孫立成+程發(fā)新+李群
收稿日期:2014-04-02
作者簡介:孫立成,博士,副教授,主要研究方向?yàn)樘寂欧呸D(zhuǎn)移分析。
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目“基于產(chǎn)品全生命周期的企業(yè)低碳制造戰(zhàn)略形成機(jī)制與驅(qū)動(dòng)模式研究:以水泥行業(yè)為例”(編號(hào):71273118);教育部人文社會(huì)科學(xué)研究青年基金項(xiàng)目“區(qū)域碳排放轉(zhuǎn)移驅(qū)動(dòng)機(jī)制及其對(duì)碳減排配額初始分配影響研究”(編號(hào):13YJC630141);教育部高校博士點(diǎn)基金新教師類項(xiàng)目“區(qū)域間商品流動(dòng)和碳排放轉(zhuǎn)移效應(yīng):模型與實(shí)證研究”(編號(hào):20123227120010)。
摘要準(zhǔn)確把握區(qū)域碳排放轉(zhuǎn)移的空間轉(zhuǎn)移特征,明確其經(jīng)濟(jì)溢出效應(yīng)是引導(dǎo)區(qū)域碳排放合理轉(zhuǎn)移的基礎(chǔ)。以中國省際區(qū)域?yàn)檠芯繉?duì)象,以投入產(chǎn)出表為基礎(chǔ),采用碳排放系數(shù)法分別測(cè)算了中國省際區(qū)域碳排放轉(zhuǎn)入總量及碳排放轉(zhuǎn)出總量;通過構(gòu)建基于地理特征和經(jīng)濟(jì)特征的空間權(quán)重矩陣,綜合運(yùn)用Morans I指數(shù)和地理加權(quán)回歸模型分別研究了中國省際區(qū)域碳排放轉(zhuǎn)移的空間分布特征及其經(jīng)濟(jì)溢出效應(yīng)。研究結(jié)果表明:中國各省碳排放轉(zhuǎn)移總量均較大,其中碳排放轉(zhuǎn)入總量大于碳排放轉(zhuǎn)出總量,東部及中部較發(fā)達(dá)地區(qū)均具有正的凈轉(zhuǎn)移特征;中國省際區(qū)域碳排放轉(zhuǎn)入和碳排放轉(zhuǎn)出的Morans I指數(shù)分別為0.17和0.14,表明中國省際區(qū)域碳排放轉(zhuǎn)移在整體上具有一定的空間集群特征;中國省際區(qū)域碳排放轉(zhuǎn)移在局部空間主要表現(xiàn)為L-L模式和H-H模式。其中東部及中部經(jīng)濟(jì)較為發(fā)達(dá)的地區(qū)表現(xiàn)為H-H模式,西部地區(qū)及中部欠發(fā)達(dá)地區(qū)表現(xiàn)為L-L模式,而中部地區(qū)則表現(xiàn)為L-H模式或H-L模式為主;中國省際區(qū)域碳排放轉(zhuǎn)移經(jīng)濟(jì)溢出類型主要有五種具有區(qū)域特征的溢出模式,其中中國省際區(qū)域碳排放轉(zhuǎn)入所產(chǎn)生的經(jīng)濟(jì)溢出效應(yīng)要強(qiáng)于碳排放轉(zhuǎn)出。最后,針對(duì)研究結(jié)果,分析了其產(chǎn)生的可能原因,并提出相應(yīng)的優(yōu)化對(duì)策和建議。
關(guān)鍵詞碳排放轉(zhuǎn)移;經(jīng)濟(jì)溢出效應(yīng);Morans I指數(shù);地理加權(quán)回歸模型
中圖分類號(hào)X24文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)1002-2104(2014)08-0017-07doi:10.3969/j.issn.1002-2104.2014.08.003
自《京都議定書》生效以來,區(qū)域間碳排放轉(zhuǎn)移現(xiàn)象已日益顯現(xiàn)。數(shù)據(jù)表明,發(fā)展中國家溫室氣體排放增長量的1/4源自于發(fā)達(dá)國家商品和服務(wù)貿(mào)易的增加[1],其中中國每年碳排放轉(zhuǎn)移量就高達(dá)12億t,占中國目前碳排放總量的近20%。2011年3月頒布的《低碳經(jīng)濟(jì)藍(lán)皮書:中國低碳經(jīng)濟(jì)發(fā)展報(bào)告(2011)》也指出,中國制造1個(gè)芭比娃娃要承受3/4的碳排放。然而,由于當(dāng)前有關(guān)地區(qū)碳排放配額的劃分均是以區(qū)域本土碳排放為核算基準(zhǔn),忽略了區(qū)域間碳排放轉(zhuǎn)移的潛在影響,致使區(qū)域碳減排責(zé)任難以清晰地加以界定。因此,當(dāng)前眾多學(xué)者針對(duì)區(qū)域碳排放轉(zhuǎn)移問題展開了較為詳細(xì)的研究。早期學(xué)者們主要應(yīng)用Merge, GREEN, GTAP-E等模型模擬測(cè)算了各區(qū)域的碳排放轉(zhuǎn)移量,結(jié)果表明:在現(xiàn)有的可能存在的情景下,區(qū)域間碳排放轉(zhuǎn)移現(xiàn)象均普遍存在,且碳轉(zhuǎn)移偏高的概率較大[2-6]。隨后,考慮到上述模型的局限性,一些學(xué)者采用投入產(chǎn)出等模型測(cè)算了英國、美國等發(fā)達(dá)國家對(duì)中國的碳排放凈轉(zhuǎn)移量,結(jié)果顯示其值在7%-23%左右[7-13]。就流向而言,McKibbi[14]等則通過測(cè)算表明大多數(shù)碳排放轉(zhuǎn)移將發(fā)生在減排國家之間,而不是流向非減排國家。而李小平和盧現(xiàn)祥[15]則從具體行業(yè)的角度指出,中國沒有通過國際貿(mào)易成為發(fā)達(dá)國家的“污染產(chǎn)業(yè)天堂”。姚亮和劉晶茹[16]則利用EIO-LCA 方法及1997 年中國區(qū)域間投入產(chǎn)出表分析中國八大區(qū)域間產(chǎn)品(服務(wù))以及隱含的碳排放在區(qū)域之間流動(dòng)和轉(zhuǎn)移總量規(guī)律。然而,由于中國是世界CO2排放最多的發(fā)展中國家,且中國幅員遼闊,各區(qū)域在地理空間分布、資源格局、產(chǎn)業(yè)結(jié)構(gòu)及經(jīng)濟(jì)發(fā)展水平等方面不但有著較大的差異,而且這些區(qū)域有著較強(qiáng)的空間相關(guān)性;而現(xiàn)有的研究較少分析中國省際區(qū)域間碳排放的空間轉(zhuǎn)移特征,也沒有就碳排放轉(zhuǎn)移的經(jīng)濟(jì)溢出效應(yīng)展開研究。實(shí)踐表明,要保證中國經(jīng)濟(jì)高速發(fā)展, 實(shí)現(xiàn)中國政府及各省際區(qū)域既定的減排目標(biāo),就需要準(zhǔn)確把握區(qū)域碳排放空間轉(zhuǎn)移特征, 明確其經(jīng)濟(jì)溢出效應(yīng),有效引導(dǎo)碳排放在中國省際區(qū)域間合理轉(zhuǎn)移,這也是本文研究的出發(fā)點(diǎn)。
