国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

小細胞肺癌分子遺傳學(xué)研究進展

2014-06-01 09:08:37劉笛樊旼
中國癌癥雜志 2014年8期
關(guān)鍵詞:癌基因基因組位點

劉笛 樊旼

復(fù)旦大學(xué)附屬腫瘤醫(yī)院放療科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海200032

小細胞肺癌分子遺傳學(xué)研究進展

劉笛綜述 樊旼審校

復(fù)旦大學(xué)附屬腫瘤醫(yī)院放療科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海200032

小細胞肺癌(small cell lung cancer,SCLC)惡性程度高、預(yù)后差,現(xiàn)有的靶向藥物治療基本無效,迫切需要深入了解其分子特征從而篩選有效的治療靶點。二代測序等全基因組研究技術(shù)為腫瘤的研究、診治批量增加遺傳標志物,SCLC的遺傳位點亦不斷被發(fā)現(xiàn)和解讀。本文對近年SCLC分子遺傳特征的研究進展進行綜述。

小細胞肺癌;遺傳變異;基因表達譜;致癌信號通路

肺癌目前是全世界最常見的惡性實體腫瘤,其中小細胞肺癌(small cell lung cancer,SCLC)約占13%[1],絕大多數(shù)罹患者有長期吸煙史。與發(fā)病率較高的非小細胞肺癌(non-small cell lung cancer,NSCLC)相比,SCLC侵襲性更強,倍增時間更短,轉(zhuǎn)移更早,預(yù)后較差。盡管初治時SCLC對化療及放療的敏感性較高,但緩解期通常不持久,極易復(fù)發(fā)或轉(zhuǎn)移,二線治療療效差。

經(jīng)過40余年多項隨機研究的積累,SCLC臨床治療已經(jīng)形成規(guī)范,但近年來缺乏突破性進展,患者生存水平局限期停留在20%,廣泛期則停留在2%[1-2],全面、深入了解SCLC的分子遺傳特征,為后續(xù)研究提供研究基礎(chǔ)顯得尤為迫切。

基因組研究技術(shù)的不斷進步使研究者有可能從腫瘤全基因組層面來觀察基因改變,從而加速尋找和設(shè)計抗腫瘤藥物。本文將綜述近年全基因組技術(shù)在SCLC中的重要研究成果,描述所獲基因組結(jié)構(gòu)變異、突變譜、表達譜的特征,并闡述在SCLC中具有重要作用的下游信號轉(zhuǎn)導(dǎo)事件,希望為后續(xù)研究提供依據(jù)。

1 基因組特征

1.1 基因組結(jié)構(gòu)變異

基因組結(jié)構(gòu)變異(genomic structural variations,SVs)指DNA序列長度>1 kb的差異,包括DNA片段缺失、插入、重復(fù)、重排、倒位以及拷貝數(shù)變化(copy number variations,CNVs)。表1歸納了SCLC常見的SVs位點及所含基因,其中抑癌基因TP53、RB1、PTEN、FHIT、RASSF1A缺失及MYC基因家族(c-MYC,L-MYC,N-MYC)、bcl-2基因擴增已在早年的研究中被證實。隨著全基因組分析技術(shù)在SCLC中的廣泛應(yīng)用,更多的功能位點逐漸浮出水面。Dooley等[2]通過基于二代測序的CNV分析方法在小鼠SCLC模型中發(fā)現(xiàn)了核因子Ⅰ/B(nuclear factor Ⅰ/B,NFⅠB)基因擴增,并在人類SCLC中得到證實,而之前該基因的擴增只在前列腺癌和乳腺癌中被發(fā)現(xiàn)。該基因編碼與CATT盒結(jié)合的轉(zhuǎn)錄因子,文章作者進一步在小鼠SCLC模型中證實了其癌基因功能,但該基因在人類SCLC中的作用還有待深入研究。之后發(fā)表的兩項SCLC全基因組研究亦發(fā)現(xiàn)了NFIB擴增的存在,并提示其可能在SCLC發(fā)展的后期發(fā)揮作用[3-5]。此外,3項SCLC的全基因組研究均觀察到基因SOX2擴增,并完成了初步功能驗證[3-5]。性別確定區(qū)Y框蛋白2(sex determine region Y-box 2,SOX2)是一種干細胞相關(guān)核轉(zhuǎn)錄因子,通過與靶基因HMG結(jié)構(gòu)域特異結(jié)合而在調(diào)控胚胎及組織的發(fā)育、維持干細胞多能性、細胞不均等分裂和決定細胞命運方面發(fā)揮作用。該基因過表達已在包括肺鱗癌(約20%)在內(nèi)的多種腫瘤中被檢測到,影響這些腫瘤的生物學(xué)行為及預(yù)后,且其擴增范圍在SCLC中更加廣泛。有研究報道,SOX2可促使呼吸道前體細胞向基底細胞和神經(jīng)內(nèi)分泌細胞轉(zhuǎn)化,其持續(xù)高表達可以更好地維持端粒酶活性和穩(wěn)定性、激活Wnt和Notch等干細胞通路[6]。SOX2的上述作用與SCLC的臨床特征顯著相關(guān),為治療這一高度惡性腫瘤提供了新的方向。

