景蔚萱等
摘要將鍵合金絲以螺旋方式緊密繞制在光纖纖芯上,用水浴法在其表面合成氧化鋅納米線,再將葡萄糖氧化酶物理吸附在納米線上,得到了螺旋線形跨尺度葡萄糖酶電極。提取了該跨尺度結(jié)構(gòu)及相應(yīng)酶電極的表面形貌,表征了該批酶電極的電化學(xué)性能。結(jié)果表明,氧化鋅納米線的合成參數(shù)對跨尺度結(jié)構(gòu)的表面形貌、葡萄糖氧化酶的固定效果、跨尺度電化學(xué)葡萄糖傳感器的性能有顯著影響; 關(guān)鍵詞跨尺度結(jié)構(gòu); 表面形貌; 葡萄糖生物傳感器; 循環(huán)伏安法; 計時電流法
1引言
以葡萄糖氧化酶(Glucose oxidase,GOD)和電極表面之間直接電子轉(zhuǎn)移為特點的跨尺度電化學(xué)葡萄糖傳感器已廣泛應(yīng)用于醫(yī)藥、生物、食品加工、環(huán)境監(jiān)測等領(lǐng)域\[1~4\],其工作電極由微米級基底電極和納米級基質(zhì)材料組成\[5\]。氧化鋅(ZnO)納米線的比表面積大、抗氧化能力強(qiáng)、無毒性、生物兼容性好,經(jīng)常用作基質(zhì)材料\[6\]。為了批量制備跨尺度電化學(xué)葡萄糖傳感器,除了研究GOD和葡萄糖之間的電化學(xué)行為外,還需對合成參數(shù)、跨尺度結(jié)構(gòu)的表面形貌、GOD的吸附效果進(jìn)行量化表征。
跨尺度電化學(xué)葡萄糖傳感器基底電極以平面形(沉積有Au膜的平面基底、ITO(Indium tin oxides)導(dǎo)電玻璃等)\[7, 8\]和圓柱形結(jié)構(gòu)(Au或Ag絲、玻碳電極等)\[9~11\]居多,其電極面積需進(jìn)一步增大。基底電極上ZnO納米線薄膜的比表面積、表面形貌直接影響GOD的固定效果,但是其比表面積難于測量\[12\],而表面形貌大多采用掃描電子顯微鏡(Scanning electron microscopy,SEM)的直接測量法,測量參數(shù)有限、表征數(shù)據(jù)單一、表征結(jié)果不完整\[13, 14\]。合成參數(shù)決定ZnO納米線薄膜的表面形貌,進(jìn)而導(dǎo)致不同的GOD固定效果,最終影響該類傳感器的高精度、批量制備,因此需要建立這些影響因素之間的定量關(guān)系。
本研究在前期工作\[15\]的基礎(chǔ)上, 制備了一批基于ZnO納米線的螺旋線形跨尺度工作電極,對其結(jié)構(gòu)及固定GOD前后的表面形貌進(jìn)行了定量表征,對酶電極性能進(jìn)行了電化學(xué)測試,初步建立了合成參數(shù)表面形貌GOD固定效果跨尺度葡萄糖傳感器性能之間的定量關(guān)系。
22螺旋線形跨尺度工作電極的制備
螺旋線形跨尺度電化學(xué)葡萄糖傳感器包括螺旋線形跨尺度工作電極、Ag/AgCl 參比電極、Pt對電極,其工作電極的制備包括微米級圓柱螺旋線的繞制和ZnO納米線的合成。將雙模光纖在丙酮中浸泡5 min,抽出光纖纖芯;將Au絲一端用環(huán)氧樹脂固定在光纖纖芯一端,再手工緊密繞制在光纖纖芯上,形成軸向長度為3 mm的Au螺旋線;用環(huán)氧樹脂將Au螺旋線另一端固定在光纖纖芯上,并留出電極引線;用無水乙醇超聲清洗Au螺旋線組件,并在真空干燥機(jī)中干燥。
水浴法合成ZnO納米線的工藝參數(shù)包括生長液和種子層溶液Zn2+濃度、生長時間和合成溫度等。在6個Au螺旋線表面沉積1 mmol/L ZnO種子層,并于150 ℃退火10 min;再重復(fù)上述沉積和退火步驟兩次。將沉積有ZnO種子層的6個Au螺旋線分別放入Zn2+濃度為0, 25, 50, 75, 100和125 mmol/L的生長液中, 并于90 ℃下保持25 h,取出后用去離子水超聲清洗5 min后, 在室溫下干燥,得到6種Au螺旋線形跨尺度結(jié)構(gòu),見圖1(a);將螺旋線形跨尺度結(jié)構(gòu)分別浸入40 mg/mL GOD溶液, 并保持30 min,取出后在室溫下干燥;用去離子水沖洗多余的GOD,得到6種螺旋線形跨尺度工作電極。
23螺旋線形跨尺度結(jié)構(gòu)及工作電極的表征
基于SEM圖像和濾波、線邊緣提取、擬合等MATLAB圖像處理算子提取出固定GOD前后螺旋線形跨尺度結(jié)構(gòu)的輪廓邊緣,據(jù)此得到其幾何參數(shù)(螺距、螺旋角和外廓直徑)和表面形貌的特征參數(shù)。在粗糙表面的特征參數(shù)中,均方根粗糙度Ra(Roughness)是隨機(jī)變量的2階矩,描述表面高度相對于中線的波動程度;偏斜度Sk(Skewness)是隨機(jī)變量的3階矩,反映表面上凸起和凹坑相對于高斯分布的對稱程度;峭度Ku(Kurtosis)是隨機(jī)變量的4階矩,表明各點高度相對于高斯分布的分散程度;相關(guān)長度ξ(Correlation length)反映輪廓上各點高度之間相關(guān)性的范圍。
24螺旋線形跨尺度葡萄糖傳感器的電化學(xué)測試
在0, 1, 2, 3, 4, 5和6 mmol/L葡萄糖溶液中用循環(huán)伏安法分析螺旋線形跨尺度葡萄糖傳感器的氧化還原能力,掃描電壓為
Symbolm@@ 02~08 V,掃描速率50 mV/s;用計時電流法確定螺旋線形跨尺度葡萄糖傳感器的靈敏度、線性范圍、檢出限和MichaelisMenten常數(shù),其中工作電極相對參比電極的偏壓為+08 V,且每隔一定時間往50 mL PBS溶液中邊攪拌邊加入100 μL 025 mol/L葡萄糖溶液,攪拌速度為400 r/min。
