田玉富 崔璨 謝龍飛等
摘要從吉爾吉斯白樺轉(zhuǎn)錄組文庫(kù)測(cè)序中獲得白樺BkWRKY1轉(zhuǎn)錄因子的cDNA序列,該序列包含2 189個(gè)堿基。序列比對(duì)和同源性分析表明,該基因cDNA序列包含1 728 bp的開(kāi)放閱讀框,可編碼575個(gè)氨基酸,5′非翻譯區(qū)(UTR)為119 bp,3′非翻譯區(qū)(UTR)為342 bp。該基因?qū)儆赪RKY transcription factor家族,含有2個(gè)WRKY結(jié)構(gòu)域,蛋白分子量為62.483 kD,理論等電點(diǎn)為7.32,負(fù)電荷殘基(Asp+Glu)總數(shù)為62個(gè),正電荷殘基(Arg+Lys)總數(shù)為62個(gè)。蛋白不含有信號(hào)肽,具有一定的親水性,為親水蛋白,無(wú)跨膜結(jié)構(gòu)。同源性比較與進(jìn)化樹(shù)分析表明,吉爾吉斯白樺WRKY蛋白與大豆和蒺藜苜蓿的WRKY蛋白在進(jìn)化上關(guān)系較近。該基因在0.6%NaHCO3脅迫處理后表達(dá)量增加,為上調(diào)表達(dá)基因。
關(guān)鍵詞吉爾吉斯白樺;WRKY轉(zhuǎn)錄因子;生物信息學(xué)分析
中圖分類號(hào)S188文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)0517-6611(2014)23-07703-07
基金項(xiàng)目中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(DL12CA13);東北林業(yè)大學(xué)大學(xué)生創(chuàng)新訓(xùn)練項(xiàng)目(201310225101)。
作者簡(jiǎn)介田玉富(1991- ),男,寧夏同心人,本科生,專業(yè):林學(xué)。*通訊作者,碩士研究生,從事植物資源學(xué)領(lǐng)域的研究。
收稿日期20140709在眾多的轉(zhuǎn)錄因子中,WRKY轉(zhuǎn)錄因子是當(dāng)前研究較為廣泛的植物特有的轉(zhuǎn)錄因子,最初是從甜馬鈴薯[1]、野燕麥[2]、歐芹[3]和擬南芥[4]中克隆獲得,由于其蛋白含有高度保守的60個(gè)氨基酸組成的WRKY結(jié)構(gòu)域而將其命名為WRKY轉(zhuǎn)錄因子[5]。WRKY結(jié)構(gòu)域的核心序列靠近氨基(N)末端,由WRKYGQK等7個(gè)保守的氨基酸殘基組成,能夠與基因啟動(dòng)子中的(T)(T)TGAC(C/T)序列(W盒)發(fā)生特異性結(jié)合,從而調(diào)節(jié)基因的表達(dá),參與多種與植物生長(zhǎng)發(fā)育、脅迫應(yīng)答和物質(zhì)代謝等有關(guān)的重要生理過(guò)程;而鋅指結(jié)構(gòu)位于羧基(C)末端。根據(jù)WRKY轉(zhuǎn)錄因子中WRKY結(jié)構(gòu)域的個(gè)數(shù)以及鋅指的類型將其分為3個(gè)大組。1.1試驗(yàn)材料一年生吉爾吉斯白樺(Betula kirghisorum)葉片。
1.2方法
1.2.1BkWRKY1基因的克隆及序列分析。構(gòu)建了0.6% NaHCO3 脅迫下吉爾吉斯白樺葉片組織的轉(zhuǎn)錄組測(cè)序文庫(kù),通過(guò)對(duì)轉(zhuǎn)錄組文庫(kù)隨機(jī)測(cè)序,獲得BkWRKY1基因cDNA序列。采用NCBI 的開(kāi)放讀碼框(ORF founder)尋找軟件(http://www.ncbi.nlm.nih.gov/gorf/gorf.html),確定該基因的開(kāi)放讀碼框;采用ProtParam(http://web.expasy.org/protparam/)軟件計(jì)算該基因的分子量、等電點(diǎn)、親水性。