1變量及數(shù)據(jù)1.1碳排放轉(zhuǎn)移測(cè)算當(dāng)前有關(guān)碳排放轉(zhuǎn)移的測(cè)算方法主要有以下幾類[17]:實(shí)測(cè)法或物料衡算法、模型測(cè)算法、生命周期法及排放系數(shù)法等。由于在短期條件下碳排放系數(shù)法具有較強(qiáng)的實(shí)用性,從數(shù)據(jù)的可得性來看也比較適用于區(qū)域碳排放轉(zhuǎn)移的核算分析??紤]到現(xiàn)有統(tǒng)計(jì)數(shù)據(jù)的限制,本文選取碳排放系數(shù)法來測(cè)算中國省際區(qū)域。
由于目前的碳排放系數(shù)是理想狀態(tài)下的數(shù)值,而實(shí)際上各產(chǎn)業(yè)在生產(chǎn)過程中不同的技術(shù)水平、生產(chǎn)管理水平、能源的使用及工藝過程等各類影響因素的影響,具體到某個(gè)具體的產(chǎn)品可以隨著時(shí)間的不同其碳排放系數(shù)也不一定相同,其計(jì)算公式具體如下:
EIi=∑i,jEIij×QIij=λIi×GIi(1)
EEi=∑i,jEEij×QEij=λEi×GEi(2)
Ei=EIi-EEi(3)
其中,EIi為i地區(qū)由外地區(qū)商品的流入而形成的碳排放轉(zhuǎn)移量,即為外地區(qū)生產(chǎn)的商品卻由i地區(qū)消費(fèi)而形成的碳排放轉(zhuǎn)移量;EEi為i地區(qū)由商品的流出而形成的碳排放轉(zhuǎn)移量,即為i地區(qū)生產(chǎn)的商品由別的地方消費(fèi)而形成的碳排放轉(zhuǎn)移量;Ei為i地區(qū)由商品流動(dòng)所形成的凈轉(zhuǎn)移量;EIij和QIij分別代表i地區(qū)流入商品j的碳排放系數(shù)及流入量,EEij和QEij分別代表i地區(qū)流出商品j的碳排放系數(shù)及流入量??紤]到有關(guān)區(qū)域i各具體流入和流出商品數(shù)量及各具體商品所產(chǎn)生的碳排放系數(shù)相關(guān)基礎(chǔ)統(tǒng)計(jì)數(shù)據(jù)較為缺乏,因此,為方便起見,本文選用i地區(qū)流入和流出商品的資金流來核算其碳排放轉(zhuǎn)移量,因此,上式中λIi和GIi分別代表i地區(qū)流入商品的平均碳排放強(qiáng)度及流入商品的產(chǎn)值,λEi和GEi分別代表i地區(qū)流出商品的平均碳排放強(qiáng)度及流出商品的產(chǎn)值。
1.2區(qū)域間空間權(quán)重變量構(gòu)建
區(qū)域間空間權(quán)重變量是從外生信息視角反映了空間單元間相互依賴性和關(guān)聯(lián)性,因此,為減少或消除區(qū)域間的外在影響,就需要提前確定空間權(quán)值變量。現(xiàn)有有關(guān)區(qū)域間空間權(quán)重變量主要采用鄰近標(biāo)準(zhǔn)和距離標(biāo)準(zhǔn)來定義,然而,空間權(quán)重矩陣更多地是從地理空間聯(lián)系的角度來確定的,而區(qū)域間碳排放轉(zhuǎn)移屬于區(qū)域經(jīng)濟(jì)管理范疇,地理空間聯(lián)系往往不是唯一的決定因素。
因此,本文將以林光平等[18]提出的經(jīng)濟(jì)權(quán)重矩陣為基礎(chǔ),構(gòu)建區(qū)域碳排放轉(zhuǎn)移的經(jīng)濟(jì)權(quán)重矩陣,其基本形式如下:W*ij=Wij×Eij ,其中Wij即為空間地理位置權(quán)重矩陣,Eij為經(jīng)濟(jì)系數(shù)矩陣??紤]到經(jīng)濟(jì)發(fā)達(dá)地區(qū)對(duì)落后地區(qū)有著較大的輻射力和吸引力,因此,學(xué)者們通常將各地區(qū)實(shí)際GDP占所有地區(qū)GDP之和的比重刻畫經(jīng)濟(jì)系數(shù)Eij[19]。由于在區(qū)域產(chǎn)業(yè)優(yōu)化升級(jí)過程中,承接發(fā)達(dá)地區(qū)產(chǎn)業(yè)轉(zhuǎn)移是形成碳排放轉(zhuǎn)移的主要因素[20],實(shí)踐表明工業(yè)是形成碳排放的主體,因此,本文將各地區(qū)工業(yè)產(chǎn)值占總工業(yè)產(chǎn)值的比重來衡量Eij,據(jù)此,本文所構(gòu)建的區(qū)域碳排放轉(zhuǎn)移權(quán)重矩陣具體如下:
W*ij=Wij×Eij=Wij×diag(G1/G,G2/G…Gn/G)(4)
其中,Wij即為上述所闡述的地理空間距離權(quán)重矩陣,表明距離較近的兩地區(qū)相互影響較大,而較遠(yuǎn)的兩地區(qū)則較小。G1,G2…Gn表示n個(gè)空間單元工業(yè)總產(chǎn)值,G則表示所有地區(qū)工業(yè)總產(chǎn)值;Gi/G表示空間單元i的工業(yè)產(chǎn)值占總工業(yè)產(chǎn)值的比重,表明相對(duì)而言,工業(yè)發(fā)達(dá)地區(qū)對(duì)工業(yè)落后地區(qū)的經(jīng)濟(jì)有著較大的影響力,且落后地區(qū)所承接的碳排放轉(zhuǎn)移量也相對(duì)較大;而落后地區(qū)之間或發(fā)達(dá)地區(qū)之間勢(shì)必也會(huì)有相應(yīng)的經(jīng)濟(jì)聯(lián)系,也會(huì)產(chǎn)生一定的碳排放轉(zhuǎn)移現(xiàn)象,但凈碳排放轉(zhuǎn)移量往往相對(duì)較少,而式(4)則表明,區(qū)域空間單元碳排放轉(zhuǎn)移的相互聯(lián)系是由地理空間距離和工業(yè)產(chǎn)值占總產(chǎn)值比重共同決定的。
1.3數(shù)據(jù)來源
本文以中國省際區(qū)域?yàn)檠芯繉?duì)象,考慮到2012年《中國統(tǒng)計(jì)年鑒》中最新的投入產(chǎn)出表也是2007年的數(shù)據(jù),雖然部分省份在2010年推出了延長版投入產(chǎn)出表,但由于未更新的省份較多,數(shù)據(jù)缺失較為嚴(yán)重。因此,本文所需的數(shù)據(jù)均來自于2007年中國各省市的投入產(chǎn)出表。為使得結(jié)果具有一致性和可信性,本文各指標(biāo)的具體數(shù)據(jù)均以當(dāng)年價(jià)進(jìn)行核算??臻g權(quán)重矩陣則主要是以國家地理信息系統(tǒng)網(wǎng)站提供的電子地圖為基礎(chǔ),采用OpenGeoDa軟件計(jì)算而得到的,而各省際區(qū)域工業(yè)產(chǎn)值占工業(yè)總產(chǎn)值數(shù)據(jù)則主要是來源于2012年《中國統(tǒng)計(jì)年鑒》。由于西藏?cái)?shù)據(jù)缺失較多,因此本文研究中不包含西藏。
2區(qū)域碳排放空間轉(zhuǎn)移特征分析
2.1中國省際區(qū)域總體碳排放空間轉(zhuǎn)移特征分析
依據(jù)式(1)-(3)和相關(guān)數(shù)據(jù),可得2007年中國各省際區(qū)域碳排放轉(zhuǎn)出量、碳排放轉(zhuǎn)入量及凈轉(zhuǎn)移量,其對(duì)比圖具體如圖1所示,從中可以得出以下兩個(gè)結(jié)論:
(1)從總量來看,不論是各地區(qū)的碳排放轉(zhuǎn)出量還是碳排放轉(zhuǎn)入量均較大,且各地區(qū)碳排放轉(zhuǎn)入總量要大于碳排放轉(zhuǎn)出總量。說明由區(qū)域間商品流動(dòng)所引發(fā)的碳排放轉(zhuǎn)移現(xiàn)象在中國省際區(qū)域間已大量存在,而且這一存量的凈值也是趨向于增強(qiáng)的態(tài)勢(shì)。
(2)從碳排放轉(zhuǎn)移的區(qū)域結(jié)構(gòu)來看,碳排放轉(zhuǎn)移凈值為正的地區(qū)一共有18個(gè),主要分布在東部和中部經(jīng)濟(jì)較為發(fā)達(dá)地區(qū)。其中,碳排放凈碳轉(zhuǎn)移量為正數(shù)排名最高的前三個(gè)地區(qū)分別是廣東省、江蘇省和浙江省,后三位的地區(qū)分別是江西、湖北和海南。而碳排放轉(zhuǎn)移凈值為負(fù)的12個(gè)地區(qū)基本都是西部欠發(fā)達(dá)地區(qū)??梢?,從碳排放轉(zhuǎn)移區(qū)域結(jié)構(gòu)來看,較為發(fā)達(dá)地區(qū)往往憑借其產(chǎn)業(yè)結(jié)構(gòu)乃至經(jīng)濟(jì)總量的優(yōu)勢(shì),將其本該是其承擔(dān)的碳排放轉(zhuǎn)嫁到其他欠發(fā)達(dá)地區(qū),而且經(jīng)濟(jì)越發(fā)達(dá)的地區(qū)其轉(zhuǎn)移凈值就越大。2.2區(qū)域碳排放轉(zhuǎn)移空間相關(guān)性分析
為進(jìn)一步判斷中國省際區(qū)域碳排放空間轉(zhuǎn)移特征,本文采用多數(shù)學(xué)者通常采用的Morans I指數(shù)法[21]來對(duì)中國省際區(qū)域碳排放轉(zhuǎn)移進(jìn)行自相關(guān)性檢驗(yàn)。其表達(dá)式具體如下:
MoranI=∑ni=1∑nj=1Wij(Yi-Y)(Yj-Y)S2∑ni=1∑nj=1Wij(5)其中,S2=1n∑ni=1(Yi-Y),Y=1n∑ni=1Yi,Yi表示空間單元i的碳排放轉(zhuǎn)移值,n為空間單元數(shù),Wij為空間元的權(quán)重矩陣元素,具體是按式(4)求得。
依據(jù)上述方法及數(shù)據(jù),在5%的顯著水平下,2007年中國省際區(qū)域碳排放轉(zhuǎn)入(EI)和碳排放轉(zhuǎn)出 (EE)的Morans I指數(shù)分別為0.17和0.14。表明中國省際區(qū)域碳排放轉(zhuǎn)移在整體上具有一定的空間集群特征。為深入剖析其集群特征,本文采用局域空間關(guān)系LISA法對(duì)其進(jìn)行檢驗(yàn)。由表1可以得出如下結(jié)論:從整體來看,無論是碳排放轉(zhuǎn)入還是轉(zhuǎn)出其Morans I散點(diǎn)圖在局部空間上均表現(xiàn)為L-L模式和H-H模式為主,兩種類型占總體比例的60%左右,其中L-L模式的比例要高于H-H模式。說明在整體上中國省際區(qū)域碳排放轉(zhuǎn)移具有較強(qiáng)的空間集群特征,呈現(xiàn)出碳排放轉(zhuǎn)移低的地區(qū)被碳排放轉(zhuǎn)移低的地區(qū)包圍的空間集群特征。從各具體省際區(qū)域來看主要有三個(gè)特征:一是表現(xiàn)為H-H模式的則主要是以發(fā)達(dá)地區(qū)為主,但也有少量中西部地區(qū),如遼寧和河北地區(qū)的碳排放轉(zhuǎn)入,遼寧和內(nèi)蒙古兩個(gè)地區(qū)的碳排放轉(zhuǎn)出也處于H-H模式;二是表現(xiàn)為L-L模式的地區(qū)主要是西部地區(qū)或中部發(fā)展欠佳的地區(qū);三是表現(xiàn)為L-H模式或H-L模式主要是中部地區(qū),其中是以碳排放轉(zhuǎn)移低的地區(qū)被高的地區(qū)包圍的比例較大。
從其產(chǎn)生原因來看,可能有以下幾點(diǎn):一是隨著國家和地區(qū)碳減排政策的制定和實(shí)施,發(fā)達(dá)地區(qū)既要保持經(jīng)濟(jì)的快速增長又要保證碳減排任務(wù)的實(shí)現(xiàn),不可避免地會(huì)將圖1中國省際區(qū)域碳排放轉(zhuǎn)移結(jié)構(gòu)對(duì)比圖
Fig.1Carbon emission transfer structure comparison chart of the interprovince in China
表1Morans I散點(diǎn)圖局部空間關(guān)聯(lián)模式歸類
Tab.1Local spatial association pattern classification of Morans I scatter plot
象限
Quadrant關(guān)聯(lián)模式
Assocition pattern碳排放轉(zhuǎn)入(EI)
Carbon emission in比例(%)
Proportion碳排放轉(zhuǎn)出(EE)
Carbon emission out比例(%)
Proportion第一象限H-H模式江蘇、浙江、上海、北京、山東、天津、遼寧、河北26.67江蘇、浙江、上海、山東、安徽、遼寧、內(nèi)蒙古23.33第二象限L-H模式福建、廣西、安徽、江西、海南、內(nèi)蒙古、吉林、山西26.67北京、天津、福建、黑龍江、廣西、江西、海南、山西26.67第三象限L-L模式黑龍江、陜西、湖南、湖北、四川、重慶、青海、甘肅、云南、新疆、寧夏、貴州39.99湖南、湖北、四川、重慶、青海、甘肅、云南、新疆、寧夏、貴州33.33第四象限H-L模式廣東、河南6.67廣東、河南、陜西、河北、吉林16.67一些高污染高耗能的產(chǎn)業(yè)轉(zhuǎn)移到別的地區(qū),考慮到發(fā)達(dá)地區(qū)之間的經(jīng)濟(jì)聯(lián)系較為密切,其共生模式雖然有一定的相似性,但其產(chǎn)業(yè)的差異性是其共生模式的主體,如:江蘇的蘇南模式和浙江的溫州模式在產(chǎn)業(yè)結(jié)構(gòu)及經(jīng)濟(jì)發(fā)展階段上均有較大的差異性,同時(shí)中國發(fā)達(dá)省際區(qū)域位置以東部為主,其地理空間位置較為鄰近,這些均使得其區(qū)位碳排放轉(zhuǎn)移呈現(xiàn)H-H模式。但也有一些欠發(fā)達(dá)地區(qū)也存在H-H模式,這也是和該地區(qū)產(chǎn)業(yè)結(jié)構(gòu)與區(qū)域位置有著一定的影響,如:內(nèi)蒙古等地;二是由于中部地區(qū)在地理位置上聯(lián)結(jié)了東西兩大區(qū)域,且其所具備的產(chǎn)業(yè)形態(tài)往往是東部地區(qū)的上游產(chǎn)業(yè),不論是人才儲(chǔ)備還是相關(guān)產(chǎn)業(yè)資源的積累,其均對(duì)東部地區(qū)相關(guān)的產(chǎn)業(yè)轉(zhuǎn)移有著較強(qiáng)的承擔(dān)能力,因此,處于中部地區(qū)的相關(guān)省份在碳排放轉(zhuǎn)移上大多數(shù)均表現(xiàn)為L-H模式,表明這些地區(qū)碳排放轉(zhuǎn)移在空間分布具有異常性。具體到北京和天津兩個(gè)地區(qū)來看,這兩個(gè)地區(qū)的碳排放轉(zhuǎn)入屬于H-H模式,而其碳排放轉(zhuǎn)出則屬于L-H模式,說明這兩個(gè)地區(qū)在主動(dòng)轉(zhuǎn)移碳排放和承接碳排放轉(zhuǎn)移上有著較大的差異,更多地表現(xiàn)為凈轉(zhuǎn)移這一特征;三是由于西部欠發(fā)達(dá)地區(qū)數(shù)量較多,分布較廣,且其有著較強(qiáng)的區(qū)域環(huán)境承載力,因此,其碳排放轉(zhuǎn)入和轉(zhuǎn)出均表現(xiàn)為較低水平,在地理空間上表現(xiàn)為碳排放低的區(qū)域集群的特征。
