国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

氧化應(yīng)激與血液系統(tǒng)疾病

2014-04-15 06:27:44汪海濤朱宏麗
關(guān)鍵詞:溶血性骨髓貧血

汪海濤,林 潔,朱宏麗

解放軍總醫(yī)院 老年血液科,北京 100853

氧化應(yīng)激與血液系統(tǒng)疾病

汪海濤,林 潔,朱宏麗

解放軍總醫(yī)院 老年血液科,北京 100853

最新研究發(fā)現(xiàn),氧化應(yīng)激在造血干細(xì)胞穩(wěn)態(tài)的維持和溶血性疾病、免疫性血小板減少癥、白血病等多種血液系統(tǒng)疾病的發(fā)生發(fā)展中起著重要作用。本文對氧化應(yīng)激與上述血液系統(tǒng)疾病的關(guān)系進(jìn)行綜述。

氧化應(yīng)激;溶血;免疫性血小板減少癥;白血病

氧化與抗氧化是人體固有的生理過程,氧化過程中產(chǎn)生的自由基可作為信號分子,參與機體的防御反應(yīng)、血管生成及生物合成。但在一些病理因素下,氧化與抗氧化系統(tǒng)失衡,就會產(chǎn)生氧化應(yīng)激,造成細(xì)胞凋亡、組織損傷。近幾年研究發(fā)現(xiàn)氧化應(yīng)激參與了多種血液系統(tǒng)疾病的發(fā)生發(fā)展,本文就其研究進(jìn)展綜述如下[1-3]。

1 氧化應(yīng)激

氧化應(yīng)激最早由美國Sohal等[4]在1985年提出,它是指機體在感染、缺氧等病理狀態(tài)下,氧化和抗氧化系統(tǒng)失衡,產(chǎn)生過多的活性氧自由基(reactive oxygen species,ROS)或活性氮自由基(reactive nitrogen species,RNS),如果機體不能及時清除這些活性分子,就會造成組織損傷,甚至發(fā)生疾病,稱為氧化應(yīng)激[5-6]。氧化系統(tǒng)主要由自由基組成,它包括過氧根離子、羥氧自由基、過氧化氫、一氧化氮等。機體的正常代謝會產(chǎn)生一定量的自由基,生理狀態(tài)下它可作為信號分子,參與機體的防御反應(yīng)、血管生成及生物合成(如甲狀腺素);但過多的自由基會引起機體產(chǎn)生氧化應(yīng)激,引起損傷[7]。抗氧化系統(tǒng)可以分為酶促和非酶促抗氧化系統(tǒng),前者主要催化過氧化物質(zhì)降解,包括超氧化物歧化酶、過氧化氫酶、谷胱甘肽過氧化物酶等; 后者為小分子抗氧化劑,包括維生素C、維生素E、還原型谷胱甘肽、血紅蛋白、褪黑素等。它們從不同途徑清除體內(nèi)的自由基,相互之間協(xié)同作用,達(dá)到對細(xì)胞和組織的全面保護(hù)。

2 氧化應(yīng)激與造血干細(xì)胞穩(wěn)態(tài)的維持

造血干細(xì)胞(hematopoietic stem cells,HSC)主要存在于紅骨髓中,約占骨髓有核細(xì)胞的0.5%,具有自我更新和分化產(chǎn)生各系祖細(xì)胞的能力,二者保持動態(tài)平衡。若自我更新過度可導(dǎo)致腫瘤(如白血病)發(fā)生;若分化增加,會造成干細(xì)胞池的過早耗竭。正常情況下,75%的HSC停留在細(xì)胞周期的G0期(靜止期),20%處于G1期,而處于分裂期的細(xì)胞不足5%[8]。HSC只有處于靜止期才能維持自我更新,當(dāng)受到外界刺激時(如氧化應(yīng)激、代謝紊亂、DNA損傷等),HSC離開骨髓中的龕室,進(jìn)入細(xì)胞周期并開始分化,并可能導(dǎo)致骨髓衰竭[9]。近年研究發(fā)現(xiàn)氧化應(yīng)激在造血干細(xì)胞自身穩(wěn)態(tài)方面發(fā)揮著重要作用[10-12]。HSC生存的龕室ROS水平較一般組織低,所以HSC對氧化應(yīng)激非常敏感[11]。ROS不僅直接作用于造血干細(xì)胞,還能通過N-鈣黏蛋白影響龕室的結(jié)構(gòu),引起造血微環(huán)境改變,進(jìn)而引起HSC衰老或凋亡[12]。敲除氧化應(yīng)激調(diào)節(jié)基因Atm的小鼠,其HSC不能維持在靜止期,并且失去自我復(fù)制能力,使用抗氧化劑(如N-乙酰半胱氨酸)治療Atm-/-的小鼠,HSC細(xì)胞內(nèi)ROS水平降低,同時自我更新能力恢復(fù),這說明氧化應(yīng)激和HSC靜止期的維持關(guān)系密切[2,13]。后來研究發(fā)現(xiàn)不同ROS水平對HSC的作用不同: 低劑量時,ROS能調(diào)節(jié)造血微環(huán)境黏附分子表達(dá)和活性,使HSC維持在靜止期; 中等水平ROS可改變相關(guān)分子結(jié)構(gòu),調(diào)控HSC細(xì)胞周期和細(xì)胞增殖;高水平的ROS引起HSC衰老和凋亡[14]。