1.2.2BkWRKY1蛋白家族、保守區(qū)及二級(jí)結(jié)構(gòu)預(yù)測(cè)。采用pfam27.0(http://pfam.sanger.ac.uk/)軟件預(yù)測(cè)蛋白家族,采用BlastP(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)預(yù)測(cè)保守區(qū),采用SOPMA(http://npsa-pbil.ibcp.fr/cgi-bin /secpred_sopma.pl)預(yù)測(cè)BkWRKY1蛋白的二級(jí)結(jié)構(gòu)。
1.2.3BkWRKY1信號(hào)肽、疏水性及跨膜結(jié)構(gòu)預(yù)測(cè)。采用SignalP4.1(http://www.cbs.dtu.dk/services/SignalP/)進(jìn)行信號(hào)肽預(yù)測(cè),采用ProScal(http://web.expasy.org/protscale/)進(jìn)行蛋白疏水性預(yù)測(cè)。用TMHMM程序(http://www.cbs.dtu.dk/services/TMHMM)對(duì)BkWRKY1進(jìn)行跨膜結(jié)構(gòu)預(yù)測(cè)。
1.2.4序列相似性分析及進(jìn)化樹(shù)的構(gòu)建。采用BlastP尋找相似性序列,并選擇與其相似性高的10種不同植物WRKY蛋白的氨基酸序列,采用ClustalW2(http://www.ebi.ac.uk/Tools /msa/ clustalw2/)進(jìn)行多序列比對(duì);同時(shí)用MEGA6軟件構(gòu)建上述11種植物WRKY蛋白的氨基酸序列系統(tǒng)進(jìn)化樹(shù)。
1.2.50.6% NaHCO3脅迫處理前后基因表達(dá)量的分析?;虮磉_(dá)量的計(jì)算使用RPKM法[8],以RPKM值估計(jì)BkWRKY1基因的表達(dá)量,基因表達(dá)量符合FDR≤0.001,且log2Ratio|≥1的基因?yàn)轱@著差異表達(dá)基因。其中,Ratio為脅迫處理后RPKM值與對(duì)照組RPKM值的比值,log2Ratio為0.6%NaHCO3脅迫處理后BkWRKY1基因相對(duì)于對(duì)照組BkWRKY1基因表達(dá)量的變化。
2結(jié)果與分析
2.1吉爾吉斯白樺BkWRKY1基因序列與推斷的氨基酸序列從鹽脅迫后的吉爾吉斯白樺葉片轉(zhuǎn)錄組文庫(kù)中測(cè)序獲得了BkWRKY1基因的cDNA序列,測(cè)序結(jié)果顯示,該基因cDNA包含2 189個(gè)堿基,序列比對(duì)和同源性分析表明,該基因cDNA序列包含1 728 bp的開(kāi)放閱讀框,編碼575個(gè)氨基酸,5′非翻譯區(qū)(UTR)為119 bp,3′非翻譯區(qū)(UTR)為342 bp。ProtParam 預(yù)測(cè)該蛋白的分子量為62.483 kD,理論等電點(diǎn)為7.32,負(fù)電荷殘基(Asp+Glu)總數(shù)為62個(gè),正電荷殘基(Arg+Lys)總數(shù)是62個(gè)。
2.2蛋白家族、保守區(qū)及二級(jí)結(jié)構(gòu)預(yù)測(cè)對(duì)獲得的基因推導(dǎo)的氨基酸序列用BlastP預(yù)測(cè)蛋白保守區(qū),發(fā)現(xiàn)了WRKY結(jié)構(gòu)域,位于227~285、402~461氨基酸之間含有WRKY蛋白的保守序列,pfam蛋白預(yù)測(cè)表明,與其對(duì)應(yīng)的蛋白質(zhì)家族WRKY DNA-domain family,以上分析表明該基因?qū)儆赪RKY transcription factor家族。SOPMA軟件預(yù)測(cè)結(jié)果表明BkWRKY1蛋白的二級(jí)結(jié)構(gòu)以隨機(jī)卷曲為主。注:ATG為起始密碼子;*為終止密碼子。