3區(qū)域碳排放空間轉(zhuǎn)移經(jīng)濟(jì)溢出效應(yīng)分析
從上述分析可以看出,區(qū)域間碳排放轉(zhuǎn)移現(xiàn)象廣泛存在于各省際區(qū)域,這既符合區(qū)域經(jīng)濟(jì)發(fā)展的需要也是實(shí)現(xiàn)區(qū)域碳減排目標(biāo)一種重要手段,然而要判斷區(qū)域碳排放轉(zhuǎn)移是否合理,就需要研究其經(jīng)濟(jì)溢出效應(yīng)。
3.1模型設(shè)定
考慮到上述中國省際區(qū)域碳排放轉(zhuǎn)移的空間轉(zhuǎn)移特征,傳統(tǒng)的OLS法對(duì)變量進(jìn)行整體估計(jì)顯然不能反映出變量在不同空間上的非穩(wěn)態(tài)性。本文主要采用地理加權(quán)回歸模型來分別分析區(qū)域碳排放轉(zhuǎn)出、碳排放轉(zhuǎn)入及兩者共同對(duì)區(qū)域經(jīng)濟(jì)的影響,其模型具體如下[22]:
Yi=β0(μi,υi)+∑kjβj(μi,υi)Xij+εi(6)
其中,Yi為省際區(qū)域i的GDP,Xij為區(qū)域i碳排放轉(zhuǎn)移量,j表示碳排放轉(zhuǎn)入或轉(zhuǎn)出兩種類型,βj即為Xij對(duì)Yi的影響系數(shù),εi為第i個(gè)區(qū)域的隨機(jī)誤差,滿足零均值、同方差、相互獨(dú)立等基本假設(shè)。
依據(jù)式(6)本文主要設(shè)立以下三個(gè)模型,模型1和模型2分別僅用于考察區(qū)域碳排放轉(zhuǎn)出或區(qū)域碳排放轉(zhuǎn)入的經(jīng)濟(jì)溢出效應(yīng),而模型3則用于考察區(qū)域碳排放轉(zhuǎn)出和轉(zhuǎn)入共同存在的條件下的經(jīng)濟(jì)溢出效應(yīng)。當(dāng)模型系數(shù)項(xiàng)為正時(shí),說明區(qū)域碳排放轉(zhuǎn)移對(duì)區(qū)域經(jīng)濟(jì)的發(fā)展產(chǎn)生正向的影響,系數(shù)越大說明單位碳排放轉(zhuǎn)移對(duì)區(qū)域經(jīng)濟(jì)增長的推動(dòng)力越大,同時(shí)也表明該地區(qū)碳排放轉(zhuǎn)移就越合理;當(dāng)系數(shù)為負(fù)時(shí),則與之相反,說明區(qū)域碳排放轉(zhuǎn)移對(duì)區(qū)域經(jīng)濟(jì)發(fā)展有著一定阻礙作用,不利于區(qū)域經(jīng)濟(jì)的發(fā)展,說明該區(qū)域的碳排放轉(zhuǎn)移不合理,系數(shù)絕對(duì)值的大小則反映了碳排放轉(zhuǎn)移的不合理程度。
3.2結(jié)果分析
依據(jù)上述模型的設(shè)定及相關(guān)數(shù)據(jù),本文主要應(yīng)用SAM軟件研究中國省際區(qū)域碳排放轉(zhuǎn)移的經(jīng)濟(jì)溢出效應(yīng),以判斷其空間轉(zhuǎn)移的合理性與否。具體結(jié)果如表2所示。
在只考慮區(qū)域碳排放轉(zhuǎn)出或碳排放轉(zhuǎn)入單獨(dú)影響的條件下,中國絕大部分省際區(qū)域的碳排放轉(zhuǎn)移對(duì)區(qū)域經(jīng)濟(jì)增長均具有正向帶動(dòng)作用,具有正向的經(jīng)濟(jì)溢出效應(yīng)。從模型1的EE系數(shù)可以看出,僅有山東、浙江,云南、貴州、重慶和四川6個(gè)地區(qū)為負(fù),其他地區(qū)均為正數(shù)(見表2)。表明由這6個(gè)地區(qū)所生產(chǎn)的商品流到其他地區(qū)所形成的碳排放轉(zhuǎn)移不但不能為該地區(qū)產(chǎn)生經(jīng)濟(jì)溢出效應(yīng),反而還具有一定的經(jīng)濟(jì)阻礙作用,其碳排放轉(zhuǎn)出結(jié)構(gòu)不合理。同樣,從模型2的EI系數(shù)也可以看出,僅有浙江的碳排放轉(zhuǎn)入量對(duì)其經(jīng)濟(jì)增長具有負(fù)面的影響,其他地區(qū)均帶來了一定的增長(見表2)。這2個(gè)模型結(jié)果進(jìn)一步說明,對(duì)于碳排放轉(zhuǎn)出來說,由于山東等6個(gè)地區(qū)在承接其他地區(qū)產(chǎn)業(yè)的過程中要形成其他地區(qū)所需的商品,其所需的投資也相對(duì)較高,致使其所流出的商品很難帶來所需的經(jīng)濟(jì)增長;而就碳排放轉(zhuǎn)入而言,其系數(shù)也從側(cè)面反映了各地區(qū)商品流入的結(jié)構(gòu),說明絕大多數(shù)地區(qū)商品的流入均為該地區(qū)經(jīng)濟(jì)帶來了溢出效應(yīng)。對(duì)于浙江省而言,由于其本身就是發(fā)達(dá)地區(qū),處于產(chǎn)業(yè)鏈的下游產(chǎn)業(yè)較多,從其它地區(qū)所引入的商品作為中間商品的也較多,若從其他地區(qū)所引入的商品結(jié)構(gòu)出現(xiàn)問題,則在一定程度上會(huì)阻礙其經(jīng)濟(jì)的增長,說明浙江省商品流入結(jié)構(gòu)不合理。