3 氧化應(yīng)激與溶血性疾病

溶血指紅細(xì)胞遭到破壞,壽命縮短的過程;可以由紅細(xì)胞自身缺陷、免疫紊亂、感染和理化因素引起。紅細(xì)胞內(nèi)有大量含鐵血紅素,使紅細(xì)胞具備攜氧能力,但氧合血紅蛋白和含鐵血紅素的自我氧化會生成過氧陰離子,這是紅細(xì)胞內(nèi)自由基的主要來源。在上述病理因素下,紅細(xì)胞會產(chǎn)生過剩的活性氧自由基,進(jìn)一步氧化細(xì)胞的蛋白質(zhì)、脂質(zhì)和DNA,導(dǎo)致溶血。當(dāng)溶血超過骨髓的代償能力時即出現(xiàn)溶血性貧血。

多項研究表明β血紅蛋白血癥(包括鐮狀血紅蛋白血癥、地中海貧血)、6-磷酸-葡萄糖脫氫酶缺乏癥、先天性紅細(xì)胞生成異常性貧血、遺傳性球形紅細(xì)胞增多癥、陣發(fā)性睡眠性血紅蛋白尿患者均存在一定程度的氧化應(yīng)激[7,15-17]。有關(guān)溶血和氧化應(yīng)激的關(guān)系,研究較多的是鐮狀細(xì)胞貧血(sickle cell disease,SCD)。研究發(fā)現(xiàn)SCD患者處于持續(xù)的氧化應(yīng)激狀態(tài),這在SCD患者溶血、器官損害等病理生理過程中起著重要的作用,并且發(fā)現(xiàn)血清ROS及其終產(chǎn)物水平可作為疾病嚴(yán)重程度的指標(biāo),可能成為疾病治療的靶點[3,18-19]。Amer等[20]發(fā)現(xiàn)維生素E缺乏能加重溶血性貧血患者的氧化應(yīng)激,而給予SCD患者維生素E治療后,鐮狀紅細(xì)胞的比例從25%下降到11%,同時ROS水平下降將近2倍,GSH濃度增加了1.2倍,提示抗氧化治療可以改善SCD患者病情。

雖然氧化應(yīng)激不是溶血性貧血的根本原因,但它會導(dǎo)致紅細(xì)胞壽命縮短,加重溶血;同時血小板和白細(xì)胞也會出現(xiàn)氧化應(yīng)激,導(dǎo)致血栓形成和反復(fù)感染,并可能促進(jìn)慢性溶血性貧血的形成[7]。有關(guān)氧化應(yīng)激如何參與溶血性貧血的發(fā)生發(fā)展,值得深入研究。