圖2BkWRKY1基因的cDNA序列及由此推導(dǎo)的氨基酸序列2.3信號(hào)肽、疏水性及跨膜結(jié)構(gòu)分析通過(guò)signalp 4.1預(yù)測(cè),該蛋白不含有信號(hào)肽。ProScal蛋白親水、疏水性預(yù)測(cè)表),蛋白疏水性最大值:1.789,疏水性最小值:-3.389,疏水平均值為-0.800,具有一定的親水性。并根據(jù)ProtParam軟件預(yù)測(cè)Grand average of hydropathicity(GRAVY):-0.777,所以該蛋白質(zhì)為親水蛋白。TMHMM程序預(yù)測(cè)結(jié)果表明,在BkWRKY1長(zhǎng)度為575個(gè)氨基酸的蛋白序列中無(wú)跨膜結(jié)構(gòu)。
2.4吉爾吉斯白樺等物種BkWRKY1基因的多序列比對(duì)分析用推導(dǎo)的氨基酸序列與蛋白質(zhì)數(shù)據(jù)庫(kù)進(jìn)行同源性比較,其氨基酸序列與川桑(Morus notabilis,EXB67429.1)、煙草(Theobroma cacao,XP_007020620.1)、蓖麻(Ricinus communis、XP_002529048.1)、甜橙(Citrus sinensis,XP_006474948.1)、草莓(Fragaria vesca,XP_004294460.1)、大豆(Glycine max,XP_003553015.1)、葡萄(Vitis vinifera,XP_002274204.2)、麻風(fēng)樹(shù)(Jatropha curcas,AGJ52155.1)、楊樹(shù)(Populus trichocarpa,XP_002298853.1)、蒺藜苜蓿(Medicago truncatula,XP_ 003600259.1)等植物WRKY轉(zhuǎn)錄因子的氨基酸序列進(jìn)行兩兩比對(duì),相似系數(shù)分別為72%、71%、70%、69%、69%、68%、68%、68%、66%、66%,相似性較高。氨基酸序列多重比對(duì)結(jié)果用MEGA6軟件對(duì)該基因及其他物種WRKY轉(zhuǎn)錄因子的氨基酸序列進(jìn)行多序列比對(duì),繪制分子進(jìn)化樹(shù),進(jìn)化分析結(jié)果表明,吉爾吉斯白樺WRKY蛋白與大豆和蒺藜苜蓿的WRKY蛋白在進(jìn)化上關(guān)系較近。
疏水性分析42卷23期田玉富等吉爾吉斯白樺BkWRKY1基因克隆與序列分析2.50.6% NaHCO3脅迫處理后BkWRKY1基因的表達(dá)量測(cè)得BkWRKY1基因?qū)φ战M和脅迫處理后的RPKM值分別為19.803 1和23.622 4,log2Ratio為0.254 4,表明該基因在0.6% NaHCO3脅迫處理后表達(dá)量增加,為上調(diào)表達(dá)基因(圖8)。
3結(jié)論與討論
以白樺轉(zhuǎn)錄組文庫(kù)獲得的基因序列為信息來(lái)源,從中克隆得到了白樺BkWRKY1基因,屬于WRKY family transcription factor家族,該基因含有2個(gè)WRKY結(jié)構(gòu)域,可編碼575個(gè)氨基酸,對(duì)應(yīng)蛋白的分子量為62.483 kD,理論等電點(diǎn)為7.32,蛋白不含有信號(hào)肽,具有一定的親水性,為親水蛋白,不含有跨膜結(jié)構(gòu)。同源性比較與進(jìn)化樹(shù)分析表明,吉爾吉斯白樺WRKY蛋白與大豆和蒺藜苜蓿的WRKY蛋白在進(jìn)化關(guān)系上較近。0.6%NaHCO3脅迫處理后BkWRKY1基因上調(diào)表達(dá)。
