曹珂+屈小娥
收稿日期:2014-03-21
作者簡(jiǎn)介:曹珂,博士生,主要研究方向?yàn)榻y(tǒng)計(jì)學(xué)。
基金項(xiàng)目:國(guó)家社會(huì)科學(xué)基金項(xiàng)目“基于能源和環(huán)境約束的我國(guó)工業(yè)全要素生產(chǎn)率研究”(編號(hào):13BJY073);教育部人文社會(huì)科學(xué)研究規(guī)劃基金項(xiàng)目“考慮環(huán)境效應(yīng)的中國(guó)省際能源效率問(wèn)題研究”(編號(hào):11YJA790121);西安交通大學(xué)人文社科“學(xué)科綜合交叉類”基金項(xiàng)目“節(jié)能、低碳、環(huán)保背景下兩型社會(huì)建設(shè)研究”(編號(hào):sk2014033)。
摘要文章以1995-2010年我國(guó)30個(gè)省級(jí)經(jīng)濟(jì)單元為研究對(duì)象,在全要素框架下測(cè)算并分析了我國(guó)各省份的CO2排放績(jī)效、減碳潛力和減碳規(guī)模,并研究了CO2排放績(jī)效變動(dòng)的驅(qū)動(dòng)因素。結(jié)論認(rèn)為,我國(guó)各省區(qū)CO2排放績(jī)效差異較大,CO2排放績(jī)效較高的省份主要集中在東部沿海經(jīng)濟(jì)發(fā)達(dá)地區(qū),CO2排放績(jī)效較低的省份主要以中西部板塊的落后省份為主。減碳潛力和減碳規(guī)模測(cè)算結(jié)果表明,完成2020年單位產(chǎn)值CO2排放比2005年下降40%-50%的行動(dòng)目標(biāo),只有上海、北京、廣東、海南、福建、黑龍江、湖南等少數(shù)省份能夠完成該目標(biāo),山西、河北、內(nèi)蒙、遼寧、貴州、云南、陜西、甘肅、青海、寧夏、新疆等省區(qū)是重點(diǎn)監(jiān)控省份,中西部板塊的落后地區(qū)是重點(diǎn)監(jiān)控地區(qū)。CO2排放績(jī)效影響因素的回歸結(jié)果表明,加大政府環(huán)保力度、提高研發(fā)投入水平、優(yōu)化產(chǎn)業(yè)結(jié)構(gòu)和能源消費(fèi)結(jié)構(gòu),對(duì)于CO2排放績(jī)效提高將會(huì)起到積極作用;工業(yè)增加值所占比重、資本/勞動(dòng)比上升和進(jìn)出口貿(mào)易所占比重增加不利于CO2排放績(jī)效的改善。
關(guān)鍵詞CO2排放績(jī)效;減碳潛力;影響因素;結(jié)論和啟示
中圖分類號(hào)F124.6文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)1002-2104(2014)08-0024-09doi:10.3969/j.issn.1002-2104.2014.08.004
隨著全球氣候變暖,由于CO2排放導(dǎo)致的溫室效應(yīng)已引起世界各國(guó)的普遍關(guān)注。減少溫室氣體排放,發(fā)展低碳經(jīng)濟(jì),已成為全球性共識(shí)。中國(guó)是世界上最大的發(fā)展中國(guó)家,改革以來(lái),中國(guó)的國(guó)內(nèi)生產(chǎn)總值從1978年的3 645億元增加到2012年的518 942.1億元(按當(dāng)年價(jià)計(jì)算),年均增長(zhǎng)率穩(wěn)定在9.8%左右。但持續(xù)快速的經(jīng)濟(jì)增長(zhǎng)也帶來(lái)了嚴(yán)重的資源環(huán)境壓力,德國(guó)可再生能源研究所的一份報(bào)道顯示,2011年全球CO2排放量為340億t,創(chuàng)歷史新高。其中,中國(guó)以89億t位居榜首,遠(yuǎn)超CO2排放量60億t的美國(guó)。為了應(yīng)對(duì)氣候變化帶來(lái)的壓力,我國(guó)政府制定了到2020年單位GDP的CO2排放比2005年下降40%-50%的行動(dòng)目標(biāo),“十二五”規(guī)劃也提出了未來(lái)五年碳強(qiáng)度下降17%的行動(dòng)目標(biāo),CO2減排已成為政府和學(xué)術(shù)界共同關(guān)注的焦點(diǎn)。然而,由于我國(guó)地域遼闊,地區(qū)之間異質(zhì)性特征顯著,因此,碳減排政策措施的制定,應(yīng)充分考慮地區(qū)差異。鑒于此,本文以中國(guó)省級(jí)經(jīng)濟(jì)單元為研究對(duì)象,以CO2排放績(jī)效及減碳潛力為中心展開(kāi)研究,研究的根本目的在于,為根據(jù)省際實(shí)際制定科學(xué)的CO2減排目標(biāo)及政策措施提供經(jīng)驗(yàn)支持。
1文獻(xiàn)綜述
國(guó)外早期關(guān)于碳排放績(jī)效的研究主要集中于兩個(gè)方面:一是計(jì)算單要素指標(biāo),即碳強(qiáng)度或碳生產(chǎn)率。Ang將能源強(qiáng)度作為碳指數(shù)對(duì)氣候變化進(jìn)行研究[1];Mielnik and Goldemberg提出了用碳指數(shù)作為發(fā)展中國(guó)家應(yīng)對(duì)氣候變化的主要評(píng)價(jià)標(biāo)準(zhǔn)[2];Sun則用碳強(qiáng)度指標(biāo)來(lái)衡量碳排放績(jī)效[3];Zhang等認(rèn)為工業(yè)化累計(jì)人均排放量和人均單位GDP排放量等新的評(píng)價(jià)指標(biāo)是測(cè)度碳排放效率的有效指標(biāo)[4]。Greening等針對(duì)OECD國(guó)家的碳強(qiáng)度變化特征,應(yīng)用AWD方法對(duì)不同部門的碳排放強(qiáng)度進(jìn)行了研究[5]。以上研究都以CO2排放總量與某一變量(如GDP、能源消費(fèi))的比值來(lái)表示碳排放效率,具有“單要素”的特征。隨著研究的深入,一些學(xué)者開(kāi)始對(duì)數(shù)據(jù)包絡(luò)模型(DEA)進(jìn)行擴(kuò)展,并將其應(yīng)用到碳排放績(jī)效的計(jì)算和分析中,如Zaim和Taskin[6]、Zofio和Prieto[7]、Zhou et al[8]等學(xué)者利 用 不 同 的DEA模型對(duì)OECD國(guó)家和部分地區(qū)碳排放績(jī)效進(jìn)行了評(píng)價(jià)。
國(guó)內(nèi)研究中,劉蘭翠較早采用AWD方法分析了能源結(jié)構(gòu)、能源強(qiáng)度等對(duì)中國(guó)初級(jí)能源利用碳排放強(qiáng)度以及物質(zhì)生產(chǎn)部門終端能源利用碳排放強(qiáng)度的影響[9];張友國(guó)基于投入產(chǎn)出結(jié)構(gòu)分解方法分析了1987-2007年經(jīng)濟(jì)發(fā)展方式變化對(duì)中國(guó)GDP碳排放強(qiáng)度的影響[10]。潘家華和張麗峰[11]、魏梅和曹明福等[12]對(duì)我國(guó)碳生產(chǎn)率的區(qū)域差異及影響因素進(jìn)行了分析;孫敬水[13]、劉華軍和趙浩[14]等對(duì)我國(guó)地區(qū)碳強(qiáng)度的差異及驅(qū)動(dòng)因素進(jìn)行了分析。以上研究都是基于單要素指標(biāo)的計(jì)算和分析。杜克銳和鄒楚沅[15]、王群偉和周德群等[16]將CO2作為非期望產(chǎn)出,基于非參數(shù)方法對(duì)我國(guó)各地區(qū)CO2排放效率進(jìn)行了研究;李濤、傅強(qiáng)則將CO2排放作為投入,基于非意愿變量的Ruggiero三階段模型對(duì)1998-2008年我國(guó)各省區(qū)的碳排放效率進(jìn)行了評(píng)價(jià)[17]。
可以看出,國(guó)內(nèi)研究起步較晚。①?gòu)难芯糠椒矗瑖?guó)內(nèi)研究多以單要素指標(biāo)(碳排放強(qiáng)度、碳生產(chǎn)率)為主,在全要素框架下研究中國(guó)省際碳排放效率的文獻(xiàn)極為少見(jiàn)。②從研究思路看,有限的研究一是將CO2排放作為有害投入引入研究框架,如李濤和傅強(qiáng)[17];二是將CO2排放作負(fù)產(chǎn)出引入研究框架,如王群偉和周德群等[16]。把CO2排放作為投入處理的第一種研究思路與“物質(zhì)平衡法”相悖[18];且對(duì)于“好”產(chǎn)出與“壞”產(chǎn)出的非對(duì)稱處理也扭曲了對(duì)生產(chǎn)績(jī)效和社會(huì)福利水平變化的評(píng)價(jià),從而會(huì)誤導(dǎo)政策建議[19]。③已有文獻(xiàn)缺乏對(duì)我國(guó)各省份減碳潛力的測(cè)算與分析,這很難對(duì)制定現(xiàn)階段我國(guó)CO2減排的有效環(huán)境政策選擇提供重要借鑒,也為后續(xù)研究提供了較大的探索空間。