從區(qū)域碳排放轉(zhuǎn)出和碳排放轉(zhuǎn)入共同對(duì)區(qū)域經(jīng)濟(jì)的影響來看,區(qū)域碳排放轉(zhuǎn)入的經(jīng)濟(jì)溢出效應(yīng)比碳排放轉(zhuǎn)出要強(qiáng)。由模型3的EE系數(shù)和EI系數(shù)可以看出,其中EI系數(shù)為正值的地區(qū)一共有23個(gè),EE系數(shù)為正值的地區(qū)共有13個(gè)(見表2),說明這些地區(qū)碳排放轉(zhuǎn)入或轉(zhuǎn)出均具有經(jīng)濟(jì)溢出效應(yīng),隨著碳排放轉(zhuǎn)入或轉(zhuǎn)出的增加該地區(qū)的經(jīng)濟(jì)也趨向于增長,其碳排放轉(zhuǎn)移相對(duì)較為合理。然而,由于山西等7個(gè)地區(qū)的EI系數(shù)為負(fù)(見表2),說明相比較于模型2的單獨(dú)影響來看,在有碳排放轉(zhuǎn)出存在的條件下這些地區(qū)的碳排放轉(zhuǎn)入不合理,也即這些地區(qū)隨著碳排放轉(zhuǎn)入的增長其經(jīng)濟(jì)反而會(huì)有所減緩。同理,黑龍江等17個(gè)地區(qū)的EE系數(shù)也為負(fù)數(shù)(見表2),說明這些地區(qū)在碳排放轉(zhuǎn)入的影響下,其碳排放轉(zhuǎn)出也是不合理的,對(duì)區(qū)域經(jīng)濟(jì)的發(fā)展有阻礙的作用。因此,需進(jìn)一步優(yōu)化這些地區(qū)產(chǎn)業(yè)結(jié)構(gòu),從而從源頭上優(yōu)化其商品的流出或流入結(jié)構(gòu),以追求碳排放轉(zhuǎn)出和碳排放轉(zhuǎn)入經(jīng)濟(jì)溢出效應(yīng)。
從區(qū)域結(jié)構(gòu)來看,區(qū)域碳排放轉(zhuǎn)移的經(jīng)濟(jì)溢出效應(yīng)在東部、中部和西部三大區(qū)域間無明顯差異,但就各具體地區(qū)而言則差異較大。由表2的模型3可以看出,各省際區(qū)域碳排放轉(zhuǎn)移的經(jīng)濟(jì)溢出效應(yīng)主要有5種類型:一是無論是區(qū)域碳排放轉(zhuǎn)出系數(shù)還是碳排放轉(zhuǎn)入系數(shù)其值均為正數(shù)的省份7個(gè),有遼寧、江西、廣西、新疆、四川、內(nèi)蒙古和重慶。說明從整體影響來看,這7個(gè)地區(qū)不論是碳轉(zhuǎn)入還
是碳轉(zhuǎn)出均具有較強(qiáng)的經(jīng)濟(jì)溢出效應(yīng),區(qū)域碳排放轉(zhuǎn)移較為合理,這與其本身的產(chǎn)業(yè)結(jié)構(gòu)、環(huán)保政策及經(jīng)濟(jì)調(diào)控政策有著很大的關(guān)系,這些政策的制定使得這些地區(qū)與其他地區(qū)有著較好的商品流入及流出結(jié)構(gòu),從而帶動(dòng)了更多的經(jīng)濟(jì)增長。二是區(qū)域碳排放轉(zhuǎn)出系數(shù)為負(fù),但其絕對(duì)值小于碳排放轉(zhuǎn)入系數(shù)的省份,有北京、天津、河北、黑龍江、吉林、貴州和甘肅等7個(gè)地區(qū),說明這些地區(qū)每單位碳排放轉(zhuǎn)入的經(jīng)濟(jì)溢出效應(yīng)較高,不但能抵消其單位碳排放轉(zhuǎn)出的負(fù)經(jīng)濟(jì)效應(yīng),而且還能帶來區(qū)域經(jīng)濟(jì)的凈增長,這些地區(qū)碳排放轉(zhuǎn)入量越大,其經(jīng)濟(jì)增長效應(yīng)就越高。因此,從表2區(qū)域碳排放轉(zhuǎn)移地理加權(quán)回歸結(jié)果表
Tab.2Geographically weighted regression result stable of regional carbon emissions transfer
省份
Province模型1
Model 1模型2
Model 2模型3
Model 3常數(shù)項(xiàng)
ConstantEE系數(shù)
EE coefficient常數(shù)項(xiàng)
ConstantEI系數(shù)
EI coefficient常數(shù)項(xiàng)
ConstantEE系數(shù)
EE coefficientEI系數(shù)
EI coefficient北京5 078.89 0.10 -759.30 0.18 -5 229.16 -0.09 0.33 天津5 771.04 0.09 -989.95 0.19 -5 229.16 -0.09 0.33 遼寧-12 797.41 0.68 -1 833.23 0.33 -14 999.41 0.51 0.22 江蘇-9 927.15 0.66 1 450.50 0.21 148 438.18 -7.09 2.15 上海-6 238.47 0.51 -1 484.94 0.20 1 686.33 -1.96 1.12 山東24 905.19 -0.06 15 463.18 0.11 -579 137.09 6.38 -2.39 浙江41 136.53 -0.58 23 023.58 -0.07 32 089.90 -1.35 0.48 福建3 088.11 0.38 4 369.17 0.16 13 057.43 -2.98 1.46 廣東2 173.21 0.34 5 010.28 0.13 -3 188.07 0.96 -0.24 海南668.12 0.36 1 466.50 0.15 495.26 0.44 -0.03 河北4 892.92 0.10 -1 206.66 0.19 -5 229.16 -0.09 0.33 黑龍江6 400.53 0.03 1 656.78 0.24 1 570.09 -0.180.42山西3 533.53 0.12 4 572.15 0.12 2 558.72 -0.18 0.42 河南5 001.73 0.30 5 001.89 0.26 7 147.65 -3.06 2.79 安徽-18 675.57 0.87 -394.97 0.24 148 438.18 -7.09 2.15 湖北6 025.92 0.29 6 102.97 0.24 7 527.41 -4.28 3.80 江西2 554.01 0.41 3 952.00 0.18 2 836.95 0.28 0.06 湖南5 246.25 0.22 5 078.85 0.20 10 967.79 4.13 -3.67 廣西4 343.95 0.06 2 806.72 0.17 -6 506.20 0.23 0.56 吉林3 405.11 0.14 -877.58 0.31 1 570.09 -0.18 0.42 新疆-8.13 0.24 236.75 0.33 0.00 0.24 0.01 寧夏-1 102.31 0.25 1 144.93 0.15 4 491.88 -0.46 0.45 云南18 340.11 -0.75 -1 883.63 0.60 61 338.77 -2.11 -1.62 貴州7 638.81 -0.22 49.11 0.36 1 431.26 -0.05 0.31 青海8.57 0.24 548.08 0.28 0.00 0.24 -0.01 四川12 558.48 -0.37 -8 622.66 1.35 -16 912.54 0.30 1.73 甘肅-98.50 0.20 885.25 0.18 763.30 -0.08 0.37 陜西-2 308.13 0.33 1 143.75 0.18 -7 867.58 0.95 -0.41 內(nèi)蒙古4 187.82 0.08 3 943.15 0.11 3 567.41 0.02 0.11 重慶5 690.22 -0.12 -6 383.39 1.05 -16 912.54 0.30 1.73 政策上來看,這些地區(qū)應(yīng)加大碳排放轉(zhuǎn)入的力度,提高凈碳轉(zhuǎn)移量。