WRKY轉(zhuǎn)錄因子在植物界中分布廣泛,目前,發(fā)現(xiàn)辣椒[9]、油菜[10]、玉米[11]、番木瓜[12]、苜蓿[13]、楊樹(shù)[14]、蘋(píng)果[15]、森林草莓[16]、水稻[17]等多個(gè)種屬植物中均含有WRKY轉(zhuǎn)錄因子。WRKY轉(zhuǎn)錄因子參與植物的多種生理生化與生長(zhǎng)發(fā)育過(guò)程,在植物應(yīng)對(duì)外界逆境脅迫時(shí)發(fā)揮十分重要的功能。如參與側(cè)根的生長(zhǎng)[18-20],調(diào)控衰老反應(yīng)[21-23],調(diào)控新陳代謝[24-25],抑制種子的萌發(fā)[26-29],調(diào)控非生物脅迫[30-33],參與生物脅迫[34-49],參與抗病相關(guān)信號(hào)轉(zhuǎn)導(dǎo)途徑[50-55]。在鹽脅迫條件下,許多植物組織器官中的WRKY基因能夠作出積極的響應(yīng),上調(diào)或下調(diào)表達(dá)。QIU等[56]研究水稻中13個(gè)WRKY基因,指出其中9個(gè)基因能對(duì)NaCl做出響應(yīng);研究發(fā)現(xiàn)擬南芥可以忍受150 mmol/L NaCl脅迫,脅迫處理后WRKY17和WRKY33上調(diào)表達(dá),WRKY17在誘導(dǎo)脅迫6h時(shí)達(dá)最高峰隨后逐漸降低,而WRKY33的豐度在整個(gè)處理過(guò)程都保持很高;處理48h時(shí)WRKY25表達(dá)至最高峰,WRKY轉(zhuǎn)錄因子在鹽脅迫反應(yīng)中具有重要作用[57]。150 mmol/L NaCl脅迫下,小麥根中WRKY基因表達(dá)量隨脅迫時(shí)間的延長(zhǎng)而逐漸增加;莖中WRKY基因在脅迫1 h時(shí)達(dá)到最大值,而隨脅迫時(shí)間的延長(zhǎng)逐漸下降,由此可知對(duì)于鹽脅迫,其根比莖敏感[58]。 珠美海棠幼苗在150 mmol/L NaCl脅迫處理后,MzWRKY19~MzWRKY27等共8個(gè)基因的表達(dá)無(wú)明顯變化;葉片中有15個(gè)WRKY基因的表達(dá)受鹽脅迫誘導(dǎo)、1個(gè)基因受鹽脅迫抑制、9個(gè)基因的表達(dá)無(wú)明顯變化[59]。200 mmol/L NaCl能強(qiáng)烈誘導(dǎo)MhWRKY40b表達(dá),且脅迫6h時(shí)基因相對(duì)表達(dá)量達(dá)到最高,說(shuō)明MhWRKY40b能夠響應(yīng)鹽脅
圖6氨基酸序列的多重比對(duì)圖7白樺等11個(gè)物種的WRKY序列的系統(tǒng)進(jìn)化樹(shù)圖80.6%NaHCO3脅迫處理后BkWRKY1基因的表達(dá)量迫,并有可能在鹽脅迫反應(yīng)中起到了重要調(diào)控作用[60]。
吉爾吉斯白樺BkWRKY1能夠?qū)?.6%NaHCO3脅迫作出上調(diào)表達(dá)的響應(yīng),但具體的響應(yīng)機(jī)制還不清楚。因此,有待于進(jìn)一步研究鹽脅迫條件下吉爾吉斯白樺BkWRKY1基因及WRKY家族其他成員在抗鹽過(guò)程中的功能,為選育抗鹽堿的樺樹(shù)品種提供試驗(yàn)依據(jù)。
參考文獻(xiàn)
[1] ISHIGURO S,NAKAMURA K.Characterization of a cDNA encoding a novel DNA- binding protein,SPF1,that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato[J].Mol Gen Genet,1994,244:563-571.