4 氧化應(yīng)激與免疫性血小板減少癥

免疫性血小板減少癥(immune thrombocytopenia,ITP)是一種自身免疫性出血綜合征,臨床上以血小板減少、巨核細(xì)胞成熟障礙和血小板生成異常為特點。公認(rèn)的發(fā)病機制主要是機體對自身血小板的免疫失耐受,導(dǎo)致致敏的血小板被細(xì)胞或體液免疫破壞[21-22]。最新研究發(fā)現(xiàn)ITP患者還存在氧化應(yīng)激異常[1,23-25]。Zhang等[1]對ITP患者外周血全部基因轉(zhuǎn)錄本進(jìn)行了微點陣分析,發(fā)現(xiàn)氧化應(yīng)激通路與慢性ITP相關(guān)性最大;反應(yīng)上皮細(xì)胞氧化應(yīng)激的指標(biāo)—血管非炎性蛋白-1(VNN1)基因過表達(dá)的急性ITP患者很可能進(jìn)展為cITP,并且同一ITP患者的急性期和慢性期相比,氧化應(yīng)激程度增加。Elsalakawy等[26]報道外周血Vanin-1蛋白水平可以作為ITP的鑒別診斷、預(yù)測治療反應(yīng)的指標(biāo),敏感度達(dá)100%。此外,有學(xué)者發(fā)現(xiàn)ITP患者血清MDA、GSSH等氧化指標(biāo)高于正常人;GSH、抗氧化酶等抗氧化物質(zhì)的含量較正常人減少[25,27]。應(yīng)用抗氧化劑治療ITP也取得了一定療效,Brox等[28]曾使用維生素C治療11例ITP患者,有7例患者血小板上升至正常,血小板平均壽命由治療前的0.5 d延長至3 d。Fan等[29]使用氨磷汀治療24例ITP患者4 ~ 5周后,所有患者病情均有改善,22例血小板計數(shù)達(dá)到正常,骨髓穿刺發(fā)現(xiàn)患者骨髓產(chǎn)板巨核細(xì)胞數(shù)量增加。

總之ITP患者體內(nèi)抗氧化物質(zhì)減少,而氧化產(chǎn)物增加,給予抗氧化劑治療后,外周血血小板計數(shù)上升、壽命延長,骨髓巨核細(xì)胞數(shù)量增加,足以說明氧化應(yīng)激參與了ITP的發(fā)生和發(fā)展。

5 氧化應(yīng)激與血液系統(tǒng)腫瘤

研究發(fā)現(xiàn),一些造血系統(tǒng)腫瘤患者包括骨髓增生異常綜合征、急性白血病、慢性粒細(xì)胞白血病等,均處于慢性氧化應(yīng)激狀態(tài)。而腫瘤源性的活性氧可能會促進(jìn)腫瘤細(xì)胞增殖和遷移,并可能引起腫瘤細(xì)胞耐藥[30-34]。

5.1 氧化應(yīng)激與MDS/MPN Chung等[35]在動物實驗中發(fā)現(xiàn),與野生型小鼠相比,NHD13轉(zhuǎn)基因小鼠(一種MDS模型)骨髓CD71+lin-的幼稚有核細(xì)胞內(nèi)ROS水平升高,DNA雙鏈斷裂及基因突變率增加; Rassool等[36]使用另一種MDS模型(NRAS突變模型),使用抗氧化劑N-乙酰半胱氨酸干預(yù)模型,7 d后發(fā)現(xiàn)骨髓單個核細(xì)胞DNA雙鏈斷裂率較模型組下降了30% ~ 50%,說明ROS可能通過影響DNA損傷修復(fù)引起癌基因突變,從而促進(jìn)MDS和AML進(jìn)展。體內(nèi)研究發(fā)現(xiàn),MDS患者粒細(xì)胞抗氧化應(yīng)激相關(guān)的酶表達(dá)升高,并且CD34+細(xì)胞中嘌呤和嘧啶的氧化產(chǎn)物較正常人增加,說明MDS患者存在氧化應(yīng)激,而使用抗氧化應(yīng)激藥物氨磷汀治療老年MDS患者療效可觀[30,37-38]。Ghoti等[39]認(rèn)為鐵過載是MDS患者氧化應(yīng)激的主要原因,MDS治療多依賴輸血,會引起鐵過載,過量的鐵通過Fenton化學(xué)反應(yīng)產(chǎn)生大量ROS,從而引起氧化應(yīng)激。Indo等[40]認(rèn)為MDS患者合并多種基因異常,包括線粒體電子傳遞功能的基因,使線粒體功能受損,引起過多ROS生成。具體機制仍需進(jìn)一步深入研究。