本文主要從以下幾個(gè)方面對(duì)已有研究進(jìn)行擴(kuò)展:①綜合考慮資本、勞動(dòng)和能源投入,在全要素框架下構(gòu)建Malmquist CO2排放績(jī)效動(dòng)態(tài)指數(shù),將CO2排放作為“壞”產(chǎn)出納入研究框架,對(duì)我國(guó)30個(gè)省市區(qū)的CO2排放績(jī)效進(jìn)行測(cè)算和分解,探討CO2排放績(jī)效變動(dòng)的源泉;②測(cè)算分析各省份的CO2減排潛力和減排規(guī)模,為制定科學(xué)的碳減排政策措施提供依據(jù);③碳排放績(jī)效變動(dòng)的驅(qū)動(dòng)因素研究,為采取措施提高碳排放績(jī)效提供經(jīng)驗(yàn)支持;最后是本文的研究結(jié)論及政策啟示。
2研究方法
假設(shè)每個(gè)省份使用資本(K)、勞動(dòng)(L)和能源(E)三種投入要素,生產(chǎn)出一種期望產(chǎn)出地區(qū)生產(chǎn)總值(Y),同時(shí)排放出一種非期望產(chǎn)出CO2(C),則這一生產(chǎn)過(guò)程可描述為:f(K,L,E)={(Y,C):(K,L,E,Y,C)∈T},T表示生產(chǎn)技術(shù)集,f(K,L,E)為產(chǎn)出集。本文的研究目的是保持投入要素(K,L,E)不變,各省份在實(shí)現(xiàn)期望產(chǎn)出增加的同時(shí),非期望產(chǎn)出CO2排放同比例減少。根據(jù) Fare等[20],基于產(chǎn)出導(dǎo)向的距離函數(shù)可定義為:
D0(K,L,E,Y,C)
=inf{θ:(K,L,E,Y,C)/θ∈f(K,L,E)}(1)
其中:θ表示面向產(chǎn)出的效率指標(biāo)。根據(jù)Caves等[21],相對(duì)于單一技術(shù),基于產(chǎn)出導(dǎo)向的Malmquist CO2排放績(jī)效指數(shù)可定義為:MCP0t=D0t(Kt+1,Lt+1,Et+1,Yt+1,Ct+1)
/Dt0(Kt,Lt,Et,Yt,Ct)(2)MCP0t+1=D0t+1(Kt+1,Lt+1,Et+1,Yt+1,Ct+1)
/Dt+10(Kt,Lt,Et,Yt,Ct)(3)式(2)、(3)中:(Kt,Lt,Et,Yt,Ct)和(Kt+1,Lt+1,Et+1,Yt+1,Ct+1)分別表示t時(shí)期和t+1時(shí)期的投入產(chǎn)出向量;Dt0和Dt+10分別表示以t時(shí)期和t+1時(shí)期的技術(shù)為參照的CO2距離函數(shù)。為了避免參照技術(shù)選擇的隨意性而導(dǎo)致的差異,根據(jù)Fare等(1994),將Malmquist二氧化碳排放績(jī)效指數(shù)(MCP)定義為t時(shí)期和t+1時(shí)期的幾何平均值,即:
MCPt,t+10=D0t(Kt+1,Lt+1,Et+1,Yt+1,Ct+1)Dt0(Kt,Lt,Et,Yt,Ct)×D0t+1(Kt+1,Lt+1,Et+1,Yt+1,Ct+1)Dt+10(Kt,Lt,Et,Yt,Ct)12(4)在規(guī)模報(bào)酬不變的假設(shè)下,將距離函數(shù)重新組合,(4)式可進(jìn)一步分解為技術(shù)效率指數(shù)(TEF)和前沿技術(shù)進(jìn)步指數(shù)(TCP),如(5)式所示:
MCPt,t+10=D0t+1(Kt+1,Lt+1,Et+1,Yt+1,Ct+1)Dt0(Kt,Lt,Et,Yt,Ct)×D0t(Kt+1,Lt+1,Et+1,Yt+1,Ct+1)Dt+10(Kt+1,Lt+1,Et+1,Yt+1,Ct+1)×D0t(Kt,Lt,Et,Yt,Ct)Dt+10(Kt,Lt,Et,Yt,Ct)12
=TEF×TCP(5)(5)式中,技術(shù)效率變化指數(shù)度量從t+1時(shí)期到t時(shí)期決策單元實(shí)際生產(chǎn)點(diǎn)與前沿面的最大逼近程度,度量的是一種“追趕效應(yīng)”;技術(shù)進(jìn)步指數(shù)度量的是生產(chǎn)前沿面從t+1時(shí)期到t時(shí)期的移動(dòng)。全要素CO2排放績(jī)效指數(shù)及其分解成的技術(shù)效率指數(shù)和技術(shù)進(jìn)步指數(shù)的變化可能大于1、等于1和小于1,分別表示CO2排放績(jī)效有改進(jìn)、沒(méi)有變化和倒退。
因?yàn)镃O2排放等非期望產(chǎn)出表現(xiàn)為負(fù)產(chǎn)出,而DEA模型要求產(chǎn)出向量為非負(fù),因此必須對(duì)其進(jìn)行合理轉(zhuǎn)換。目前的處理方法有:污染物作為投入處理法、加法逆轉(zhuǎn)換法、乘法逆轉(zhuǎn)換法和數(shù)據(jù)轉(zhuǎn)換函數(shù)處理法等。本文主要選取乘法逆轉(zhuǎn)換法(MLT)對(duì)負(fù)產(chǎn)出CO2排放進(jìn)行轉(zhuǎn)換,根據(jù)MLT法的思路,選取轉(zhuǎn)換函數(shù)fki(c)=1/cki,將轉(zhuǎn)換后的數(shù)據(jù)在技術(shù)不變的條件下作為期望產(chǎn)出添加到模型中,經(jīng)過(guò)乘法逆轉(zhuǎn)換后就可以實(shí)現(xiàn)期望產(chǎn)出增加的同時(shí),非期望產(chǎn)出CO2排放的減少。
3CO2排放績(jī)效的測(cè)算與分析
3.1指標(biāo)選取及數(shù)據(jù)說(shuō)明
本文研究對(duì)象為1995-2010年全國(guó)30個(gè)省市區(qū)(臺(tái)灣、西藏?cái)?shù)據(jù)不全,不在分析范圍之內(nèi)),涵蓋“九五”、“十五”、“十一五”三個(gè)時(shí)期?;A(chǔ)數(shù)據(jù)來(lái)源于《中國(guó)統(tǒng)計(jì)年鑒》、《中國(guó)能源統(tǒng)計(jì)年鑒》和各省份相應(yīng)年份的統(tǒng)計(jì)年鑒,各變量均以1995年為基期進(jìn)行平減。各投入產(chǎn)出變量說(shuō)明如下:
(1)投入變量。包括資本、勞動(dòng)力和能源。①資本投入,采用物質(zhì)資本存量表示,1995-2000年采用張軍[23]的估算結(jié)果,2000年以后按照同樣方法將資本存量序列擴(kuò)展到2010年,單位為億元。②勞動(dòng)力投入,以人力資本存量表示,具體用居民年均受教育程度衡量,總?cè)肆Y本存量為從業(yè)人員數(shù)與平均受教育年限的乘積,單位為萬(wàn)人.年。③能源投入,用各省能源消費(fèi)總量表示,單位為萬(wàn)噸標(biāo)準(zhǔn)煤。
(2)產(chǎn)出變量。①期望產(chǎn)出,以各省生產(chǎn)總值(GDP)表示,單位為億元。②非期望產(chǎn)出,主要指CO2的排放,由于我國(guó)沒(méi)有公布CO2排放數(shù)據(jù),已有文獻(xiàn)主要根據(jù)煤炭、石油、天然氣三種能源消費(fèi)量估算,估算結(jié)果不夠精確。本文CO2排放量根據(jù)原煤、原油、天然氣、焦炭、汽油、柴油、燃料油、煤油等八種能源終端消費(fèi)量計(jì)算。根據(jù)IPCC提供的參考方法,CO2排放量由各種能源導(dǎo)致的CO2排放估算量加總得到。具體計(jì)算公式為:
∑ni=1CO2i=∑ni=1Ei×NCVi×CEFi×COFi×(44/12)(6)
其中:n表示各行業(yè)能源消費(fèi)種類,Ei第i種能源終端消費(fèi)量,NCVi為第i種能源的平均發(fā)熱量,CEFi為第i種能源單位發(fā)熱量的含碳量,COFi為第i種能源的氧化水平,44和12分別是CO2和碳的分子量。首先計(jì)算出第n種能源的CO2排放量,將所有n種能源的CO2排放量加總就得到各行業(yè)CO2排放總量。
3.2CO2排放績(jī)效的測(cè)算與分析
根據(jù)DEAMalmquistCO2排放績(jī)效指數(shù)模型,運(yùn)用DEAP2.1軟件,計(jì)算出1995-2010年全國(guó)30個(gè)省份的全要素CO2排放績(jī)效指數(shù),計(jì)算結(jié)果見(jiàn)表1。
(1)從區(qū)域差異看,八大經(jīng)濟(jì)區(qū)CO2排放績(jī)效差異較大。樣本考察期內(nèi),北部沿海最高,東部沿海第二,東北綜合經(jīng)濟(jì)區(qū)第三,南部沿海第四,依次為大西北綜合經(jīng)濟(jì)區(qū)、黃河中游、長(zhǎng)江中游和大西南綜合經(jīng)濟(jì)區(qū)。其中,北部沿海、東部沿海和南部沿海CO2排放績(jī)效一直呈持續(xù)改進(jìn)趨勢(shì),但增長(zhǎng)率自2006年以后趨緩。東北綜合經(jīng)濟(jì)區(qū)、黃河中游和大西南CO2排放績(jī)效自2006年以后出現(xiàn)負(fù)增長(zhǎng),這反映出這些地區(qū)與最優(yōu)生產(chǎn)邊界的距離有進(jìn)一步拉大的趨勢(shì)。長(zhǎng)江中游CO2排放績(jī)效自2003年開(kāi)始出現(xiàn)下降,大西北CO2排放績(jī)效則一直呈持續(xù)改善。全國(guó)范圍內(nèi),CO2排放績(jī)效年均增長(zhǎng)1.92%,其原因在于前沿技術(shù)進(jìn)步和技術(shù)效率的共同推動(dòng),但自2006年以后,CO2排放績(jī)效出現(xiàn)一定程度的退化,效率衰退是根本原因。