表1 SCLC患者常見基因組結(jié)構(gòu)變異Tab. 1 Recurrent genomic structural variations in SCLC patients

1.2 突變譜及單核苷酸多態(tài)性

基因突變所致的癌基因活化和抑癌基因失活是腫瘤發(fā)生、發(fā)展中出現(xiàn)頻率較高的分子事件。在SCLC中,除早期發(fā)現(xiàn)的TP53、RB1、PIK3CA、CDKN2A、PTEN[1]突變外,其他位點因技術(shù)所限鮮有報道。Peifer等[3]通過對27例組織和2株SCLC細胞株進行全外顯子組測序發(fā)現(xiàn),SCLC突變率(平均7.4蛋白改變突變/100萬個堿基對)明顯高于乳腺癌、卵巢癌等8種腫瘤,且大部分突變?yōu)镃∶G>T∶A顛換,提示吸煙在該腫瘤發(fā)生中的作用[5,20]。作者進一步結(jié)合CNVs和轉(zhuǎn)錄組分析結(jié)果,提出基因TP53、RB1、PTEN、CREBBP、EP300、SLIT2、MLL、COBL、EPHA7驅(qū)動突變及MYC、MYCL、FGFR1擴增是SCLC重要的分子特征,而其中CREBBP、EP300、SLIT2均與組蛋白修飾過程相關(guān)。另一項基于42對SCLC及癌旁組織基因測序的研究[5]找出了22個體細胞熱點突變,并對這些突變聚集的基因家族和信號通路進行總結(jié)。該研究還發(fā)現(xiàn),與NSCLC相比,幾乎所有的SCLC樣本中都未檢測到K-ras基因突變。

單核苷酸多態(tài)性(single nucleotide polymorphisms,SNPs)作為第3代遺傳標志,決定基因的功能單位和人群遺傳變異的內(nèi)在特征,能夠反映個體表型、疾病易感性和對藥物、環(huán)境因子反應(yīng)的差異。近年的研究表明,SCLC的SNPs多發(fā)生于DNA修復(fù)基因、癌基因和抑癌基因、藥物代謝相關(guān)基因及凋亡相關(guān)基因等?,F(xiàn)有的研究顯示:堿基切除修復(fù)(base excision repair,BER)途徑中的8-羥基鳥嘌呤核苷酸酶編碼基因Val Met[21]、癌基因MYCL1 rs3134615[22]、抑癌基因TP53 Arg72Pro[23]可以增加罹患SCLC的易感性,X線修復(fù)交叉互補基因1(X-ray repair cross complementing group 1,XRCC1)Arg399Gln、8-羥基鳥嘌呤-DNA糖苷酶編碼基因Ser326Cys、嘌呤/嘧啶核酸內(nèi)切酶編碼基因Asp148Glu與SCLC的易感性可能無關(guān)[24-26]。此外,有研究報道上述基因中與XRCC1表達相關(guān)的SNPs[27]及TP53 Arg72Pro[28]高表達的SCLC患者的生存相關(guān);此外,癌基因YAP rs10895256、rs716274[29]、多藥耐藥基因2[30]、BCL-2-938CC[31]、端粒酶反轉(zhuǎn)錄酶基因rs402710[32]也與SCLC患者預(yù)后相關(guān)。

在一定程度上,SNPs還可用來預(yù)測化療療效。核苷酸切除修復(fù)途徑中的切除修復(fù)交叉互補基因ERCC6 C6530G等SNPs可能與SCLC患者對含鉑方案化療有效率及預(yù)后相關(guān)[33-34];多藥耐藥基因1 2677G>T和3435C>T可作為EP方案化療療效預(yù)測因子[35];死亡相關(guān)蛋白激酶3 rs11169748、甲基轉(zhuǎn)移酶樣6 rs2440915可輔助預(yù)測鉑類化療療效[36]。然而,上述SNPs位點的生物學(xué)意義還有待更大樣本研究的驗證。