332電流時間響應(yīng)由圖3c的電流時間響應(yīng)曲線可得到圖3d的葡萄糖濃度與響應(yīng)電流平均值的散點圖,據(jù)此可求出相應(yīng)傳感器的靈敏度、線性范圍及檢出限; 根據(jù)LineweaverBurk方程并結(jié)合電流時間響應(yīng)曲線可計算出MichaelisMenten常數(shù), 結(jié)果見表2。顯然,生長液Zn2+濃度及跨尺度結(jié)構(gòu)表面形貌對傳感器的靈敏度及檢出限有顯著影響,而對其線性范圍和MichaelisMenten常數(shù)影響不大。當(dāng)生長液Zn2+濃度分別為25, 50, 100和125 mmol/L時,傳感器的靈敏度越來越減??;生長液Zn2+濃度75 mmol/L所對應(yīng)的靈敏度要小于100 mmol/L; 生長液Zn2+濃度0 mmol/L對應(yīng)的靈敏度略差于75 mmol/L;表面形貌導(dǎo)致的不同GOD固定效果是靈敏度產(chǎn)生上述變化的原因。
生長液Zn2+濃度為0, 25, 50, 75和100 mmol/L時所對應(yīng)的最低檢出限相差不大,而125 mmol/L對應(yīng)的檢出限明顯大于其它5組。這是因為當(dāng)生長液Zn2+濃度為125 mmol/L時,重結(jié)晶現(xiàn)象最明顯,只在ZnO納米結(jié)構(gòu)的頂面吸附有GOD,且還產(chǎn)生了酶堆積,故其表面有效吸附的GOD最少。4結(jié)論
在手工繞制的金螺旋線表面用水浴法合成了ZnO納米線,并在其上物理吸附GOD,得到了螺旋線形跨尺度電化學(xué)葡萄糖傳感器的工作電極。初步建立了ZnO納米線的合成參數(shù)生長液Zn2+濃度螺旋線形跨尺度結(jié)構(gòu)的表面形貌GOD固定效果螺旋線形跨尺度電化學(xué)葡萄糖傳感器性能之間的定量關(guān)系。研究結(jié)果不但有助于螺旋線形跨尺度葡萄糖傳感器的批量制備,還可顯著提高其測量精度。
2CHEN HuiJuan, ZHU JianJun, YU Meng Chinese J Anal Chem, 2013, 41(8): 1243-1248
陳慧娟, 朱建君, 余 萌 分析化學(xué), 2013, 41(8): 1243-1248
3Cash K J, Clark H A Trends Mol Med, 2010, 16(12): 584-593
4Mahshid S S, Mahshid S, Dolati A, Ghorbani M, Yang L X, Luo S L, Cai Q Y J Alloys Compd, 2013, 554(25): 169-176
5Arya S K, Saha S, RamirezVick J E, Gupta V, Bhansali S, Singh S P Anal Chim Acta, 2012, 737(6): 1-21
6Jiang P, Zhou J J, Fang H F, Wang C Y, Wang Z L, Xie S S Adv Funct Mater, 2007, 17(8): 1303-1310
7Kim J Y, Jo S Y, Sun G J, Katoch A, Choi S W, Kim S S Sens Actuators, B, 2014, 192: 216-220
8LI LiHua, CAI ZiYou, HUANG YongHong, LI YongChong, ZHANG WeiDe Chinese J Anal Chem, 2012, 40(5): 778-781
李利花, 蔡自由, 黃勇紅, 李永沖, 張偉德 分析化學(xué), 2012, 40(5): 778-781
9Pan D W, Chen J H, Yao S Z, Nie L H, Xia J J, Tao W Y Sens Actuators, B, 2005, 104: 68-74
10Syed M U A, Omer N, Magnus W, Bengt D Sens Actuators, B, 2010, 145(2): 869-874
11Qiu C C, Wang X, Liu X Y, Hou S F, Ma H Y Electrochim Acta, 2012, 67: 140-146
12Ahmad R, Tripathy N, Kim J M, Hahn Y B Sens Actuators, B, 2012, 174: 195-201
13Qurashi A, Hossain M F, Faizc M, Tabetc N, Alamd M W, Reddy N K J Alloys Comp, 2010, 503(2): L40-L43
14Zhong G, Kalam A, AlShihri A S, Su Q M, Li J, Du G H Mater Res Bull, 2012, 47(6): 1467-1470
15JING WeiXuan, ZHOU Fan, CHEN LuJia, QI Han, JIANG ZhuangDe, WANG Bing, NIU LingLing Chem J Chinese Universities, 2014, 35(3): 493-498
景蔚萱, 周 帆, 陳路加, 齊 含, 蔣莊德, 王 兵, 牛玲玲 高等學(xué)?;瘜W(xué)學(xué)報, 2014, 35(3): 493-498