[2] RUSHTON P J,MACDONALD H,HUTTLY A K,et al.Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of a-Amy2 genes[J].Plant Molecular Biology,1995,29(4):691-702.
[3] RUSHTON P J,TORRES J T,PARNISKE M,et al.Interaction of elicitor-induced DNA- binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J].The EMBO Journal,1996,15(20):5690-5700.
[4] PATER S D,GRECO V,PHAM K,et al.Characterization of a zinc-Dependent transcriptional activator from Arabidopsis[J].Nucleic Acids Resarch,1996,24(23):4624-4631.
[5] EULGEM T,RUSHTON P J,SCHMELZER E,et al.Early nuclear events in plant defense signaling:rapid gene activation by WRKY transcription factors[J].EMBO Journal,1999,18(17):4689-4699.
[6] 賈翠玲,侯和勝.植物WRKY轉(zhuǎn)錄因子的結(jié)構(gòu)特點(diǎn)及其在植物防衛(wèi)反應(yīng)中的作用[J].天津農(nóng)業(yè)科學(xué),2010,16(2):21-26.
[7] EULGEM T,RUSHTON P J,ROBATZEK S,et al.The WRKY superfamily of plant transcription factors[J].Trends in Plant Science,2000,5(5):200-206.
[8] MORTAZAVI A,WILLIAMS B A,MCCUE K,et al.Mapping and quantifying mammalian transcriptomes by RNA-Seq.Nat Methods,2008,5(7):621-628.
[9] 王育娜.辣椒WRKY轉(zhuǎn)錄因子cDNA的分離與功能鑒定[D].福州:福建農(nóng)林大學(xué),2008.
[10] 薛華,張紅巖,李小艷,等.油菜矮稈突變WRKY轉(zhuǎn)錄因子cDNA克隆及表達(dá)分析[J].西北植物學(xué)報(bào),2008,28(3):452-458.
[11] 黎華.玉米WRKY家族轉(zhuǎn)錄因子基因ZmWRKY33的克隆及功能分析[D].揚(yáng)州:揚(yáng)州大學(xué),2011.
[12] 潘林杰.番木瓜WRKY轉(zhuǎn)錄因子的基因表達(dá)譜及其功能的初步研究[D].武漢:華中農(nóng)業(yè)大學(xué),2011.
[13] 江騰,林勇祥,劉雪,等.苜蓿全基因組WRKY轉(zhuǎn)錄因子基因的分析[J].草業(yè)學(xué)報(bào),2011,20(3):211-218.
[14] 何紅升.楊樹(shù)全基因組WRKY基因的鑒定及表達(dá)分析[D].合肥:安徽農(nóng)業(yè)大學(xué),2012.
[15] 許瑞瑞,張世忠,曹慧,等.蘋(píng)果WRKY轉(zhuǎn)錄因子家族基因生物信息學(xué)分析[J].園藝學(xué)報(bào),2012,39(10):2049-2060.
[16] 苗立祥,張?jiān)コ瑮钚し?,?森林草莓全基因組WRKY轉(zhuǎn)錄因子基因的鑒定與分析[J].核農(nóng)學(xué)報(bào),2012,26(8):1124-1131.
[17] 鄂志國(guó),王磊.水稻W(wǎng)RKY基因家族功能研究進(jìn)展[J].核農(nóng)學(xué)報(bào),2012,26(5):750-755.
[18] ZHOU Q Y,TIAN A G,ZOU H F,et al.Soybean WRKY-type transcription factor genes,GmWRKY13,GmWRKY21,and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J].Plant Biotechnology Journal,2008,6(5):486-503.