2 轉(zhuǎn)錄組特征

2.1 基因表達譜

表2總結(jié)了在SCLC中常見的過表達基因。SCLC往往高表達PCNA、端粒酶基因等高增殖活性相關(guān)基因,BCL-2等凋亡抑制基因和SYP(Syn)、CHGA(CgA)、NCAM1(CD56)、ASCL1、IA-1、GRP等神經(jīng)內(nèi)分泌基因。近期,Byers等[17]綜合應(yīng)用蛋白組和轉(zhuǎn)錄組分析SCLC和NSCLC在分子水平差異時發(fā)現(xiàn),SCLC的一些受體酪氨酸激酶表達水平較低,PI3K和RAS/MAPK/ERK信號通路下調(diào),但包括組蛋白甲基化轉(zhuǎn)移酶(enhancer of zeste homolog 2,EZH2)在內(nèi)的E2F1調(diào)節(jié)因子都明顯上調(diào),特別是作為DNA修復(fù)蛋白及E2F1共激活因子的聚腺苷酸二磷酸核糖轉(zhuǎn)移酶-1[(poly (ADP-ribose) polymerase-1,PARP1],其mRNA和蛋白均過表達,當PARP1和EZH2基因敲除后SCLC細胞生長受到明顯抑制。Sato等[18]又進一步證實,EZH2所在的polycomb抑制復(fù)合體家族在SCLC中均過表達,且與患者的預(yù)后不良相關(guān)。已有臨床研究顯示,SCLC對 PARP1抑制劑有很強的敏感性,可延緩SCLC患者的進展,有良好的臨床應(yīng)用前景。

2.2 融合基因

隨著EML4-ALK融合基因在NSCLC中致病機制的闡釋,融合基因在腫瘤中的作用日益受到重視,轉(zhuǎn)錄組測序技術(shù)加速了該方面研究。Rudin等[5]在SCLC中發(fā)現(xiàn)了4個高頻融合基因并進行了RT-PCR驗證。其中RLF-MYCL1是SCLC中發(fā)生頻率最高(5/55)、報道最多的融合基因[4-5,41],融合形式致使癌基因MYCL1激活并過表達,導(dǎo)致了細胞的惡性轉(zhuǎn)化;通過siRNA抑制融合基因后SCLC細胞增殖明顯減慢。有研究提示[4-5,41],融合基因多發(fā)生在拷貝數(shù)擴增的位點,提示兩種事件可能并非獨立發(fā)生,或許可以用染色體碎裂(chromothripsis)解釋。SCLC患者中有少部分是從不吸煙者,融合基因在這些腫瘤中所起作用值得進一步研究。

表2 小細胞肺癌常見過表達基因Tab. 2 Genes commonly overexpressed in SCLC

3 信號轉(zhuǎn)導(dǎo)通路

3.1 PI3K/AKT/mTOR信號通路

以往的研究提示,SCLC中存在磷脂酰肌醇3激酶(PI3K)信號通路的組成性活化[42]和PI3K、PTEN的失活突變。此外,多種酪氨酸激酶受體(IGF1R、c-KIT、c-MET等)的過表達、70%患者AKT的磷酸化及細胞株mTOR和4EBP1蛋白表達的增加,似乎提示激活的PI3K/AKT/ mTOR信號通路影響著SCLC的增殖、抗凋亡及遷移。然而,PI3K抑制劑在目前的臨床研究中并未展現(xiàn)出預(yù)期療效,結(jié)合前述Byers等[17]發(fā)表的近乎相反的發(fā)現(xiàn),似乎提示PI3K通路在SCLC中可能并沒有像在NSCLC中那樣作用顯著,但不排除PI3K通路在SCLC某些亞型中的活化,故PI3K在SCLC中的地位還有待證實。