三是區(qū)域碳排放轉(zhuǎn)出系數(shù)為負(fù),但其絕對(duì)值卻大于碳排放轉(zhuǎn)入系數(shù)的省份,有江蘇、上海、浙江、福建、河南、安徽、湖北和寧夏等8個(gè)地區(qū)。說明這些地區(qū)單位碳排放轉(zhuǎn)出具有經(jīng)濟(jì)阻礙效應(yīng),單位碳排放轉(zhuǎn)入的經(jīng)濟(jì)溢出效應(yīng)抵消不了其阻礙效應(yīng)。因此,從碳轉(zhuǎn)移調(diào)控策略上來看,要加大碳排放轉(zhuǎn)入的力度,減少碳排放轉(zhuǎn)出,這樣才有可能保證從整體上保障碳排放轉(zhuǎn)移具有正的溢出效應(yīng)。四是區(qū)域碳排放轉(zhuǎn)出系數(shù)為正,但碳排放轉(zhuǎn)入為負(fù)的省份,有山東、廣東、海南、湖南、青海和陜西等7個(gè)地區(qū)。說明這些地區(qū)碳排放轉(zhuǎn)出具有較強(qiáng)的經(jīng)濟(jì)溢出效應(yīng),而碳排放轉(zhuǎn)入則對(duì)經(jīng)濟(jì)產(chǎn)生一定的阻礙作用,因此,加大碳排放轉(zhuǎn)出力度對(duì)經(jīng)濟(jì)發(fā)展有著較強(qiáng)的促進(jìn)作用。五是區(qū)域碳排放轉(zhuǎn)出和轉(zhuǎn)入均為負(fù)值的地區(qū),只有云南省。說明無論是碳排放轉(zhuǎn)入還是轉(zhuǎn)出均不能促進(jìn)云南經(jīng)濟(jì)的發(fā)展,其碳排放轉(zhuǎn)入轉(zhuǎn)出均不合理,需要進(jìn)一步調(diào)控其產(chǎn)業(yè)結(jié)構(gòu),以適應(yīng)當(dāng)前經(jīng)濟(jì)發(fā)展的需求。
4結(jié)論與啟示
通過對(duì)上述中國省際區(qū)域碳排放轉(zhuǎn)移空間轉(zhuǎn)移特征及其溢出效應(yīng)的分析,可以得出如下結(jié)論:
(1)從總體來看,中國省際區(qū)域間碳排放轉(zhuǎn)移總量均較大,其中各地區(qū)碳排放轉(zhuǎn)入總量要大于碳排放轉(zhuǎn)出總量,且碳排放轉(zhuǎn)移凈值為正的地區(qū)主要分布在廣東省、江蘇省和浙江省等東部或中部發(fā)達(dá)的18個(gè)地區(qū),而碳排放轉(zhuǎn)移凈值為負(fù)的地區(qū)主要分布在山西、貴州和云南等西部或中部欠發(fā)達(dá)的12個(gè)地區(qū)。說明區(qū)域碳排放轉(zhuǎn)移存在于中國各省際區(qū)域之間,且當(dāng)前碳排放轉(zhuǎn)移以轉(zhuǎn)入為主、具有較為明顯的區(qū)域地理特征。
(2)從具體的空間轉(zhuǎn)移特征來看,中國省際區(qū)域間碳排放轉(zhuǎn)移具有較強(qiáng)的空間集聚特征,即其碳排放轉(zhuǎn)入或轉(zhuǎn)出主要表現(xiàn)為L-L模式和H-H模式,占60%左右,其中以L-L模式為主,也即中國省際區(qū)域碳排放轉(zhuǎn)移主要呈現(xiàn)低的碳排放轉(zhuǎn)移地區(qū)被低的碳排放轉(zhuǎn)移地區(qū)包圍的地理空間特征;而從具體地區(qū)結(jié)構(gòu)來看:表現(xiàn)為H-H模式的則主要是以江蘇、浙江等發(fā)達(dá)地區(qū)為主,但也有如遼寧和河北地區(qū)的碳排放轉(zhuǎn)入、遼寧和內(nèi)蒙古兩個(gè)地區(qū)的碳排放轉(zhuǎn)出也表現(xiàn)為H-H模式;西部地區(qū)或中部發(fā)展欠佳的地區(qū)主要表現(xiàn)為L-L模式;而中部地區(qū)則主要表現(xiàn)為L-H模式或H-L模式,其中是以碳排放轉(zhuǎn)移低的地區(qū)被高的地區(qū)包圍的比例較大。
(3)從區(qū)域碳排放轉(zhuǎn)移的經(jīng)濟(jì)溢出效應(yīng)來看,就區(qū)域碳排放轉(zhuǎn)入或轉(zhuǎn)出的單獨(dú)影響而言,區(qū)域無論是單獨(dú)的碳排放轉(zhuǎn)入還是轉(zhuǎn)出,大多數(shù)地區(qū)的碳排放轉(zhuǎn)入或轉(zhuǎn)出均能產(chǎn)生正向的經(jīng)濟(jì)增長效應(yīng);但若考慮到區(qū)域碳排放轉(zhuǎn)入或轉(zhuǎn)出共同存在的條件下,則區(qū)域碳排放轉(zhuǎn)移的經(jīng)濟(jì)溢出效應(yīng)主要表現(xiàn)為五種類型,各種類型均具有比較明顯的區(qū)域特征。
針對(duì)上述研究結(jié)論,本文也相應(yīng)給出了其產(chǎn)生的可能原因,并因地制宜地提出了碳排放合理轉(zhuǎn)移的調(diào)控對(duì)策和建議??梢?,挖掘區(qū)域碳排放轉(zhuǎn)移的空間轉(zhuǎn)移特征、揭示區(qū)域碳排放轉(zhuǎn)移的經(jīng)濟(jì)溢出效應(yīng)不但有助于促進(jìn)區(qū)域經(jīng)濟(jì)的快速發(fā)展,而且也有助于有效實(shí)現(xiàn)區(qū)域的碳減排目標(biāo)。然而,由于數(shù)據(jù)的限制,本文沒有進(jìn)行時(shí)間序列的對(duì)比分析,缺乏對(duì)區(qū)域碳排放轉(zhuǎn)移相關(guān)問題的變化趨勢(shì)分析,考慮到各種資源的動(dòng)態(tài)變化關(guān)系,中國省際區(qū)域碳排放轉(zhuǎn)移在空間轉(zhuǎn)移規(guī)律及其經(jīng)濟(jì)溢出效應(yīng)也勢(shì)必會(huì)相應(yīng)地發(fā)生變化,這些也將在后續(xù)的研究中進(jìn)一步考察。
(編輯:李琪)
參考文獻(xiàn)(References)
[1]Guan D, Refiner D M. Emissions Affected by Trade Among Developing Countries[J].Nature, 2009,462(7270):159.
[2]Manne A,Richels R G.The Kyoto Protocol: A Costeffective Strategy for Meeting Environmental Objectives? [J].Energy Journal,2000,21(Suppl):1-24.
[3]McKibbin W, Ross M T, Shackleton R, et al. Emissions Trading, Capital Flows and the Kyoto Protocol[J]. Energy Journal,1999, (3):287-333.
[4]Li Yun. The Costs of Implementing the Kyoto Protocol and Its Implications to China [J]. International Review for Environmental Strategies, 2000,1(1): 159-174.