5.2 氧化應(yīng)激與急性髓系白血病(acute myeloid leukemia,

AML) 氧化應(yīng)激在AML患者也存在,并可能與AML的復(fù)發(fā)有關(guān)[31,41]。Zhou等[31]對102例AML患者進(jìn)行研究,發(fā)現(xiàn)復(fù)發(fā)患者血清晚期氧化蛋白產(chǎn)物、丙二醛、8-羥基鳥嘌呤等增加; 線性回歸分析發(fā)現(xiàn)氧化應(yīng)激水平和疾病復(fù)發(fā)的關(guān)聯(lián)性很強,認(rèn)為氧化應(yīng)激與AML的復(fù)發(fā)有關(guān),可以指導(dǎo)預(yù)后。AML的動物模型也得到了類似結(jié)果,Rassool等[36]發(fā)現(xiàn),

隨著N-RAS合并BCL-2突變的AML小鼠模型疾病進(jìn)展,體內(nèi)ROS水平及氧化應(yīng)激導(dǎo)致的DNA損傷增加,并進(jìn)一步證明了氧化應(yīng)激由RAS下游蛋白RAC1激活所致。Hole等[42]則認(rèn)為AML的氧化應(yīng)激的原因是突變的RAS基因激活了NOX2,進(jìn)而產(chǎn)生過量的ROS。有關(guān)AML氧化應(yīng)激的機制有待闡明。5.3 氧化應(yīng)激與慢性粒細(xì)胞白血病(chronic myeloid leukemia,CML) CML的主要分子生物學(xué)特征是表達(dá)BCR-ABL融合基因,研究發(fā)現(xiàn),BCR-ABL可通過激活NOX4來增加細(xì)胞內(nèi)ROS水平;而ROS水平升高可通過抑制PP1alpha的活性,激活PI3k/Akt細(xì)胞增殖通路,使BCR-ABL陽性細(xì)胞永生化[43-44]。越來越多的證據(jù)表明,氧化應(yīng)激和CML的預(yù)后相關(guān): Ahmad等[32]發(fā)現(xiàn)CML加速期患者體內(nèi)氧化應(yīng)激水平較CML慢性期患者明顯升高; Rodrigues等[34]發(fā)現(xiàn)體內(nèi)ROS水平高的患者,BCR-ABl基因容易突變,從而容易對格列衛(wèi)耐藥,疾病預(yù)后差。而Sailaja等[45]發(fā)現(xiàn)GSTP1(對DNA過氧化的產(chǎn)物起解毒作用)活性低的人,容易發(fā)展成CML,并且容易急性變。

6 結(jié)語

氧化應(yīng)激和血液系統(tǒng)疾病關(guān)系密切,它參與造血干細(xì)胞穩(wěn)態(tài)的維持和溶血性貧血、免疫性血小板減少癥及血液系統(tǒng)惡性腫瘤的發(fā)生發(fā)展。持續(xù)的氧化應(yīng)激可促進(jìn)溶血性貧血、ITP等疾病進(jìn)入慢性期,還能促進(jìn)骨髓增生異常綜合征、慢性粒細(xì)胞白血病的進(jìn)展;機體的氧化還原狀態(tài)可能成為預(yù)測上述疾病轉(zhuǎn)歸指標(biāo),也可能成為治療疾病的靶點。雖然抗氧化治療在MDS、ITP取得了一定療效,但其治療效果尚缺乏多中心的前瞻性研究來證實。尋找安全有效的抗氧化制劑,開展更多的臨床研究評估抗氧化治療在上述疾病中的價值,深入研究氧化應(yīng)激的作用機制,可能是以后的研究目標(biāo)。

1 Zhang B, Lo C, Shen L, et al. The role of vanin-1 and oxidative stressrelated pathways in distinguishing acute and chronic pediatric ITP[J]. Blood, 2011, 117(17): 4569-4579.

2 Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells[J]. Nature,2004, 431(7011): 997-1002.

3 Nur E, Biemond BJ, Otten HM, et al. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management[J]. Am J Hematol, 2011, 86(6): 484-489.

4 Sohal RS, Allen RG, Farmer KJ, et al. Iron induces oxidative stress and May alter the rate of aging in the housefly, Musca domestica[J].Mech Ageing Dev, 1985, 32(1): 33-38.

5 Sultana R, Perluigi M, Butterfield DA. Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD : role of Abeta in pathogenesis[J]. Acta Neuropathol,2009, 118(1):131-150.

6 Fibach E, Rachmilewitz E. The role of oxidative stress in hemolytic anemia[J]. Curr Mol Med, 2008, 8(7):609-619.

7 D’Autréaux B, Toledano MB. ROS as signalling molecules:mechanisms that generate specificity in ROS homeostasis[J]. Nat Rev Mol Cell Biol, 2007, 8(10): 813-824.