3.2 干細胞信號通路

SCLC是表達神經(jīng)內(nèi)分泌標志、臨床上最易復(fù)發(fā)和耐藥、分化程度最低的肺部腫瘤,發(fā)育及干細胞相關(guān)Hedgehog/Notch/Wnt通路為SCLC的研究及治療提供了新的視角。Notch通路可以調(diào)控氣管上皮是否向神經(jīng)內(nèi)分泌分化;氣管上皮前體細胞中Hedgehog通路的激活則可直接加速該細胞向神經(jīng)內(nèi)分泌細胞的轉(zhuǎn)化;支氣管上皮在煙草的作用下Wnt通路將激活,導(dǎo)致細胞增殖和腫瘤形成[43]。在SCLC中,Hedgehog通路呈現(xiàn)配體依賴的活化,其阻滯劑可在體內(nèi)及體外明顯抑制SCLC細胞的增殖[44],現(xiàn)已有多種Hedgehog抑制劑進入了臨床研究階段,結(jié)果令人期待。

4 結(jié)語

SCLC的發(fā)生、發(fā)展與多種分子遺傳變異相關(guān),全基因組技術(shù)的進步使得大量新位點甚至低頻、稀有變異的發(fā)現(xiàn)成為可能,這種以數(shù)據(jù)為導(dǎo)向的研究模式極大地提高了疾病研究的效率,為疾病的診治提供了更為有效的手段。但另一方面,人類基因組仍有很多未知,腫瘤基因組的復(fù)雜性對全基因組研究技術(shù)和生物信息學(xué)分析手段提出了更高要求,而高通量篩選結(jié)果仍需經(jīng)過傳統(tǒng)實驗的功能和機制驗證。新技術(shù)有望不斷推動SCLC的研究,從而為進一步理解、治療該疾病帶來希望。

[1] VAN MEERBEECK J P, FENNELL D A, De RUYSSCHER D K. Small-cell lung cancer [J]. Lancet, 2011, 378(9804): 1741-1755.

[2] DOOLEY A L, WINSLOW M M, CHIANG D Y, et al. Nuclear factor Ⅰ/B is an oncogene in small cell lung cancer [J]. Genes Dev, 2011, 25(14): 1470-1475.

[3] PEIFER M, FERNANDEZ-CUESTA L, SOS M L, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer [J]. Nat Genet, 2012, 44(10): 1104-1110.

[4] IWAKAWA R, TAKENAKA M, KOHNO T, et al. Genomewide identification of genes with amplification and/or fusion in small cell lung cancer [J]. Genes Chromosomes Cancer, 2013.

[5] RUDIN C M, DURINCK S, STAWISKI E W, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer [J]. Nat Genet, 2012, 44(10): 1111-1116.

[6] WANG S, CHANDLER-MILITELLO D, LU G, et al. Prospective identification, isolation, and profiling of a telomerase-expressing subpopulation of human neural stem cells, using sox2 enhancer-directed fluorescence-activated cell sorting [J]. J Neurosci, 2010, 30(44): 14635-14648.

[7] SOZZI G, VERONESE M L, NEGRINI M, et al. The FHIT gene 3p14.2 is abnormal in lung cancer [J]. Cell, 1996, 85(1): 17-26.

[8] DAMMANN R, LI C, YOON J H, et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3 [J]. Nat Genet, 2000, 25(3): 315-319.

[9] D’ANGELO S P, PIETANZA M C. The molecularpathogenesis of small cell lung cancer [J]. Cancer Biol Ther, 2010, 10(1): 1-10.

[10] TESTA J R, LIU Z, FEDER M, et al. Advances in the analysis of chromosome alterations in human lung carcinomas [J]. Cancer Genet Cytogenet, 1997, 95(1): 20-32.

[11] LEVIN N A, BRZOSKA P M, WARNOCK M L, et al. Identification of novel regions of altered DNA copy number in small cell lung tumors [J]. Genes Chromosomes Cancer, 1995, 13(3): 175-185.

[12] RIED T, PETERSEN I, HOLTGREVE-GREZ H, et al. Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization[J]. Cancer Res, 1994, 54(7): 1801-1806.

[13] MIURA I, GRAZIANO S L, CHENG J Q, et al. Chromosome alterations in human small cell lung cancer: frequent involvement of 5q [J]. Cancer Res, 1992, 52(5): 1322-1328.

[14] KIM Y H, GIRARD L, GIACOMINI C P, et al. Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification [J]. Oncogene, 2006, 25(1): 130-138.

[15] SCHAFFER B E, PARK K S, YIU G, et al. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma [J]. Cancer Res, 2010, 70(10): 3877-3883.

[16] LEVIN N A, BRZOSKA P, GUPTA N, et al. Identification of frequent novel genetic alterations in small cell lung carcinoma[J]. Cancer Res, 1994, 54(19): 5086-5091.