[5]Kuik O, Gerlagh R. Trade Liberalization and Carbon Leakage [J]. Energy Journal, 2003, 24(3): 97-120.
[6]Babiker M H. Climate Change Policy, Market Structure, and Carbon Leakage[J]. Journal of International Economics, 2005, 65: 421-445.
[7]Shui B R C.The Role of CO2 Embodiment in USChina Trade[J].Energy Policy,2006,34(12): 4063-4068.
[8]Li Y, Hewitt C N.The Effect of Trade Between China and the UK on National and Global Carbon Dioxide Emissions[J].Energy Policy,2008,36(6):1907-1914.
[9]Weber C L, Matthews H S. Embodied Environmental Emissions in US International Trade,1997-2004[J]. Environ,Science & Technology, 2007,41(14):4875-4881.
[10]Schaeffer R, Leal A.The Embodiment of Carbon Associated with Brazilian Imports and Exports[J].Energy Conversion and Management,1996,37(6-8):955-960.
[11]Tunc G I, TürütAsik S,Akbostanci E. CO2 Emissions vs CO2 Responsibility:An Imputoutput Approach for the Turkish Economy[J].Energy Policy,2007,35(2):855-868.
[12]Ahmad N, Wyckoff A.Carbon Dioxide Emissions Embodied in International Trade of Goods[R].OECD STI Working Paper,2003.
[13]Peters G P,Hertwich E G. CO2 Embodied in International Trade with Implications for Global Climate Policy[J].Enrironmental Science and Technology,2008,42:1401-1407.
[14]McKibbin W, Ross M T, Shackleton R, et al.Emissions Trading, Capital flows and the Kyoto Protocol [J]. Energy Journal,1999(3): 287-333.
[15]李小平,盧現(xiàn)祥.國際貿(mào)易,污染產(chǎn)業(yè)轉(zhuǎn)移和中國工業(yè)CO2排放[J].經(jīng)濟(jì)研究,2010(1):15-26.[Li Xiaoping,Lu Xianxiang.International Trade,Pollution Industry Transfer and Chinese Industries CO2 Emissions[J].Economic Research Journal,2010(1):15-26.]
[16]姚亮,劉晶茹.中國八大區(qū)域間碳排放轉(zhuǎn)移研究[J].中國人口·資源與環(huán)境,2010,20(12):16-19.[Yao Liang,Liu Jingru.Transfer of Carbon Emission Between Chinas Eight Major Regions[J].China Population,Resources and Environment,2010,20(12):16-19.]
[17]李丁,汪云林,牛文元.出口貿(mào)易中的隱含碳計(jì)算:以水泥行業(yè)為例[J].生態(tài)經(jīng)濟(jì),2009,(2):58-60.[Li Ding,Wang Yunlin,Niu Wenyuan.Embodied Cardon in Export Trade:A Case Study of Cement Industry[J].Ecological Economy,2009,(2):58-60.]
[18]林光平,龍志和,吳梅.我國地區(qū)經(jīng)濟(jì)收斂的空間計(jì)量實(shí)證分析:1978-2002[J].經(jīng)濟(jì)學(xué)(季刊),2005,4(10):67-82.[Lin Guangping,Long Zhihe,Wu Mei.A Spatial Analysis of Regional Economic Convergence in China:1978-2002[J].China Economic Quarterly,2005,4(10):67-82.]
[19]王火根,沈利生.中國經(jīng)濟(jì)增長與能源消費(fèi)空間面板分析[J].數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究,2007,(12):98-107.[Wang Huogen,Shen Lisheng.A Spatial Panel Statistical Analysis on Chinese Economic Growth and Energy Consumption[J].The Journal of Quantitative and Technical Economics,2007, (12):98-107.]
[20]杜運(yùn)蘇,張為付.我國承接國際產(chǎn)業(yè)轉(zhuǎn)移的碳排放研究[J].南京社會(huì)科學(xué),2012,(11):22-28.[Du Yunsu,Zhang Weifu.Research on Chinas CO2 Emission Induced by Undertaking International Industry[J].Social Sciences in Nanjing,2012, (11):22-28.]
[21]Moran P. Notes on Continuous Stochastic Phenomena[J]. Biometrika,1950,37: 17-23.
[22]Lesage J P, Anselin L, Raymond J,et al. A Family of Geographically Weighted Regression Models in Advances in Spatial Econometrics [M].Berlin:SpringerVerlag,2004:241-264.
Characteristics and Economic Spillover Effect of the Regional Carbon Emissions Transfer
SUN Licheng1CHENG Faxin1LI Qun2
(1.School of Management, Jiangsu University,ZhenjiangJiangsu212013, China;2.Institute of
Quantitative Economics & Technical Economics, Chinese Academy of Social Science,Beijing 100732, China)
AbstractAccurately grasping the spatial transfer characteristics of the regional carbon emissions transferand clarifying the spillover effects is the basis for reasonably guiding the regional carbon emissions. In this paper, regarding the Chinese provincial region as research object, based on the inputoutput table, the provincial carbon emissions in and out is calculated by using the carbon emission coefficient method respectively. By constructing a spatial weight matrix based on the geographic and economic characteristics, the spatial distribution characteristics and its spillover effects of Chinese provincial carbon emissions transfer is studied by applying the Morans I index and geographically weighted regression model. The research results show that:①The Chinese provincial carbon emissions transfer amount is relatively larger, and the amount of the carbon transfer in is more than out, the more developed eastern and central regions have positive net transfer.②The Moran I of Chinese provincial carbon emissions in and out is 0.17 and 0.14, showed that Chinese provincial carbon emissions has some characteristics of spatial cluster in the whole.③In the local space, the Chinese provincial carbon transfer is showed as the L-L mode and H-H mode, and the central and eastern developed area is H-H mode, the western region and central underdeveloped area is the L-L model, while the central region is mainly the L-H mode or H-L mode.④The economic spillover type of Chinese provincial carbon transfer has five kinds with the regional characteristics of the overflow model, and economic spillover effect of Chinese provincial carbon transfer in is stronger than out. Finally, according to the results of this study, the possible causes are analyzed, and the paper puts forward the corresponding countermeasures and suggestions It is useful to optimize carbon emissions transfer path among the Chinese provinces and provide the important theoretical and practical basis for enhancing the economic spillover effect of Chinese provincial carbon emissionstransfer.
Key wordscarbon emissions transfer; economic spillover effect; Morans I index; geographically weighted regression model
[16]姚亮,劉晶茹.中國八大區(qū)域間碳排放轉(zhuǎn)移研究[J].中國人口·資源與環(huán)境,2010,20(12):16-19.[Yao Liang,Liu Jingru.Transfer of Carbon Emission Between Chinas Eight Major Regions[J].China Population,Resources and Environment,2010,20(12):16-19.]
[17]李丁,汪云林,牛文元.出口貿(mào)易中的隱含碳計(jì)算:以水泥行業(yè)為例[J].生態(tài)經(jīng)濟(jì),2009,(2):58-60.[Li Ding,Wang Yunlin,Niu Wenyuan.Embodied Cardon in Export Trade:A Case Study of Cement Industry[J].Ecological Economy,2009,(2):58-60.]
[18]林光平,龍志和,吳梅.我國地區(qū)經(jīng)濟(jì)收斂的空間計(jì)量實(shí)證分析:1978-2002[J].經(jīng)濟(jì)學(xué)(季刊),2005,4(10):67-82.[Lin Guangping,Long Zhihe,Wu Mei.A Spatial Analysis of Regional Economic Convergence in China:1978-2002[J].China Economic Quarterly,2005,4(10):67-82.]