8 Cheshier SH, Morrison SJ, Liao X, et al. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells[J]. Proc Natl Acad Sci U S A, 1999, 96(6): 3120-3125.

9 Pang Q. HSCs: stressing out over ROS[J]. Blood, 2011, 118(11):2932-2934.

10 Jang YY, Sharkis SJ. A low level of reactive Oxygen species selects for primitive hematopoietic stem cells that May reside in the low-oxygenic niche[J]. Blood, 2007, 110(8): 3056-3063.

11 Arai F, Suda T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche[J]. Ann N Y Acad Sci, 2007, 1106 :41-53.

12 Hosokawa K, Arai F, Yoshihara H, et al. Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction[J].Biochem Biophys Res Commun, 2007, 363(3):578-583.

13 Naka K, Ohmura M, Hirao A. Regulation of the self-renewal ability of tissue stem cells by tumor-related genes[J]. Cancer Biomark,2007, 3(4-5): 193-201.

14 Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis[J]. Antioxid Redox Signal, 2008, 10(11): 1923-1940.

15 Amer J, Goldfarb A, Fibach E. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells[J]. Eur J Haematol, 2003, 70(2):84-90.

16 Mazor D, Kapelushnik J, Shalev H, et al. Possible oxidative stress involvement in congenital dyserythropoietic anemia type 1[J].Hematol J, 2001, 2(3): 196-199.

17 Caprari P, Bozzi A, Ferroni L, et al. Oxidative erythrocyte membrane damage in hereditary spherocytosis[J]. Biochem Int, 1992, 26(2):265-274.

18 Jeney V, Balla J, Yachie A, et al. Pro-oxidant and cytotoxic effects of circulating heme[J]. Blood, 2002, 100(3): 879-887.

19 Kato GJ, Hebbel RP, Steinberg MH, et al. Vasculopathy in sickle cell disease: Biology, pathophysiology, genetics, translational medicine,and new research directions[J]. Am J Hematol, 2009, 84(9):618-625.

20 Amer J, Ghoti H, Rachmilewitz E, et al. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants[J].Br J Haematol, 2006, 132(1): 108-113.

21 Cines DB, Blanchette VS. Immune thrombocytopenic purpura[J]. N Engl J Med, 2002, 346(13):995-1008.

22 Johnsen J. Pathogenesis in immune thrombocytopenia: new insights[J]. Hematology Am Soc Hematol Educ Program, 2012,2012(1):306-312.

23 Imbach P. Oxidative stress may cause ITP[J]. Blood, 2011, 117(17):4405-4406.

24 Kamhieh-Milz J, Bal G, Sterzer V, et al. Reduced antioxidant capacities in platelets from patients with autoimmune thrombocytopenia purpura (ITP)[J]. Platelets, 2012, 23(3):184-194.

25 Akbayram S, Do?an M, Akgün C, et al. The association of oxidant status and antioxidant capacity in children with acute and chronic ITP[J]. J Pediatr Hematol Oncol, 2010, 32(4):277-281.

26 Elsalakawy WA, Ali MA, Hegazy MG, et al. Value of vanin-1 assessment in adult patients with primary immune thrombocytopenia[J]. Platelets, 2013. [Epub ahead of print]

27 Polat G, Tamer L, Tanriverdi K, et al. Levels of malondialdehyde,glutathione and ascorbic acid in idiopathic thrombocytopaenic purpura[J]. East Afr Med J, 2002, 79(8): 446-449.

28 Brox AG, Howson-Jan K, Fauser AA. Treatment of idiopathic thrombocytopenic purpura with ascorbate[J]. Br J Haematol, 1988,70(3): 341-344.

29 Fan H, Zhu HL, Li SX, et al. Efficacy of amifostine in treating patients with idiopathic thrombocytopenia purpura[J]. Cell Biochem Biophys, 2011, 59(1): 7-12.

30 Novotna B, Bagryantseva Y, Siskova M, et al. Oxidative DNA damage in bone marrow cells of patients with low-risk myelodysplastic syndrome[J]. Leuk Res, 2009, 33(2): 340-343.

31 Zhou FL, Zhang WG, Wei YC, et al. Involvement of oxidative stress in the relapse of acute myeloid leukemia[J]. J Biol Chem, 2010, 285(20): 15010-15015.