AbstractZinc oxide nanowires were hydrothermally synthesized on the surface of an Au cylindrical spiral formed by manually spiraling an Au fiber around an optical fiber core, glucose oxidase was immobilized on these nanowires by physical adsorption, and then a spirally hierarchical structurebased glucose enzymatic electrode was obtained The surface morphologies of the spirally hierarchical structures and corresponding enzymatic electrodes were extracted, and the electrochemical performances of the enzymatic electrodes were characterized It was concluded that the synthesizing parameters of zinc oxide nanowires significantly affected the surface morphologies and glucose oxidase immobilization on the spirally hierarchical structures, and further the performances of related glucose sensors With Zn2+ concentration of the growth solution set at 25 mmol/L, the roughness of surface morphology was determined to be 010 μm and correlation length 029 μm, resulting in a better immobilization of glucose oxidase upon zinc oxide nanowires In this case the sensitivity of the glucose sensor was determined to be 215 μA/(mmol/L·cm2), the linear range was 0-450 mmol/L, the low detection limit was 920 μmol/L and MichaelisMenten constant was 368 mmol/L The results not only benefit the batch production of the spirally hierarchical structurebased enzymatic electrodes, but also significantly improve the performances of the glucose sensors
KeywordsHierarchical structure; Surface morphology; Glucose biosensor; Cyclic voltammetry; Amperometric response
在手工繞制的金螺旋線表面用水浴法合成了ZnO納米線,并在其上物理吸附GOD,得到了螺旋線形跨尺度電化學(xué)葡萄糖傳感器的工作電極。初步建立了ZnO納米線的合成參數(shù)生長液Zn2+濃度螺旋線形跨尺度結(jié)構(gòu)的表面形貌GOD固定效果螺旋線形跨尺度電化學(xué)葡萄糖傳感器性能之間的定量關(guān)系。研究結(jié)果不但有助于螺旋線形跨尺度葡萄糖傳感器的批量制備,還可顯著提高其測量精度。
2CHEN HuiJuan, ZHU JianJun, YU Meng Chinese J Anal Chem, 2013, 41(8): 1243-1248
陳慧娟, 朱建君, 余 萌 分析化學(xué), 2013, 41(8): 1243-1248
3Cash K J, Clark H A Trends Mol Med, 2010, 16(12): 584-593
4Mahshid S S, Mahshid S, Dolati A, Ghorbani M, Yang L X, Luo S L, Cai Q Y J Alloys Compd, 2013, 554(25): 169-176
5Arya S K, Saha S, RamirezVick J E, Gupta V, Bhansali S, Singh S P Anal Chim Acta, 2012, 737(6): 1-21
6Jiang P, Zhou J J, Fang H F, Wang C Y, Wang Z L, Xie S S Adv Funct Mater, 2007, 17(8): 1303-1310
7Kim J Y, Jo S Y, Sun G J, Katoch A, Choi S W, Kim S S Sens Actuators, B, 2014, 192: 216-220
8LI LiHua, CAI ZiYou, HUANG YongHong, LI YongChong, ZHANG WeiDe Chinese J Anal Chem, 2012, 40(5): 778-781
李利花, 蔡自由, 黃勇紅, 李永沖, 張偉德 分析化學(xué), 2012, 40(5): 778-781
9Pan D W, Chen J H, Yao S Z, Nie L H, Xia J J, Tao W Y Sens Actuators, B, 2005, 104: 68-74
10Syed M U A, Omer N, Magnus W, Bengt D Sens Actuators, B, 2010, 145(2): 869-874
11Qiu C C, Wang X, Liu X Y, Hou S F, Ma H Y Electrochim Acta, 2012, 67: 140-146
12Ahmad R, Tripathy N, Kim J M, Hahn Y B Sens Actuators, B, 2012, 174: 195-201
13Qurashi A, Hossain M F, Faizc M, Tabetc N, Alamd M W, Reddy N K J Alloys Comp, 2010, 503(2): L40-L43