(2)分省區(qū)看,CO2排放績(jī)效最高的五個(gè)省市依次為北京、上海、廣東、天津、江蘇,這五個(gè)省市CO2排放績(jī)效年均增長(zhǎng)率幾乎都在4.0%以上,特別是北京,15年間CO2排放績(jī)效一直呈持續(xù)增長(zhǎng)趨勢(shì),“九五”、“十五”、“十一五”期間,CO2排放績(jī)效年均增長(zhǎng)率分別為3.2%,18.1%和0.28%,這幾個(gè)省市除江蘇外,大部分時(shí)間技術(shù)效率保持不變(為1),CO2排放績(jī)效的持續(xù)增長(zhǎng)主要來(lái)源于前沿技術(shù)進(jìn)步的貢獻(xiàn)。江蘇、黑龍江、遼寧、山東、山西、陜西、新疆、吉林、浙江、河北等省份CO2排放績(jī)效年均增長(zhǎng)率介于2.0%-4.0%之間;云南、海南、湖南、重慶、甘肅、福建、江西、青海、寧夏、內(nèi)蒙等省份CO2排放績(jī)效年均增長(zhǎng)率介于1.0%-2.0%之間;廣西、四川、湖北、貴州、河南、安徽等省份CO2排放績(jī)效出現(xiàn)惡化,年均增長(zhǎng)率為負(fù),技術(shù)退步和效率惡化是主要原因。
(3)從動(dòng)態(tài)演變趨勢(shì)看,CO2排放績(jī)效呈明顯改善的省市包括上海、江蘇、浙江、北京、天津、青海、寧夏、新疆、云南,這些省市的CO2排放績(jī)效隨時(shí)間推移經(jīng)歷了一個(gè)明顯的“正J型”變化過(guò)程。CO2排放績(jī)效呈明顯惡化的省份包括山西、陜西、內(nèi)蒙、吉林、黑龍江、安徽、江西、河南、湖南、甘肅,這些省區(qū)的CO2排放績(jī)效經(jīng)歷了一個(gè)明顯的“反J型”變化過(guò)程,CO2排放績(jī)效下降趨勢(shì)明顯。廣西、海南、貴州CO2排放績(jī)效呈現(xiàn)“先改善、后惡化”的“倒U型”變化趨勢(shì),轉(zhuǎn)折點(diǎn)出現(xiàn)在2002年。廣東、河北、遼寧、福建、山東、湖北、重慶、四川等省份的CO2排放績(jī)效保持不變,上升趨勢(shì)并不明顯。2000年以前,地區(qū)之間CO2排放績(jī)效呈東—中—西的演變格局;2000年以后,地區(qū)之間CO2排放績(jī)效呈現(xiàn)出明顯的東—西—中演變格局,“中部塌陷”應(yīng)該引起高度重視。
表1全要素CO2排放績(jī)效指數(shù)及其分解結(jié)果
Tab.1Results of total factor emission performance of CO2 index
地區(qū)
Region全要素CO2排放效率
Total factor CO2
emissions efficiency前沿技術(shù)進(jìn)步指數(shù)
Forefront of technological
advances index技術(shù)效率指數(shù)
Technical efficiency index1996/
20002001/
20052006/
2010平 均1996/
20002001/
20052006/
2010平 均1996/
20002001/
20052006/
2010平 均遼寧1.081 01.040 20.984 81.034 11.019 61.077 21.011 41.031 81.060 50.976 80.973 91.002 3吉林1.078 81.053 90.949 51.025 51.022 61.073 51.010 41.031 61.055 60.994 10.940 10.994 1黑龍江1.052 41.090 90.975 71.035 31.018 81.078 50.975 71.015 41.033 61.027 31.000 01.019 6東北綜合1.070 71.061 70.970 01.031 61.020 41.076 40.999 21.026 31.049 90.999 40.971 31.005 3北京1.032 01.181 01.102 81.099 61.039 61.104 31.102 81.080 30.992 71.064 31.000 01.017 9天津1.020 91.093 21.028 01.045 21.0051.064 41.041 31.035 81.016 41.027 40.986 71.009 1河北1.020 51.053 91.027 11.020 41.026 81.067 61.000 41.029 70.994 10.991 31.038 50.991 0山東1.050 01.046 30.999 11.030 71.016 21.100 51.004 41.022 81.033 90.997 60.994 11.007 8北部沿海1.030 91.093 61.039 31.045 01.021 91.063 81.037 31.042 21.009 31.020 21.004 91.006 5上海1.084 81.083 81.059 51.075 11.069 81.083 81.059 51.075 11.000 01.000 01.000 01.000 0江蘇1.030 91.060 81.023 91.038 11.032 61.061 11.021 21.035 51.004 71.001 71.003 01.002 5浙江0.984 91.044 91.033 81.020 61.023 11.046 51.051 51.038 90.966 40.998 80.983 20.982 4東部沿海1.033 51.063 21.039 01.044 61.041 81.063 81.044 01.049 80.990 41.000 10.995 40.995 0福建1.042 00.977 31.020 91.012 21.042 01.010 21.036 91.029 31.000 00.968 10.984 70.983 4廣東1.077 81.070 61.009 41.051 11.073 81.062 81.009 41.047 21.004 81.007 21.000 01.003 8海南1.015 71.128 10.988 11.005 81.015 71.114 01.021 91.017 41.000 01.012 10.967 30.988 6南部沿海1.045 21.058 71.006 11.023 01.043 81.062 31.022 71.031 31.001 60.995 80.984 00.991 9陜西1.052 11.044 90.988 91.026 90.979 11.017 50.985 20.996 71.062 51.027 51.004 11.030 3山西1.012 91.102 30.984 91.029 01.013 31.063 00.995 21.025 20.984 81.051 50.988 01.003 7河南1.023 11.010 20.935 50.988 00.979 21.034 60.984 50.995 21.036 00.995 60.950 00.992 8內(nèi)蒙1.055 91.066 20.953 21.017 81.018 81.059 51.012 31.031 51.027 11.014 70.937 00.986 7黃河中游1.036 01.055 90.965 71.015 40.997 61.043 70.994 31.012 21.027 61.022 40.969 81.003 4湖北0.990 50.972 90.998 60.986 30.979 81.015 30.979 30.994 11.000 00.959 01.021 20.992 2湖南1.075 20.985 61.004 51.008 40.972 51.012 50.981 40.991 51.093 70.974 00.963 91.017 0江西1.037 91.008 20.999 71.013 90.976 91.0170.990 50.997 51.051 80.993 51.009 71.016 4安徽1.004 41.002 90.987 70.997 70.978 11.018 60.988 10.997 01.018 00.986 31.001 71.000 8長(zhǎng)江中游1.027 00.992 40.982 60.999 10.976 81.015 90.984 80.995 01.040 90.978 20.999 21.004 1云南1.008 81.032 50.968 41.001 70.972 31.0220.972 40.990 