[19]王火根,沈利生.中國經(jīng)濟(jì)增長與能源消費(fèi)空間面板分析[J].數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究,2007,(12):98-107.[Wang Huogen,Shen Lisheng.A Spatial Panel Statistical Analysis on Chinese Economic Growth and Energy Consumption[J].The Journal of Quantitative and Technical Economics,2007, (12):98-107.]
[20]杜運(yùn)蘇,張為付.我國承接國際產(chǎn)業(yè)轉(zhuǎn)移的碳排放研究[J].南京社會(huì)科學(xué),2012,(11):22-28.[Du Yunsu,Zhang Weifu.Research on Chinas CO2 Emission Induced by Undertaking International Industry[J].Social Sciences in Nanjing,2012, (11):22-28.]
[21]Moran P. Notes on Continuous Stochastic Phenomena[J]. Biometrika,1950,37: 17-23.
[22]Lesage J P, Anselin L, Raymond J,et al. A Family of Geographically Weighted Regression Models in Advances in Spatial Econometrics [M].Berlin:SpringerVerlag,2004:241-264.
Characteristics and Economic Spillover Effect of the Regional Carbon Emissions Transfer
SUN Licheng1CHENG Faxin1LI Qun2
(1.School of Management, Jiangsu University,ZhenjiangJiangsu212013, China;2.Institute of
Quantitative Economics & Technical Economics, Chinese Academy of Social Science,Beijing 100732, China)
AbstractAccurately grasping the spatial transfer characteristics of the regional carbon emissions transferand clarifying the spillover effects is the basis for reasonably guiding the regional carbon emissions. In this paper, regarding the Chinese provincial region as research object, based on the inputoutput table, the provincial carbon emissions in and out is calculated by using the carbon emission coefficient method respectively. By constructing a spatial weight matrix based on the geographic and economic characteristics, the spatial distribution characteristics and its spillover effects of Chinese provincial carbon emissions transfer is studied by applying the Morans I index and geographically weighted regression model. The research results show that:①The Chinese provincial carbon emissions transfer amount is relatively larger, and the amount of the carbon transfer in is more than out, the more developed eastern and central regions have positive net transfer.②The Moran I of Chinese provincial carbon emissions in and out is 0.17 and 0.14, showed that Chinese provincial carbon emissions has some characteristics of spatial cluster in the whole.③In the local space, the Chinese provincial carbon transfer is showed as the L-L mode and H-H mode, and the central and eastern developed area is H-H mode, the western region and central underdeveloped area is the L-L model, while the central region is mainly the L-H mode or H-L mode.④The economic spillover type of Chinese provincial carbon transfer has five kinds with the regional characteristics of the overflow model, and economic spillover effect of Chinese provincial carbon transfer in is stronger than out. Finally, according to the results of this study, the possible causes are analyzed, and the paper puts forward the corresponding countermeasures and suggestions It is useful to optimize carbon emissions transfer path among the Chinese provinces and provide the important theoretical and practical basis for enhancing the economic spillover effect of Chinese provincial carbon emissionstransfer.
Key wordscarbon emissions transfer; economic spillover effect; Morans I index; geographically weighted regression model
[16]姚亮,劉晶茹.中國八大區(qū)域間碳排放轉(zhuǎn)移研究[J].中國人口·資源與環(huán)境,2010,20(12):16-19.[Yao Liang,Liu Jingru.Transfer of Carbon Emission Between Chinas Eight Major Regions[J].China Population,Resources and Environment,2010,20(12):16-19.]
[17]李丁,汪云林,牛文元.出口貿(mào)易中的隱含碳計(jì)算:以水泥行業(yè)為例[J].生態(tài)經(jīng)濟(jì),2009,(2):58-60.[Li Ding,Wang Yunlin,Niu Wenyuan.Embodied Cardon in Export Trade:A Case Study of Cement Industry[J].Ecological Economy,2009,(2):58-60.]
[18]林光平,龍志和,吳梅.我國地區(qū)經(jīng)濟(jì)收斂的空間計(jì)量實(shí)證分析:1978-2002[J].經(jīng)濟(jì)學(xué)(季刊),2005,4(10):67-82.[Lin Guangping,Long Zhihe,Wu Mei.A Spatial Analysis of Regional Economic Convergence in China:1978-2002[J].China Economic Quarterly,2005,4(10):67-82.]
[19]王火根,沈利生.中國經(jīng)濟(jì)增長與能源消費(fèi)空間面板分析[J].數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究,2007,(12):98-107.[Wang Huogen,Shen Lisheng.A Spatial Panel Statistical Analysis on Chinese Economic Growth and Energy Consumption[J].The Journal of Quantitative and Technical Economics,2007, (12):98-107.]
[20]杜運(yùn)蘇,張為付.我國承接國際產(chǎn)業(yè)轉(zhuǎn)移的碳排放研究[J].南京社會(huì)科學(xué),2012,(11):22-28.[Du Yunsu,Zhang Weifu.Research on Chinas CO2 Emission Induced by Undertaking International Industry[J].Social Sciences in Nanjing,2012, (11):22-28.]
[21]Moran P. Notes on Continuous Stochastic Phenomena[J]. Biometrika,1950,37: 17-23.
[22]Lesage J P, Anselin L, Raymond J,et al. A Family of Geographically Weighted Regression Models in Advances in Spatial Econometrics [M].Berlin:SpringerVerlag,2004:241-264.
Characteristics and Economic Spillover Effect of the Regional Carbon Emissions Transfer
SUN Licheng1CHENG Faxin1LI Qun2
(1.School of Management, Jiangsu University,ZhenjiangJiangsu212013, China;2.Institute of
Quantitative Economics & Technical Economics, Chinese Academy of Social Science,Beijing 100732, China)
AbstractAccurately grasping the spatial transfer characteristics of the regional carbon emissions transferand clarifying the spillover effects is the basis for reasonably guiding the regional carbon emissions. In this paper, regarding the Chinese provincial region as research object, based on the inputoutput table, the provincial carbon emissions in and out is calculated by using the carbon emission coefficient method respectively. By constructing a spatial weight matrix based on the geographic and economic characteristics, the spatial distribution characteristics and its spillover effects of Chinese provincial carbon emissions transfer is studied by applying the Morans I index and geographically weighted regression model. The research results show that:①The Chinese provincial carbon emissions transfer amount is relatively larger, and the amount of the carbon transfer in is more than out, the more developed eastern and central regions have positive net transfer.②The Moran I of Chinese provincial carbon emissions in and out is 0.17 and 0.14, showed that Chinese provincial carbon emissions has some characteristics of spatial cluster in the whole.③In the local space, the Chinese provincial carbon transfer is showed as the L-L mode and H-H mode, and the central and eastern developed area is H-H mode, the western region and central underdeveloped area is the L-L model, while the central region is mainly the L-H mode or H-L mode.④The economic spillover type of Chinese provincial carbon transfer has five kinds with the regional characteristics of the overflow model, and economic spillover effect of Chinese provincial carbon transfer in is stronger than out. Finally, according to the results of this study, the possible causes are analyzed, and the paper puts forward the corresponding countermeasures and suggestions It is useful to optimize carbon emissions transfer path among the Chinese provinces and provide the important theoretical and practical basis for enhancing the economic spillover effect of Chinese provincial carbon emissionstransfer.
Key wordscarbon emissions transfer; economic spillover effect; Morans I index; geographically weighted regression model