14Zhong G, Kalam A, AlShihri A S, Su Q M, Li J, Du G H Mater Res Bull, 2012, 47(6): 1467-1470
15JING WeiXuan, ZHOU Fan, CHEN LuJia, QI Han, JIANG ZhuangDe, WANG Bing, NIU LingLing Chem J Chinese Universities, 2014, 35(3): 493-498
景蔚萱, 周 帆, 陳路加, 齊 含, 蔣莊德, 王 兵, 牛玲玲 高等學(xué)?;瘜W(xué)學(xué)報, 2014, 35(3): 493-498
AbstractZinc oxide nanowires were hydrothermally synthesized on the surface of an Au cylindrical spiral formed by manually spiraling an Au fiber around an optical fiber core, glucose oxidase was immobilized on these nanowires by physical adsorption, and then a spirally hierarchical structurebased glucose enzymatic electrode was obtained The surface morphologies of the spirally hierarchical structures and corresponding enzymatic electrodes were extracted, and the electrochemical performances of the enzymatic electrodes were characterized It was concluded that the synthesizing parameters of zinc oxide nanowires significantly affected the surface morphologies and glucose oxidase immobilization on the spirally hierarchical structures, and further the performances of related glucose sensors With Zn2+ concentration of the growth solution set at 25 mmol/L, the roughness of surface morphology was determined to be 010 μm and correlation length 029 μm, resulting in a better immobilization of glucose oxidase upon zinc oxide nanowires In this case the sensitivity of the glucose sensor was determined to be 215 μA/(mmol/L·cm2), the linear range was 0-450 mmol/L, the low detection limit was 920 μmol/L and MichaelisMenten constant was 368 mmol/L The results not only benefit the batch production of the spirally hierarchical structurebased enzymatic electrodes, but also significantly improve the performances of the glucose sensors
KeywordsHierarchical structure; Surface morphology; Glucose biosensor; Cyclic voltammetry; Amperometric response
在手工繞制的金螺旋線表面用水浴法合成了ZnO納米線,并在其上物理吸附GOD,得到了螺旋線形跨尺度電化學(xué)葡萄糖傳感器的工作電極。初步建立了ZnO納米線的合成參數(shù)生長液Zn2+濃度螺旋線形跨尺度結(jié)構(gòu)的表面形貌GOD固定效果螺旋線形跨尺度電化學(xué)葡萄糖傳感器性能之間的定量關(guān)系。研究結(jié)果不但有助于螺旋線形跨尺度葡萄糖傳感器的批量制備,還可顯著提高其測量精度。
2CHEN HuiJuan, ZHU JianJun, YU Meng Chinese J Anal Chem, 2013, 41(8): 1243-1248
陳慧娟, 朱建君, 余 萌 分析化學(xué), 2013, 41(8): 1243-1248
3Cash K J, Clark H A Trends Mol Med, 2010, 16(12): 584-593
4Mahshid S S, Mahshid S, Dolati A, Ghorbani M, Yang L X, Luo S L, Cai Q Y J Alloys Compd, 2013, 554(25): 169-176
5Arya S K, Saha S, RamirezVick J E, Gupta V, Bhansali S, Singh S P Anal Chim Acta, 2012, 737(6): 1-21
6Jiang P, Zhou J J, Fang H F, Wang C Y, Wang Z L, Xie S S Adv Funct Mater, 2007, 17(8): 1303-1310