[17] BYERS L A, WANG J, NILSSON M B, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1 [J]. Cancer Discov, 2012, 2(9): 798-811.

[18] SATO T, KANEDA A, TSUJI S, et al. PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer [J]. Sci Rep, 2013, 3: 1911.

[19] ZHAO X, WEIR B A, LAFRAMBOISE T, et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis [J]. Cancer Res, 2005, 65(13): 5561-5570.

[20] PLEASANCE E D, STEPHENS P J, O’MEARA S, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure [J]. Nature, 2010, 463(7278): 184-190.

[21] KOHNO T, SAKIYAMA T, KUNITOH H, et al. Association of polymorphisms in the MTH1 gene with small cell lung carcinoma risk [J]. Carcinogenesis, 2006, 27(12): 2448-2454.

[22] XIONG F, WU C, CHANG J, et al. Genetic variation in an miRNA-1827 binding site in MYCL1 alters susceptibility to small-cell lung cancer [J]. Cancer Res, 2011, 71(15): 5175-5181.

[23] FERNANDEZ-RUBIO A, LOPEZ-CIMA M F, GONZALEZARRIAGA P, et al. The TP53 Arg72Pro polymorphism and lung cancer risk in a population of Northern Spain [J]. Lung Cancer, 2008, 61(3): 309-316.

[24] DAI L, DUAN F, WANG P, et al. XRCC1 gene polymorphisms and lung cancer susceptibility: a meta-analysis of 44 casecontrol studies [J]. Mol Biol Rep, 2012, 39(10): 9535-9547.

[25] LI Z, GUAN W, LI M X, et al. Genetic polymorphism of DNA base-excision repair genes (APE1, OGG1 and XRCC1) and their correlation with risk of lung cancer in a Chinese population [J]. Arch Med Res, 2011, 42(3): 226-234.

[26] DUAN W X, HUA R X, YI W, et al. The association between OGG1 Ser326Cys polymorphism and lung cancer susceptibility: a meta-analysis of 27 studies [J]. PLoS One, 2012, 7(4): e35970.

[27] SUN Z, CHEN J, AAKRE J, et al. Genetic variation in glutathione metabolism and DNA repair genes predicts survival of small-cell lung cancer patients [J]. Ann Oncol, 2010, 21(10): 2011-2016.

[28] SREEJA L, SYAMALA V, RAVEENDRAN P B, et al. p53 Arg72Pro polymorphism predicts survival outcome in lung cancer patients in Indian population [J]. Cancer Invest, 2008, 26(1): 41-46.

[29] WU C, XU B, YUAN P, et al. Genome-wide interrogation identifies YAP1 variants associated with survival of small-cell lung cancer patients [J]. Cancer Res, 2010, 70(23): 9721-9729.

[30] MULLER P J, DALLY H, KLAPPENECKER C N, et al. Polymorphisms in ABCG2, ABCC3 and CNT1 genes and their possible impact on chemotherapy outcome of lung cancer patients [J]. Int J Cancer, 2009, 124(7): 1669-1674.

[31] KNOEFEL L F, WERLE-SCHNEIDER G, DALLY H, et al. Polymorphisms in the apoptotic pathway gene BCL-2 and survival in small cell lung cancer [J]. J Thorac Oncol, 2011, 6(1): 183-189.

[32] XUN W W, BRENNAN P, TJONNELAND A, et al. Singlenucleotide polymorphisms (5p15.33, 15q25.1, 6p22.1, 6q27 and 7p15.3) and lung cancer survival in the European Prospective Investigation into Cancer and Nutrition (EPIC)[J]. Mutagenesis, 2011, 26(5): 657-666.

[33] YU D, ZHANG X, LIU J, et al. Characterization of functional excision repair cross-complementation group 1 variants and their association with lung cancer risk and prognosis [J]. Clin Cancer Res, 2008, 14(9): 2878-2886.

[34] 劉炬, 張雪梅, 張湘茹, 等. ERCC6 C6530G單核苷酸多態(tài)與局限期小細胞肺癌患者生存相關(guān) [J]. 中國癌癥雜志, 2006(11): 943-947.

[35] SOHN J W, LEE S Y, LEE S J, et al. MDR1 polymorphisms predict the response to etoposide-cisplatin combination chemotherapy in small cell lung cancer [J]. Jpn J Clin Oncol, 2006, 36(3): 137-141.

[36] TAN X L, MOYER A M, FRIDLEY B L, et al. Geneticvariation predicting cisplatin cytotoxicity associated with overall survival in lung cancer patients receiving platinumbased chemotherapy [J]. Clin Cancer Res, 2011, 17(17): 5801-5811.