51.027 91.013 00.998 01.011 3貴州0.956 60.9961.013 60.987 30.929 41.022 80.957 70.969 21.015 30.989 61.033 31.018 6四川0.960 41.006 30.992 50.982 40.959 91.020 00.982 40.989 30.979 30.987 31.010 90.993 0重慶1.000 71.002 21.022 41.006 80.977 50.988 01.030 61.001 31.013 31.015 60.975 31.005 5廣西0.940 11.006 20.957 60.967 10.957 01.023 51.001 20.995 70.974 40.977 50.956 30.971 3大西南0.973 41.008 60.990 90.989 10.959 21.053 30.988 90.989 21.002 00.996 60.994 80.999 9甘肅1.042 81.020 30.967 01.008 30.951 21.022 80.961 70.979 01.079 61.012 91.008 31.030 0青海0.999 71.018 21.028 01.014 11.008 41.054 91.002 21.024 70.980 60.967 31.024 70.989 7寧夏1.024 21.065 20.987 61.000 41.012 31.067 81.004 21.030 11.001 01.004 91.032 31.010 1新疆1.027 11.042 51.016 01.026 81.007 91.067 61.010 81.029 61.012 40.978 31.004 60.997 2大西北1.023 51.036 61.012 21.022 40.995 01.053 30.994 81.015 91.018 40.990 91.017 51.006 8全國(guó)平均1.026 11.043 60.999 91.019 21.002 61.049 11.006 21.017 31.017 41.000 50.993 01.001 94CO2減排潛力的測(cè)算與分析
4.1測(cè)算方法
本文測(cè)算CO2減排潛力,將CO2排放作為負(fù)產(chǎn)出,利用乘法逆轉(zhuǎn)法(MLT)對(duì)負(fù)產(chǎn)出CO2進(jìn)行轉(zhuǎn)換。根據(jù)Banker et al[22],定義生產(chǎn)技術(shù)集為:T={(x,y)|λTX≤x,λTY≥y,λTe=1},選取轉(zhuǎn)換函數(shù)fki(C)=1/cki,對(duì)CO2排放進(jìn)行轉(zhuǎn)換,則包含污染物CO2的技術(shù)集可定義為:T[MLT]:Twith Y=[f(C),v]。根據(jù)生產(chǎn)技術(shù)集,定義地區(qū)i在時(shí)期t的CO2減排潛力為CPPit,則:
CPPit=(ACPit-TCPit)/ACPit(7)
(7)式中,ACPit表示i地區(qū)t時(shí)期實(shí)際CO2排放量,TCPit表示前沿面上目標(biāo)點(diǎn)的CO2排放量。(7)式的值越大,表明該地區(qū)相對(duì)于最優(yōu)生產(chǎn)前沿,過(guò)度排放的CO2越多,該地區(qū)的減碳潛力和減碳規(guī)模就越大。
4.2減碳潛力的測(cè)算與分析
減碳潛力指該地區(qū)可減碳量占實(shí)際碳排放量的比重,該值越大,表明該地區(qū)的減碳空間和減碳潛力越大。減碳量指如果該地區(qū)按照最優(yōu)前沿模式運(yùn)行,在既定投入和產(chǎn)出條件下,可以減少的碳排放量。根據(jù)(7)式,首先計(jì)算出各省區(qū)的目標(biāo)碳排放量TCPit,結(jié)合實(shí)際碳排放量ACPit,就可以計(jì)算出i地區(qū)在t時(shí)期的可減碳量和減碳潛力,計(jì)算結(jié)果見(jiàn)表2。
(1)從省際差異看,我國(guó)各省區(qū)減碳潛力差異較大。樣本考察期內(nèi),年減碳潛力均超過(guò)30%的地區(qū)包括河北、山西、內(nèi)蒙、遼寧、安徽、重慶、貴州、云南、陜西、甘肅、青海、寧夏、新疆等重化工業(yè)比重較大和經(jīng)濟(jì)落后的中西部板塊各省區(qū),其中,山西每年的減碳潛力都達(dá)到了70%以上,意味著這些地區(qū)有30%以上的CO2屬于過(guò)度排放,這些省區(qū)同時(shí)也是CO2減排的重點(diǎn)監(jiān)控地區(qū)。從可減碳量和減碳規(guī)???,河北、山西、內(nèi)蒙、遼寧四省區(qū)每年可減碳量占全國(guó)的比重均超過(guò)了5%,屬于減碳大戶,僅2010年這四個(gè)省區(qū)可減少的CO2排放量就占到全國(guó)的41.18%。河北、山西、內(nèi)蒙、遼寧、山東、河南等6省區(qū)2010年可減碳量所占比重也超過(guò)了5%,占全國(guó)可減碳量的61.06%,是需要進(jìn)一步關(guān)注與監(jiān)控的重點(diǎn)。河北、山西、內(nèi)蒙、遼寧、山東、河南等省區(qū)為全國(guó)減碳規(guī)模最大的省區(qū),對(duì)全國(guó)可減碳量具有較強(qiáng)的拉動(dòng)力。上海除1995年和1996年外,其余14年的減碳潛力和減碳規(guī)模均為0,北京、黑龍江、湖南、廣東等省自2005年以來(lái)減碳潛力也為0,福建、湖北、海南等省份2004年以前減碳潛力和減碳規(guī)模為0。
(2)從區(qū)域差異看,黃河中游減碳潛力最大,年均減碳潛力為68.42%;大西北綜合經(jīng)濟(jì)區(qū)第二,年均減碳潛力為60.12%。依次為北部沿海(43.57%)、東北綜合(43.16%)、大西南(41.68%)、東部沿海(28.79%)、長(zhǎng)江中游(26.44%),南部沿海最?。?0.62%)。東部板塊除河北、山東外,其余8省份可減碳量和減碳規(guī)模都較小,可減碳量占全國(guó)的比重都在10%以下;中部板塊、西部板塊和東北板塊(除黑龍江外)的絕大多數(shù)省份均表現(xiàn)為較大的減碳空間和減碳規(guī)模,在目前技術(shù)和產(chǎn)出水平下可以實(shí)現(xiàn)CO2排放的進(jìn)一步減少。
(3)從動(dòng)態(tài)變化趨勢(shì)看(見(jiàn)圖1),八大經(jīng)濟(jì)區(qū)減碳潛力呈現(xiàn)明顯的“U型”變化趨勢(shì),轉(zhuǎn)折點(diǎn)出現(xiàn)在2002年。即各經(jīng)濟(jì)區(qū)減碳潛力經(jīng)歷了1995-2002年的逐步減小和2002年以后的逐步上升。其原因可能在于,從2003年開(kāi)始,隨著我國(guó)新一輪經(jīng)濟(jì)高速增長(zhǎng)時(shí)期的到來(lái),投資急劇擴(kuò)張,經(jīng)濟(jì)出現(xiàn)過(guò)熱勢(shì)頭,煤炭、鋼鐵、水泥等高能耗、重污染行業(yè)過(guò)度發(fā)展,各省能源消耗和CO2排放量急劇增加而環(huán)保凈化設(shè)施缺失,使得包括CO2排放在內(nèi)的污染物排放有進(jìn)一步加劇的趨勢(shì)。從全國(guó)范圍看,到“十一五”末,全國(guó)可減少的CO2排放量約為639 854.4萬(wàn)t,減碳潛力為48.80%。圖11995-2010年區(qū)域減碳潛力趨勢(shì)圖
Fig.1Tendency of carbon reduction potentialfrom 1995-2010
表21995-2010年各省減碳潛力和減碳規(guī)模
Tab.2Carbon reduction potential and scale of each province from 1995-2010
地區(qū)
Region減碳潛力(%)
Carbon reduction potentia可減碳量(萬(wàn)t)
Reduction ability減碳規(guī)模(%)