[19] DEVAIAH B N,KARTHIKEYAN A S,RAGHOTHAMA K G.WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis[J].Plant Physiology,2007,143(4):1789-1801.
[20] ZHANG J,PENG Y L,GUO Z J.Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants[J].Cell Research,2008,18(4):508-521.
[21] ROBATZEK S,SOMSSICH I E.A new member of the Arabidopsis WRKY transcription factor family,AtWRKY6,is associated with both senescence- and defence-related processes[J].Plant Journal,2001,28(2):123-133.
[22] ULKER B,MUKHTAR M S,SOMSSICH I E.The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling Pathways[J]. Planta,2007,226(1):125-137.
[23] JING S J,ZHOU X,SONG Y,et al.Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis[J].Plant Growth Regulation,2009,58(2):181-190.
[24] SUN C,PALMQVIST S,OLSSON H,et al.A novel WRKY transcription factor,SUSIBA2,participates in sugar Signaling in barley by binding to the sugar-responsive elements of the iso1 promoter[J].Plant Cell,2003,15(9):2076-2092.
[25] XU Y H,WANG J W,WANG S,et al.Characterization of GaWRKY1,a cotton transcription factor that regulates the sesquiterpene Synthase gene(+)-δ-cadinene synthase-A[J].Plant Physiology,2004,135(1):507-515.
[26] ZHANG Z L,XIE Z,ZOU X L,et al.A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling Pathway in aleurone cells[J].Plant Physiology,2004,134(4):1500-1513.
[27] XIE Z,ZHANG Z L,ZOU X L,et al.Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin Signaling in aleurone cells[J].The Plant Journal,2006,46(2):231-242.
[28] XIE Z,ZHANG Z L,HANZLIK S,et al.Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a Pathway involving an abscisic- acid-inducible WRKY gene[J].Plant Molecular Biology,2007,64(3):293-303.
[29] ZOU X,NEUMAN D,SHEN Q J.Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells[J].Plant Physiology,2008,148(1):176-186.
[30] WEI W,ZHANG Y,HAN L,et al.A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic Stress tolerance of transgenic tobacco[J].Plant Cell reports,2008,27(4):795-803.
[31] CHEN Y F,LI L Q,XU Q,et al.The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to Low Pi stress in Arabidopsis[J].The Plant Cell Oline,2009,21(11):3554-3566.
[32] JIANG Y,DEYHOLOS M K.Functional characterization of Arabidopsis NaCl- inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J].Plant Molecular Biology,2009,69(1/2):91-105.
[33] WU X,SHIROTO Y,KISHITANI S,et al.Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J].Plant Cell reports,2009,28(1):21-30.
[34] YANG B,JIANG Y Q,RAHMAN M H,et al.Identification and expression analysis of WRKY transcription factor genes in canola(Brassica napus L.)in response to fungal pathogens and hormone treatments[J].BMC Plant Biology,2009,9(1):68.
[35] KIM K C,LAI Z,F(xiàn)AN B,et al.Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J].The Plant Cell Oline,2008,20(9):2357-2371.
[36] RYU H S,HAN M,LEE S K,et al.A comprehensive expression analysis of the W RKY gene superfamily in rice plants during defense response[J].Plant Cell Reports,2006,25(8):836-847.
[37] ZHENG Z,QAMAR S A,CHEN Z X,et al.Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J].The Plant Journal,2006,48(4):592-605.
[38] KALDE M,BARTH M,SOMSSICH I E,et al.Members of the Arabidopsis WRKY group Ⅲ transcription factors are part of different plant defense signaling pathways [J].Molecular Plant-microbe Interactions,2003,16(4):295-305.
[39] KNOTH C,RINGLER J,DANGL J L,et al.Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica [J].Molecular Plant-microbe Interactions,2007,20(2):120-128.
