReferenceMaterials/Stable_Isotopes/37Cl35l/ISL354htm Accessed 12/2013
19LU Hai, XIAO YingKai. J Salt Lake Res, 2001, 9(2): 7-12
逯 海, 肖應(yīng)凱 鹽湖研究, 2001, 9(2): 7-12
20Rosner M, Pritzkow W, Vog J, Voerkelius S Anal Chem, 2011, 83(7): 2562-2568
21LIU CongQiang, LANG YunChao. Bull Mineral Petrol Geochem, 2006, 25(Suppl): 101-103
劉叢強(qiáng), 郎赟超 礦物巖石地球化學(xué)通報, 2006, 25(增刊): 101-103
AbstractA method using dry ashing combined with triplephase ionexchange chromatography was developed to enrich chlorine in the plant, which could eliminate the effect of organic impurities on the determination of chlorine isotope by thermal ionization mass spectrometry In the procedure, the recoveries indicated that there was no loss of chlorine and no fractionation of chlorine isotopes occur The results showed that the composition of chlorine isotope in the tissues of plants in QinghaiTibet Plateau area and Shandong area ranged from
Symbolm@@ 179‰ to +477‰ with an average of 120‰ δ37Cl values of the two plant samples in Shandong area not more than 0‰ indicated that 35Cl was enriched in the organs of the two plants and δ37Cl values in QinghaiTibet Plateau area more than 0‰ indicated the deficiency of 35Cl Chlorine isotope composition fractionated significantly in the plant samples or in different tissues of a plant This may be caused by the differences of the medium where the plants grow, the transport of chlorine or the physiological effect in the uptake of chlorine by plants, which put forward a new insight for the further investigation of chlorine behavior in plant and the global cycling of chlorine in the biogeochemistry
KeywordsChlorine isotope; Thermal ionization mass spectrometry; Plant; Tissue
采用標(biāo)準(zhǔn)加入法和同位素稀釋法測定全流程空白的Cl-,全流程中空白氯的量小于16 ng,空白氯的影響是可以忽略的??傊?,干灰化能夠完全去除植物中大量有機(jī)質(zhì)對氯同位素質(zhì)譜測定的影響,干灰化和離子交換樹脂色譜聯(lián)用對氯的回收能達(dá)到95%以后,沒有造成氯損失,不會引起氯同位素分餾。
33植物樣品中氯同位素組成測定
孫愛德, 肖應(yīng)凱, 王慶忠, 張崇耿, 魏海珍, 廖步勇 分析化學(xué), 2004, 32(10): 1362-1364
13Sun A D, Xiao Y K, Wang Q Z, Zhang C G, Wei H Z BCEIA, 2003: B121-B122
14YANG YongChang Flora of Tibetan Medicine, Qinghai People Press, Xining, 1991: 110-114
楊永昌 藏藥志, 青海人民出版社,西寧,1991: 110-114
15Kashparov V, Colle C, Zvarich S, Yoschenko V, Levchuk S, Lundin S J Environ Radioactiv, 2005, 79(3): 233-253
16JIANG RongRong, GU YaZhong, YAO ZhenQin. Heilongjiang Envorin J, 2005, 29(4): 47-48
蔣榮榮, 顧亞中, 姚振琴 黑龍江環(huán)境通報, 2005, 29(4): 47-48
17White P J, Broadley M R. Chloride in Soil and its Uptake and Movement within the Plant: a Review, Ann Bot, 2001, 88(Suppl): 967-988
18IAEA Reference Products for Environment and Trade, ISL354, Sodium Chloride, Material with Known 37Cl/35Cl Isotopic Composition Website: http://nucleusiaeaorg/rpst/ReferenceProducts/ReferenceMaterials/Stable_Isotopes/37Cl35l/ISL354htm Accessed 12/2013
19LU Hai, XIAO YingKai. J Salt Lake Res, 2001, 9(2): 7-12
逯 海, 肖應(yīng)凱 鹽湖研究, 2001, 9(2): 7-12
20Rosner M, Pritzkow W, Vog J, Voerkelius S Anal Chem, 2011, 83(7): 2562-2568
21LIU CongQiang, LANG YunChao. Bull Mineral Petrol Geochem, 2006, 25(Suppl): 101-103
劉叢強(qiáng), 郎赟超 礦物巖石地球化學(xué)通報, 2006, 25(增刊): 101-103
AbstractA method using dry ashing combined with triplephase ionexchange chromatography was developed to enrich chlorine in the plant, which could eliminate the effect of organic impurities on the determination of chlorine isotope by thermal ionization mass spectrometry In the procedure, the recoveries indicated that there was no loss of chlorine and no fractionation of chlorine isotopes occur The results showed that the composition of chlorine isotope in the tissues of plants in QinghaiTibet Plateau area and Shandong area ranged from
Symbolm@@ 179‰ to +477‰ with an average of 120‰ δ37Cl values of the two plant samples in Shandong area not more than 0‰ indicated that 35Cl was enriched in the organs of the two plants and δ37Cl values in QinghaiTibet Plateau area more than 0‰ indicated the deficiency of 35Cl Chlorine isotope composition fractionated significantly in the plant samples or in different tissues of a plant This may be caused by the differences of the medium where the plants grow, the transport of chlorine or the physiological effect in the uptake of chlorine by plants, which put forward a new insight for the further investigation of chlorine behavior in plant and the global cycling of chlorine in the biogeochemistry
KeywordsChlorine isotope; Thermal ionization mass spectrometry; Plant; Tissue