Scale of carbon reduction200020052008201020002005200820102000200520082010遼寧036.3266.8565.49019 434.743 638.548 314.807.058.407.55吉林27.5725.5664.9964.883837.75 462.317 792.020 264.22.801.983.423.17黑龍江17.540003 707.10002.71000東北綜合10.2523.9647.5647.047 544.8024 897.061 430.568 579.05.569.0311.8210.72北京26.140002 935.30002.16000天津14.6224.7324.6130.721 394.93 509.13 909.36 134.31.021.270.750.96河北29.6841.2664.4071.4911 594.930 390.057 672.373 149.88.4611.0211.1011.43山東15.2616.7461.3060.774 681.814 723.271 143.979 278.13.425.3413.6912.39北部沿海22.7625.8156.7159.7720 606.948 622.3132 725.5158 562.215.1817.6425.5424.78上海000000000000江蘇22.0532.4632.2734.306 520.519 122.322 652.927 758.44.766.944.364.34浙江15.9620.5138.6838.843 047.47 074.917 514.519 197.62.222.573.373.00東部沿海14.1222.3428.5429.809 567.926 197.240 167.446 956.07.059.507.737.34福建019.2924.2134.3603 093.65 221.28 919.001.121.001.39廣東3.49000877.20000.64000海南0030.9430.72001 106.31 317.0000.210.21南部沿海2.605.318.2211.09877.23 093.66 327.510 236.00.661.121.221.60陜西48.0529.2146.3654.844 647.96 119.514 249.421 987.03.392.222.743.44山西79.6272.5878.6179.8634 299.556 434.867 503.272 400.625.0420.4712.9911.32河南26.2723.6857.1160.017 106.113 271.541 481.447 924.45.194.817.987.49內(nèi)蒙57.9863.4985.8886.4010 170.226 629.857 654.969 644.07.429.6611.1010.88黃河中游57.7652.0970.5572.7856 223.7102 455.6180 888.9211 956.041.4237.1734.8133.13湖北019.4712.6611.1105 800.44 485.34 983.502.100.860.78湖南1.75000206.60000.15000江西14.4417.3025.1829.351 223. 12 520.24 488.321 525.50.890.910.863.36安徽40.5733.9758.3358.547 698.38 776.720 652.924 176.15.623.183.973.78長(zhǎng)江中游13.1817.5024.2634.987 904.917 097.329 626.550 685.15.826.205.707.92云南32.4328.7924.1534.973 178.66 581.56 509.310 834.42.322.391.251.69貴州68.9955.0441.2743.5710 326.712 521.511 806.313 810.27.544.542.272.16四川20.9625.9712.9621.893 248.27 166.94 592.58 585.12.372.600.881.34重慶46.2137.0629.8329.104 105.74 902.84 856.15 652.32.991.780.930.88廣西12.3619.1632.1236.73882.72 371.15 138.77 835.80.640.860.991.22大西南38.6233.9426.6932.7521 741.933 543.832 902.946 717.816.0212.196.337.30甘肅52.6931.5523.6723.965 106.44 603.34 232.44 771.93.731.670.810.75青海50.0958.0266.5465.16848.11 799.03 006.72 933.90.620.650.580.46寧夏54.7372.4586.9387.791 769.97 012.211 337.115 095.41.292.542.182.36新疆33.6440.8776.2178.343 561.26 344.716 959.923 360.92.602.303.263.65大西北44.7846.0661.5964.6211 285.619 759.235 536.146 162.18.317.176.847.21全國(guó)27.1630.5045.5648.80136 975.9275 666.1519 605.3639 854.4————注:由于版面所限,本表只給出了部分年份的測(cè)算結(jié)果;減碳規(guī)模指各省可減碳量占全國(guó)可減碳量的比重。
我國(guó)政府已明確規(guī)定到2020年單位GDP碳排放比2005年降低40%-45%的行動(dòng)目標(biāo),要完成該目標(biāo),年均碳強(qiáng)度必須降低3%左右。結(jié)合碳排放績(jī)效和減碳潛力測(cè)算結(jié)果,只有上海、北京、廣東、海南、福建、黑龍江、湖南等少數(shù)省份能夠完成該目標(biāo),其余大部分省份仍有一定的難度,需要進(jìn)一步挖掘碳減排潛力。山西、內(nèi)蒙、寧夏、貴州、青海、新疆、河北、陜西、吉林、遼寧、甘肅、安徽、河南、山東等省區(qū)是重點(diǎn)監(jiān)控省份,中、西部板塊的落后省份是重點(diǎn)監(jiān)控地區(qū)。
5CO2排放績(jī)效的影響因素分析
5.1影響因素的選擇
本文分析碳排放績(jī)效的影響因素,選取變量如下:①政府環(huán)境保護(hù)力度(Cov),用各省工業(yè)污染治理投資總額占GDP的比重表示;②技術(shù)進(jìn)步(R&D),用各省研發(fā)經(jīng)費(fèi)支出占GDP的比重表示;③產(chǎn)業(yè)結(jié)構(gòu)(Str),用各省第三產(chǎn)業(yè)增加值占GDP的比重表示;④能源結(jié)構(gòu)(Eng),用各省煤炭消費(fèi)量占能源消費(fèi)總量的比重表示;⑤工業(yè)化水平(Idl),用各省工業(yè)增加值占GDP的比重表示;⑥資本深化(K/L),用各省資本-勞動(dòng)比表示;⑦對(duì)外開(kāi)放度(Open),用人民幣表示的進(jìn)出口貿(mào)易總額占GDP的比重表示。對(duì)所有以貨幣表示的變量均以1999年為基期平減。
5.2回歸結(jié)果及分析
以各省CO2排放績(jī)效作為被解釋變量,以上述各影響因素為解釋變量,建立面板數(shù)據(jù)計(jì)量模型如下:
MCPit=α0+α1Conit+α2R&Dit
+α3Strit+α4Engit+α5Idlit+α6(K/L)it
+α7Openit+εit(8)
式(8)中,i表示地區(qū),t表示時(shí)期,α0是不可觀測(cè)的地區(qū)效應(yīng),εit為不可觀測(cè)的時(shí)間效應(yīng),用以解釋沒(méi)有包含在模型中的其它隨機(jī)干擾項(xiàng)的影響,α1-α7為回歸系數(shù)。
首先對(duì)模型(8)進(jìn)行檢驗(yàn),Hausman檢驗(yàn)結(jié)果顯示,χ2統(tǒng)計(jì)值為14.03,相對(duì)應(yīng)的概率值為0.012 8,檢驗(yàn)結(jié)果顯著地拒絕了原假設(shè),因此應(yīng)建立固定效應(yīng)模型。這里我們以固定效應(yīng)模型估計(jì)結(jié)果為說(shuō)明對(duì)象,隨機(jī)效應(yīng)模型估計(jì)結(jié)果作為參考,回歸結(jié)果見(jiàn)表3。
(1)表3顯示,政府環(huán)境保護(hù)力度、技術(shù)進(jìn)步和產(chǎn)業(yè)結(jié)構(gòu)優(yōu)化有助于CO2排放績(jī)效的改善。環(huán)境污染治理投資占GDP的比重每增加一個(gè)百分點(diǎn), CO2排放績(jī)效將會(huì)提高0.302 2個(gè)百分點(diǎn),這意味著政府實(shí)行嚴(yán)厲的環(huán)境管制,增加污染治理投資,對(duì)減少污染物排放,提高CO2排放績(jī)效將會(huì)起到顯著地推動(dòng)作用。研發(fā)投資所占比重回歸系數(shù)顯著為正(0.257 8),說(shuō)明增加研發(fā)投資,特別是能源環(huán)境領(lǐng)域的研發(fā)投資,對(duì)于降低生產(chǎn)過(guò)程中的污染物排放,
表3CO2排放績(jī)效影響因素回歸結(jié)果
Tab.3Result of regression of influencing factors of
emission performance of CO2
項(xiàng)目
Item固定效應(yīng)模型
Fixed effects model隨機(jī)效應(yīng)模型
Random effects model回歸系數(shù)