[37] PEDERSEN N, MORTENSEN S, SORENSEN S B, et al. Transcriptional gene expression profiling of small cell lung cancer cells [J]. Cancer Res, 2003, 63(8): 1943-1953.

[38] SUGITA M, GERACI M, GAO B, et al. Combined use of oligonucleotide and tissue microarrays identifies cancer/testis antigens as biomarkers in lung carcinoma [J]. Cancer Res, 2002, 62(14): 3971-3979.

[39] BHATTACHARJEE A, RICHARDS W G, STAUNTON J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses [J]. Proc Natl Acad Sci U S A, 2001, 98(24): 13790-13795.

[40] BADZIO A, WYNES M W, DZIADZIUSZKO R, et al. Increased insulin-like growth factor 1 receptor protein expression and gene copy number in small cell lung cancer[J]. J Thorac Oncol, 2010, 5(12): 1905-1911.

[41] MAKELA T P, SAKSELA K, EVAN G, et al. A fusion protein formed by L-myc and a novel gene in SCLC [J]. EMBO J, 1991, 10(6): 1331-1335.

[42] MOORE S M, RINTOUL R C, WALKER T R, et al. The presence of a constitutively active phosphoinositide 3-kinase in small cell lung cancer cells mediates anchorageindependent proliferation via a protein kinase B and p70s6kdependent pathway [J]. Cancer Res, 1998, 58(22): 5239-5247.

[43] LEMJABBAR-ALAOUI H, DASARI V, SIDHU S S, et al. Wnt and Hedgehog are critical mediators of cigarette smokeinduced lung cancer [J]. PLoS One, 2006, 1: e93.

[44] GARCIA C M, ALONSO C G, APARICIO G G, et al. Stem cell and lung cancer development: blaming the Wnt, Hh and Notch signalling pathway [J]. Clin Transl Oncol, 2011, 13(2): 77-83.

Recent advances of molecular genetic characteristics of small cell lung cancer


LIU Di, FAN Min
(Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)

FAN Min E-mail: fanming@fudan.edu.cn

Small cell lung cancer (SCLC) is an aggressive malignancy with fairly poor prognosis. Innovative treatment based on improved understanding of the genetic alterations of SCLC is awaited. Recently, a number of potential targets or important oncogenic pathways have been identified by the next generation sequencing or other systematic genomic analysis in SCLC. In this review, we summarised the new findings of genetic characteristics in SCLC.

Small cell lung cancer; Genomic variation; Gene expression pro filing; Oncogenic pathway

10.3969/j.issn.1007-3969.2014.08.013

R734.2

A

1007-3639(2014)08-0636-06

2013-09-31

2014-01-09)

衛(wèi)生部臨床學(xué)科重點項目(No:衛(wèi)規(guī)財函[2010]439號)。

樊旼 E-mail:fanming@fudan.edu.cn

猜你喜歡
癌基因基因組位點
鎳基單晶高溫合金多組元置換的第一性原理研究
上海金屬(2021年6期)2021-12-02 10:47:20
牛參考基因組中發(fā)現(xiàn)被忽視基因
CLOCK基因rs4580704多態(tài)性位點與2型糖尿病和睡眠質(zhì)量的相關(guān)性
二項式通項公式在遺傳學(xué)計算中的運用*
抑癌基因P53新解讀:可保護端粒
健康管理(2016年2期)2016-05-30 21:36:03
探討抑癌基因FHIT在皮膚血管瘤中的表達意義
抑癌基因WWOX在口腔腫瘤的研究進展
基因組DNA甲基化及組蛋白甲基化
遺傳(2014年3期)2014-02-28 20:58:49
有趣的植物基因組
抑癌基因p53在裸鼴鼠不同組織中表達水平的差異
东山县| 白水县| 屯留县| 金堂县| 余姚市| 邯郸市| 墨脱县| 章丘市| 贵德县| 德兴市| 娱乐| 长沙县| 合阳县| 策勒县| 静安区| 镇平县| 安塞县| 永善县| 潞西市| 廉江市| 大冶市| 双鸭山市| 长子县| 高淳县| 新晃| 荔波县| 广丰县| 河北区| 玛多县| 淳安县| 苍梧县| 潜山县| 黔西县| 温泉县| 淅川县| 贡山| 安泽县| 广州市| 临清市| 北宁市| 砀山县|