7Kim J Y, Jo S Y, Sun G J, Katoch A, Choi S W, Kim S S Sens Actuators, B, 2014, 192: 216-220
8LI LiHua, CAI ZiYou, HUANG YongHong, LI YongChong, ZHANG WeiDe Chinese J Anal Chem, 2012, 40(5): 778-781
李利花, 蔡自由, 黃勇紅, 李永沖, 張偉德 分析化學(xué), 2012, 40(5): 778-781
9Pan D W, Chen J H, Yao S Z, Nie L H, Xia J J, Tao W Y Sens Actuators, B, 2005, 104: 68-74
10Syed M U A, Omer N, Magnus W, Bengt D Sens Actuators, B, 2010, 145(2): 869-874
11Qiu C C, Wang X, Liu X Y, Hou S F, Ma H Y Electrochim Acta, 2012, 67: 140-146
12Ahmad R, Tripathy N, Kim J M, Hahn Y B Sens Actuators, B, 2012, 174: 195-201
13Qurashi A, Hossain M F, Faizc M, Tabetc N, Alamd M W, Reddy N K J Alloys Comp, 2010, 503(2): L40-L43
14Zhong G, Kalam A, AlShihri A S, Su Q M, Li J, Du G H Mater Res Bull, 2012, 47(6): 1467-1470
15JING WeiXuan, ZHOU Fan, CHEN LuJia, QI Han, JIANG ZhuangDe, WANG Bing, NIU LingLing Chem J Chinese Universities, 2014, 35(3): 493-498
景蔚萱, 周 帆, 陳路加, 齊 含, 蔣莊德, 王 兵, 牛玲玲 高等學(xué)?;瘜W(xué)學(xué)報, 2014, 35(3): 493-498
AbstractZinc oxide nanowires were hydrothermally synthesized on the surface of an Au cylindrical spiral formed by manually spiraling an Au fiber around an optical fiber core, glucose oxidase was immobilized on these nanowires by physical adsorption, and then a spirally hierarchical structurebased glucose enzymatic electrode was obtained The surface morphologies of the spirally hierarchical structures and corresponding enzymatic electrodes were extracted, and the electrochemical performances of the enzymatic electrodes were characterized It was concluded that the synthesizing parameters of zinc oxide nanowires significantly affected the surface morphologies and glucose oxidase immobilization on the spirally hierarchical structures, and further the performances of related glucose sensors With Zn2+ concentration of the growth solution set at 25 mmol/L, the roughness of surface morphology was determined to be 010 μm and correlation length 029 μm, resulting in a better immobilization of glucose oxidase upon zinc oxide nanowires In this case the sensitivity of the glucose sensor was determined to be 215 μA/(mmol/L·cm2), the linear range was 0-450 mmol/L, the low detection limit was 920 μmol/L and MichaelisMenten constant was 368 mmol/L The results not only benefit the batch production of the spirally hierarchical structurebased enzymatic electrodes, but also significantly improve the performances of the glucose sensors
KeywordsHierarchical structure; Surface morphology; Glucose biosensor; Cyclic voltammetry; Amperometric response