Coefficientt統(tǒng)計(jì)值
t value回歸系數(shù)
Coefficientt統(tǒng)計(jì)值
t value常數(shù)項(xiàng)0.114 7*1.645 20.125 81.403 7α10.302 2**2.103 80.208 3**2.005 4α20.257 8*1.904 40.236 7*1.833 1α30.215 5***4.625 30.301 9***3.924 3α4-0.631 9***-5.602 8-0.591 3***4.781 9α5-0.170 8-1.542 3-0.165 5*-1.904 4α6-0.341 6***-3.657 5-0.463 6**-2.876 9α7-0.063 8***-3.548 3-0.045 1***-3.053 8R20.785 40.602 5F統(tǒng)計(jì)值278.43183.64注:由于數(shù)據(jù)所限,本文回歸區(qū)間為1999-2010年。***為1%顯著,**為5%顯著,*為10%顯著。
提高CO2排放績(jī)效作用明顯。第三產(chǎn)業(yè)所占比重每提高一個(gè)百分點(diǎn),CO2排放績(jī)效將會(huì)提高0.215 5個(gè)百分點(diǎn),說(shuō)明產(chǎn)業(yè)結(jié)構(gòu)的調(diào)整與優(yōu)化對(duì)提高CO2排放績(jī)效將會(huì)起到顯著的推動(dòng)作用。
(2)能源結(jié)構(gòu)、工業(yè)化水平、資本深化和對(duì)外開(kāi)放回歸系數(shù)為負(fù)。煤炭消費(fèi)所占比重增加不利于CO2排放績(jī)效的提高,回歸結(jié)果在1%水平上高度顯著為負(fù)(-0.631 9)。工業(yè)化水平回歸結(jié)果為負(fù),在固定效應(yīng)模型中不具有統(tǒng)計(jì)顯著性,在隨機(jī)效應(yīng)模型中10%顯著,說(shuō)明現(xiàn)階段重工業(yè)產(chǎn)值所占比重增加不利于CO2排放績(jī)效的提高。資本深化回歸系數(shù)在1%水平上顯著為負(fù)(-0.341 6),說(shuō)明現(xiàn)階段過(guò)早過(guò)快的資本深化偏離了我國(guó)勞動(dòng)力資源相對(duì)豐裕、資本稀缺的要素稟賦結(jié)構(gòu),不利于CO2排放績(jī)效的提高。進(jìn)出口貿(mào)易所占比重與CO2排放績(jī)效顯著負(fù)相關(guān)(-0.063 8),這是因?yàn)槲覈?guó)處于全球產(chǎn)業(yè)鏈分工的低端位置,國(guó)際貿(mào)易中隱含的CO2排放對(duì)環(huán)境的惡化效應(yīng)大于對(duì)外開(kāi)放帶來(lái)的技術(shù)溢出效應(yīng),本文的實(shí)證結(jié)論支持自由貿(mào)易可能導(dǎo)致投資國(guó)環(huán)境惡化的“污染天堂假說(shuō)”。
6結(jié)論與啟示
6.1主要研究結(jié)論
本文將CO2排放作為非期望產(chǎn)出納入研究框架,測(cè)算并分析了我國(guó)各省區(qū)的CO2排放績(jī)效、減碳潛力和減碳規(guī)模,并研究了CO2排放績(jī)效變動(dòng)的影響因素。研究結(jié)果表明,①我國(guó)各省區(qū)CO2排放績(jī)效、減碳潛力和減碳規(guī)模差異較大,東部板塊的各區(qū)域和東北綜合經(jīng)濟(jì)區(qū)CO2排放績(jī)效較高,減碳潛力和減碳規(guī)模都較?。恢形鞑堪鍓K的落后省份CO2排放績(jī)效較低,減碳潛力和減碳規(guī)模較大。②增加環(huán)境污染治理投資、提高研發(fā)投入水平、增加第三產(chǎn)業(yè)所占比重,將有利于CO2排放績(jī)效的改善;煤炭消費(fèi)所占比重、工業(yè)增加值所占比重、資本深化和進(jìn)出口貿(mào)易所占比重增加不利于CO2排放績(jī)效的改善。
6.2啟示
以上結(jié)論的重要啟示在于:
(1)我國(guó)各省份CO2排放績(jī)效、減碳潛力和減碳規(guī)模差異較大,因此應(yīng)根據(jù)地區(qū)之間的異質(zhì)性特征,制定并實(shí)施差異化的碳減排政策。對(duì)于CO2排放績(jī)效較低、減碳潛力和減碳規(guī)模較大的中西部板塊各區(qū)域,應(yīng)繼續(xù)提高環(huán)境規(guī)制強(qiáng)度和標(biāo)準(zhǔn),在現(xiàn)有基礎(chǔ)上設(shè)定較為嚴(yán)格的減碳目標(biāo),通過(guò)政府的外部約束力量促進(jìn)清潔生產(chǎn)技術(shù)的使用,并給予技術(shù)、資金等方面的扶持,使其成為全國(guó)碳減排的主要貢獻(xiàn)者。對(duì)于CO2排放績(jī)效較高,減碳潛力和減碳規(guī)模較小的東部板塊各區(qū)域,在現(xiàn)有技術(shù)條件下挖掘減碳潛力的空間不大,可以著重鼓勵(lì)這些地區(qū)進(jìn)行低碳技術(shù)的開(kāi)發(fā)和推廣研究,使這些地區(qū)逐步成為我國(guó)低碳技術(shù)開(kāi)發(fā)與應(yīng)用和國(guó)際先進(jìn)水平接軌的主要貢獻(xiàn)者。
(2)CO2排放績(jī)效的分解結(jié)果表明,前沿技術(shù)進(jìn)步和技術(shù)效率改善是CO2排放績(jī)效變動(dòng)的根本原因,但區(qū)域之間二者表現(xiàn)并不協(xié)調(diào)。東部板塊各區(qū)域和東北綜合經(jīng)濟(jì)區(qū)CO2排放績(jī)效的提高主要在于技術(shù)進(jìn)步和技術(shù)效率的共同作用,而中西部板塊各區(qū)域CO2排放績(jī)效的變動(dòng)主要在于技術(shù)效率的推動(dòng)。因此,中西部板塊各區(qū)域需要大力加強(qiáng)碳減排領(lǐng)域的技術(shù)創(chuàng)新和管理制度等方面的創(chuàng)新,既要重視提高碳排放績(jī)效、挖掘減碳潛力的“硬”技術(shù)創(chuàng)新,也要注重“軟”技術(shù)水平的提高。同時(shí),中西部板塊的各區(qū)域應(yīng)抓住“中部崛起”、“西部大開(kāi)發(fā)”戰(zhàn)略實(shí)施的重大機(jī)遇,大力發(fā)展高科技產(chǎn)業(yè)和發(fā)展前景廣闊的優(yōu)勢(shì)產(chǎn)業(yè)及特色產(chǎn)業(yè),培育形成新的經(jīng)濟(jì)增長(zhǎng)點(diǎn),加速低碳技術(shù)創(chuàng)新以及高碳產(chǎn)業(yè)的低碳化改造。
(3)影響碳排放績(jī)效變動(dòng)的因素涉及政府環(huán)境保護(hù)力度、技術(shù)進(jìn)步、結(jié)構(gòu)變動(dòng)、工業(yè)化進(jìn)程、對(duì)外貿(mào)易等多個(gè)方面。結(jié)合目前我國(guó)經(jīng)濟(jì)發(fā)展階段的特殊性,提高CO2排放績(jī)效,挖掘減碳潛力,一是要逐步加大環(huán)境保護(hù)力度,增加環(huán)境污染治理投資,特別是加強(qiáng)低碳技術(shù)、清潔生產(chǎn)技術(shù)的開(kāi)發(fā)。二是重視科技進(jìn)步對(duì)CO2減排的支撐作用,積極構(gòu)建低碳科技創(chuàng)新體系,健全推動(dòng)低碳科技創(chuàng)新的激勵(lì)機(jī)制和保障機(jī)制。三是優(yōu)化產(chǎn)業(yè)結(jié)構(gòu)、能源消費(fèi)結(jié)構(gòu)和貿(mào)易結(jié)構(gòu)。逐步建立低碳產(chǎn)業(yè)發(fā)展模式和低碳能源消費(fèi)模式,大力發(fā)展低碳環(huán)保型的貿(mào)易產(chǎn)業(yè),加快對(duì)外貿(mào)易的低碳轉(zhuǎn)型。四是把經(jīng)濟(jì)發(fā)展階段、工業(yè)化發(fā)展水平和資本/勞動(dòng)稟賦結(jié)構(gòu)結(jié)合起來(lái),有的放矢地制定與特定發(fā)展階段相關(guān)的政策及相應(yīng)措施。
(編輯:徐天祥)
參考文獻(xiàn)(References)
[1]Ang B W.Is the Energy Intensity a Less Useful Indicator than the Carbon Factor in the Study of Climate Change[J]. Energy Policy,1999,27(5):943-946.
[2]Mielnik O,Goldemberg J. The Evolution of the ‘Carbonization Index in Developing Countries[J].Energy Policy,1999,27(5):307-308.