[40] LIU X Q,BAI X Q,QIAN Q,et al.OsWRKY03,a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1[J].Cell Research,2005,15(8):593-603.
[41] CATALINO N J,SOMSSICH I E,ROBY D,et al.The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana[J].The Plant Cell Oline,2006,18(11):3289-3302.
[42] OH S K,YI S Y,YU S H,et al.CaWRKY2,a chili pepper transcription factor,is rap idly induced by incompatible plant pathogens[J].Molecular Cells,2006,22(1):58-64.
[43] XU X P,CHEN C H,F(xiàn)AN B F,et al.Physical and functional interactions between pathogen-induced Arabidopsis WRKY18,WRKY40,and WRKY60 transcription factors[J].The Plant Cell Oline,2006,18(5):1310-1326.
[44] LIPPOK B,BIRKENBIHL R P,RIVORY G,et al.Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements[J].Molecular Plant-microbe Interactions,2007,20(4):420-429.
[45] ZHENG Z Y,MOSHER S L,F(xiàn)AN B F,et al.Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae[J].
BMC Plant Biology,2007,7(2):1-13.
[46] YANG P Z,CHEN C H,WANG Z,et al.A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter[J].The Plant Journal,1999,18(2):141-149.
[47] YODA H,OGAWA M,YAMAGUCHI Y,et al.Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants[J].Molecular Genetics Genomics,2002,267(2):154-161.
[48] PARK C J,SHIN Y C,LEE B J,et al.A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to tobacco mosaic virus and Xanthomonas campestris[J].Planta,2006,223(2):168-179.
[49] CORMACK R S,EULGEM T,RUSHTON P J,et al.Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley[J].Biochimica et Biophysica Acta,2002,1576(1):92-100.
[50] CHEN C H,CHEN Z X.Potentiation of developmentally regulated plant defense r esponse by AtWRKY18,a pathogen-induced Arabidopsis transcription factor[J].Plant Physiology,2002,129(2):706-716.
[51] LIU X Q,BAI X Q,WANG X J,et al.OsWRKY71,a rice transcription factor,is involved in rice defense response[J].Plant Physiology,2007,164(8):969-979.
[52] ISHIDA T,HATTORI S,SANO R,et al.Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation[J].Plant Cell,2007,19(8):2531-2543.
[53] MCGRATH K C,DOMBRECHT B,MANNERS J M,et al.Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression[J].Plant Physiology,2005,139(2):949-959.
[54] MAO P,DUAN M R,WEI C H,et al.WRKY62 transcription factor acts down stream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression[J].Plant Cell Physiology,2007,48(6):833-842.
[55] QIU D Y,XIAO J,DING X H,et al.OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling [J].Molecular Plant-microbe Interactions,2007,20(5):492-499.
[56] QIU Y,JING S,F(xiàn)U J,et al.Cloning and analysis of expression profile of 13WRKY genes in rice[J].Chinese Science Bulletin,2004,49(20):2159-2168.
[57] JIANG Y,DEYHOLOS M K.Comprehensive transcriptional profiling of NaCl- stressed Arabidopsis roots reveals novel classes of responsive genes[J].BMC Plant Biology,2006,6(1):25.
[58] KAWAURA K,MOCHIDA K,OGIHARA Y.Genome-wide analysis for identification of salt-responsive genes in common wheat[J].Functional & Integrative Genomics,2008,8(3):277-286.
[59] 蔣阿維,張素維,孫楊吾,等.珠美海棠MzWRKY基因家族鹽脅迫應(yīng)答模式研究[J].園藝學(xué)報(bào),2010,37(8):1213-1219.
[60] 羅昌國(guó),渠慎春,張計(jì)育,等.湖北海棠MhWRKY40b在幾種脅迫下的表達(dá)分析[J].園藝學(xué)報(bào),2013,40(1):1-9.安徽農(nóng)業(yè)科學(xué),Journal of Anhui Agri. Sci.2014,42(23):