[3]Sun J W.The Decrease of CO2 Emission Intensity Is Decarbonization at National and Global Levels[J].Energy Policy,2005,33(8):975-978.
[4]Zhang Z Q,Qu J S,Zeng J J.A Quantitative Comparison and Analysis on the Assessment Indicators of Greenhouse Gases Emission[J].Journal of Geographical Sciences,2008,18(4):387-399.
[5]Greening L A. Effects of Human Behavior on Aggregate Carbon Intensity of Personal Transportation: Comparison of 10 OECD Countries for the Period 1970-1993[J].Energy Economics, 2004,26(1): 1-30.
[6]Zaim O,Taskin F. Environmental Efficiency in Carbon Dioxide Emmissions in the OECD:A Nonparametric Approach[J].Journal of Environmental Management,2000,58(2):95-107.
[7]Zofio J L,Prieto A M. Environmental Efficiency and Regulatory Standards: The Case of CO2 Emissions from OECD Industries[J].Resource and Energy Economics, 2001,23(1):63-83.
[8]Zhou P, Ang B W, Poh K L. Slacksbased Efficiency Measures for Modeling Environmental Performane[J].Ecological Economics,2006,60(1):111-118.
[9]劉蘭翠.我國(guó)二氧化碳減排問(wèn)題的政策建模與實(shí)證研究[D].合肥:中國(guó)科學(xué)技術(shù)大學(xué),2006:59-72.[Liu Cuilan. Research on Reducing the Emission of CO2 in China[D],Hefei: University of Science and Technology of China, 2006:59-72.]
[10]張友國(guó).經(jīng)濟(jì)發(fā)展方式變化對(duì)中國(guó)碳排放強(qiáng)度的影響[J].經(jīng)濟(jì)研究, 2010,(4): 120-133.[Zhang Youguo. Research on Influence of Economic Development Mode to Carbon Intensity[J]. Economic Research Journal, 2010, (4):120-133.]
[11]潘家華,張麗峰.我國(guó)碳生產(chǎn)率區(qū)域差異性研究[J].中國(guó)工業(yè)經(jīng)濟(jì),2010,(5):47-57.[Pan Jiahua, Zhang Fengli. Research on Regional Differentiation of Carbon Productivity in China[J]. China Industrial Economics. 2010,(5): 47-57.]
[12]魏梅,曹明福,江金榮. 生產(chǎn)中碳排放效率的長(zhǎng)期決定及其收斂性分析[J].數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究,2010,(9):43-52.[Wei Mei, Cao Mingfu, Jiang Jinrong. Determinants of Longrun Carbon Emission Performance[J]. The Journal of Quantitative & Technical Economics. 2010, (9):43-52.]
[13]孫敬水.中國(guó)碳排放強(qiáng)度驅(qū)動(dòng)因素實(shí)證研究[J].貴州財(cái)經(jīng)學(xué)院學(xué)報(bào),2011,(3):1-6.[Sun Jingshui. Empirical Research on Driving Factors of Carbon Emission Strength in China[J].Journal of Guizhou College of Finance and Economic. 2011, (3):1-6.]
[14]劉華軍,趙浩.中國(guó)二氧化碳排放強(qiáng)度的地區(qū)差異分析[J].統(tǒng)計(jì)研究,2012,29(6):46-50.[Liu Huajun, Zhao Hao. Empirical Analysis of the Regional Differences of Chinas Carbon Dioxide Emission Intensity[J]. Statistical Research. 2012, 29(6):46-50.]
[15]杜克銳,鄒楚沅. 我國(guó)碳排放效率地區(qū)差異、影響因素及收斂性分析:基于隨機(jī)前沿模型和面板單位根的實(shí)證研究[J].浙江社會(huì)科學(xué),2011,(11):32-43.[Du Kerui, Zou Chuyuan. Zhejiang Regional Disparity, Affecting Factors and Convergence Analysis of Carbon Dioxide Emission Efficiency in China: On Stochastic Frontier Model and Panel Unit Root[J]. Zhejiang Social Sciences Social Science, 2011,(11):32-43.]
[16]王群偉,周德群,周鵬. 中國(guó)全要素二氧化碳排放績(jī)效的區(qū)域差異[J].財(cái)貿(mào)經(jīng)濟(jì),2010,(9):112-117.[Wang Qunwei, Zhou Dequn, Zhou Peng. Research on Regional Differences of Total Factor Performance of CO2 Emission[J]. Finance & Trade Economics, 2010,(9):112-117.]
[17]李濤,傅強(qiáng).中國(guó)省際碳排放效率研究[J].統(tǒng)計(jì)研究,2011,28(7):62-70.[Li Tao, Fu Qiang. Study on Chinas Carbon Dioxide Emissions Efficiency[J]. Statistical Research, 2011,28(7):62-70.]
[18]Murty S, Russell R. On Modeling Pollution Generating Technologies University of ColiforniaRiverside[Z].Working Paper Series,2002, (14) .
[19]Hailu A, Veeman T S. Nonparametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry[J]. American Journal of Agricultural Economics, 2001,83(3):605-616.
[20]Fare R,Grosskopf S,Norris M,et al.Productivity Growth,Technical Progress,and Efficiency Change in Industrialized Countries[J].American Economic Review,1994,84(1):66-83.
[21]Caves D W,Christensen L R,Diewert W E.The Economic Theory of Index Numbers and the Measurement of Input,Output and Productivity[J].Econometrics,1982,50(6):1393-1414.
[22]Banker R D, Charnes A, Cooper W W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis[J].Management Science, 1984,30(9):1078-1092.
[23]張軍,吳桂英,張吉鵬中國(guó)省際物質(zhì)資本存量估算:1952-2000[J]經(jīng)濟(jì)研究,2004,(10):35-44[Zhang Jun, Wu Guiying, Zhang Jipeng. The Estimation of Chinas provincial capital stock: 1952-2000[J]. Economic Research Journal. 2004,(10):35-44.]
Research on Regional Carbon Emissions Performance Evaluation andCarbon Reduction
Potential in China
CAO KeQU Xiaoe
(Economy and Financial Institute, Xian Jiaotong University, Xian Shaanxi 710061, China)
AbstractThis paper studies 30 Chinese provincial economic units from 1995 to 2010. Under the concept of Total Factor, we analyze the emission performance of CO2, the carbon reduction potential and scale of each province. Theresults show that: The emission performanceof CO2significantly differs in different provinces.The main concentration of high performance is in the developed eastern coastal cities, and the provinces with poor performance are mainly in Midwest of China. The calculating result of reduction potential and scale shows that only few provinces, like Shanghai, Beijing, Guangdong, Hainan, Fujian, Heilongjiang, and Hunan, can accomplish the goal of reduce the emission of CO2 by 40%-50% in 2020 compared with 2005. Shanxi, Hebei, Inner Monglia Liaoning, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang are special monitoring provinces. The regression of factors affecting the emission performance shows that enhancing environmental legal enforcement, increasing the investmen of R&D and optimizing the structure of industry and consumption will play positive roles in improving the performance of CO2 emission. On the other hand, increasing the industrial added value proportion and capital/labor ratio and import and export trade proportion are three ways that against improving the performance of CO2 emission.
Key wordsthe emission performance of CO2; carbon reduction potential; influencing factors; conclusion and enlightment
[16]王群偉,周德群,周鵬. 中國(guó)全要素二氧化碳排放績(jī)效的區(qū)域差異[J].財(cái)貿(mào)經(jīng)濟(jì),2010,(9):112-117.[Wang Qunwei, Zhou Dequn, Zhou Peng. Research on Regional Differences of Total Factor Performance of CO2 Emission[J]. Finance & Trade Economics, 2010,(9):112-117.]
[17]李濤,傅強(qiáng).中國(guó)省際碳排放效率研究[J].統(tǒng)計(jì)研究,2011,28(7):62-70.[Li Tao, Fu Qiang. Study on Chinas Carbon Dioxide Emissions Efficiency[J]. Statistical Research, 2011,28(7):62-70.]
[18]Murty S, Russell R. On Modeling Pollution Generating Technologies University of ColiforniaRiverside[Z].Working Paper Series,2002, (14) .
[19]Hailu A, Veeman T S. Nonparametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry[J]. American Journal of Agricultural Economics, 2001,83(3):605-616.
[20]Fare R,Grosskopf S,Norris M,et al.Productivity Growth,Technical Progress,and Efficiency Change in Industrialized Countries[J].American Economic Review,1994,84(1):66-83.
[21]Caves D W,Christensen L R,Diewert W E.The Economic Theory of Index Numbers and the Measurement of Input,Output and Productivity[J].Econometrics,1982,50(6):1393-1414.
[22]Banker R D, Charnes A, Cooper W W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis[J].Management Science, 1984,30(9):1078-1092.
[23]張軍,吳桂英,張吉鵬中國(guó)省際物質(zhì)資本存量估算:1952-2000[J]經(jīng)濟(jì)研究,2004,(10):35-44[Zhang Jun, Wu Guiying, Zhang Jipeng. The Estimation of Chinas provincial capital stock: 1952-2000[J]. Economic Research Journal. 2004,(10):35-44.]
Research on Regional Carbon Emissions Performance Evaluation andCarbon Reduction
Potential in China
CAO KeQU Xiaoe
(Economy and Financial Institute, Xian Jiaotong University, Xian Shaanxi 710061, China)
AbstractThis paper studies 30 Chinese provincial economic units from 1995 to 2010. Under the concept of Total Factor, we analyze the emission performance of CO2, the carbon reduction potential and scale of each province. Theresults show that: The emission performanceof CO2significantly differs in different provinces.The main concentration of high performance is in the developed eastern coastal cities, and the provinces with poor performance are mainly in Midwest of China. The calculating result of reduction potential and scale shows that only few provinces, like Shanghai, Beijing, Guangdong, Hainan, Fujian, Heilongjiang, and Hunan, can accomplish the goal of reduce the emission of CO2 by 40%-50% in 2020 compared with 2005. Shanxi, Hebei, Inner Monglia Liaoning, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang are special monitoring provinces. The regression of factors affecting the emission performance shows that enhancing environmental legal enforcement, increasing the investmen of R&D and optimizing the structure of industry and consumption will play positive roles in improving the performance of CO2 emission. On the other hand, increasing the industrial added value proportion and capital/labor ratio and import and export trade proportion are three ways that against improving the performance of CO2 emission.
Key wordsthe emission performance of CO2; carbon reduction potential; influencing factors; conclusion and enlightment
[16]王群偉,周德群,周鵬. 中國(guó)全要素二氧化碳排放績(jī)效的區(qū)域差異[J].財(cái)貿(mào)經(jīng)濟(jì),2010,(9):112-117.[Wang Qunwei, Zhou Dequn, Zhou Peng. Research on Regional Differences of Total Factor Performance of CO2 Emission[J]. Finance & Trade Economics, 2010,(9):112-117.]
[17]李濤,傅強(qiáng).中國(guó)省際碳排放效率研究[J].統(tǒng)計(jì)研究,2011,28(7):62-70.[Li Tao, Fu Qiang. Study on Chinas Carbon Dioxide Emissions Efficiency[J]. Statistical Research, 2011,28(7):62-70.]
[18]Murty S, Russell R. On Modeling Pollution Generating Technologies University of ColiforniaRiverside[Z].Working Paper Series,2002, (14) .
[19]Hailu A, Veeman T S. Nonparametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry[J]. American Journal of Agricultural Economics, 2001,83(3):605-616.
[20]Fare R,Grosskopf S,Norris M,et al.Productivity Growth,Technical Progress,and Efficiency Change in Industrialized Countries[J].American Economic Review,1994,84(1):66-83.
[21]Caves D W,Christensen L R,Diewert W E.The Economic Theory of Index Numbers and the Measurement of Input,Output and Productivity[J].Econometrics,1982,50(6):1393-1414.
[22]Banker R D, Charnes A, Cooper W W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis[J].Management Science, 1984,30(9):1078-1092.
[23]張軍,吳桂英,張吉鵬中國(guó)省際物質(zhì)資本存量估算:1952-2000[J]經(jīng)濟(jì)研究,2004,(10):35-44[Zhang Jun, Wu Guiying, Zhang Jipeng. The Estimation of Chinas provincial capital stock: 1952-2000[J]. Economic Research Journal. 2004,(10):35-44.]
Research on Regional Carbon Emissions Performance Evaluation andCarbon Reduction
Potential in China
CAO KeQU Xiaoe
(Economy and Financial Institute, Xian Jiaotong University, Xian Shaanxi 710061, China)
AbstractThis paper studies 30 Chinese provincial economic units from 1995 to 2010. Under the concept of Total Factor, we analyze the emission performance of CO2, the carbon reduction potential and scale of each province. Theresults show that: The emission performanceof CO2significantly differs in different provinces.The main concentration of high performance is in the developed eastern coastal cities, and the provinces with poor performance are mainly in Midwest of China. The calculating result of reduction potential and scale shows that only few provinces, like Shanghai, Beijing, Guangdong, Hainan, Fujian, Heilongjiang, and Hunan, can accomplish the goal of reduce the emission of CO2 by 40%-50% in 2020 compared with 2005. Shanxi, Hebei, Inner Monglia Liaoning, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang are special monitoring provinces. The regression of factors affecting the emission performance shows that enhancing environmental legal enforcement, increasing the investmen of R&D and optimizing the structure of industry and consumption will play positive roles in improving the performance of CO2 emission. On the other hand, increasing the industrial added value proportion and capital/labor ratio and import and export trade proportion are three ways that against improving the performance of CO2 emission.
Key wordsthe emission performance of CO2; carbon reduction potential; influencing factors; conclusion and enlightment