32 Ahmad R, Tripathi AK, Tripathi P, et al. Malondialdehyde and protein carbonyl as biomarkers for oxidative stress and disease progression in patients with chronic myeloid leukemia[J]. In Vivo, 2008, 22(4):525-528.

33 Nishikawa M. Reactive oxygen species in tumor metastasis[J].Cancer Lett, 2008, 266(1):53-59.

34 Rodrigues MS, Reddy MM, Sattler M. Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications[J]. Antioxid Redox Signal, 2008, 10(10): 1813-1848.

35 Chung YJ, Robert C, Gough SM, et al. Oxidative stress leads to increased mutation frequency in a murine model of myelodysplastic syndrome[J]. Leuk Res, 2013. [Epub ahead of print]

36 Rassool FV, Gaymes TJ, Omidvar N, et al. Reactive oxygen species,DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?[J]. Cancer Res, 2007, 67(18):8762-8771.

37 Bowen D, Wang L, Frew M, et al. Antioxidant enzyme expression in myelodysplastic and acute myeloid leukemia bone marrow:further evidence of a pathogenetic role for oxidative stress?[J].Haematologica, 2003, 88(9):1070-1072.

38 盧學(xué)春,朱宏麗,姚善謙,等.氨磷汀聯(lián)合重組人紅細(xì)胞生成素治療高齡骨髓增生異常綜合征近期療效觀察[J].中國實驗血液學(xué)雜志,2005,13( 03):440-442.

39 Ghoti H, Fibach E, Merkel D, et al. Changes in parameters of oxidative stress and free iron biomarkers during treatment with deferasirox in iron-overloaded patients with myelodysplastic syndromes[J].Haematologica, 2010, 95(8):1433-1434.

40 Indo HP, Davidson M, Yen HC, et al. Evidence of ROS Generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage[J]. Mitochondrion, 2007, 7(1-2):106-118.

41 Er TK, Tsai SM, Wu SH, et al. Antioxidant status and superoxide anion radical Generation in acute myeloid leukemia[J]. Clin Biochem, 2007, 40(13-14): 1015-1019.

42 Hole PS, Pearn L, Tonks AJ, et al. Ras-induced reactive Oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells[J]. Blood, 2010, 115(6):1238-1246.

43 Naughton R, Quiney C, Turner SD, et al. Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway[J]. Leukemia, 2009, 23(8):1432-1440.

44 Kim JH, Chu SC, Gramlich JL, et al. Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive Oxygen species[J]. Blood, 2005, 105(4): 1717-1723.

45 Sailaja K, Surekha D, Rao DN, et al. Association of the GSTP1 gene(Ile105Val) polymorphism with chronic myeloid leukemia[J].Asian Pac J Cancer Prev, 2010, 11(2): 461-464.

Oxidative stress and hematological diseases

WANG Hai-tao, LIN Jie, ZHU Hong-li
Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China

ZHU Hong-li. Email: bjzhl202_cn@sina.com

Recent studies show that oxidative stress plays an important role in maintaining the stability of hematopoietic stem cells,and in the pathogenesis and progression of hematological diseases, such as hemolytic diseases, immune thrombocytopenia, and leukemia. Following is a review of the relation between oxidative stress and hematological diseases.

oxidative stress; hemolysis; immune thrombocytopenia; leukemia

R 34

A

2095-5227(2014)05-0512-04

10.3969/j.issn.2095-5227.2014.05.032

時間:2014-02-24 17:40

http://www.cnki.net/kcms/detail/11.3275.R.20140224.1740.005.html

2013-10-28

科技部“新藥創(chuàng)制”重大專項(2008ZXJ09001-019);保健專項課題(13BJ247)

Supported by the State Project For Essential Drug Research and Development(2008ZXJ09001-019); Special Funds for Health Protection(13BJ247)

汪海濤,男,在讀碩士。Email: ws_ht@126.com

朱宏麗,女,主任醫(yī)師,碩士生導(dǎo)師。Email: bjzhl202_cn@sina.com

猜你喜歡
溶血性骨髓貧血
Ancient stone tools were found
蹲久了站起來眼前發(fā)黑就是貧血?
碳氧血紅蛋白在新生兒ABO溶血性黃疸中的臨床意義
中醫(yī)怎么防治貧血
春困需防貧血因
你對貧血知多少
宮頸癌術(shù)后調(diào)強放療中骨髓抑制與骨髓照射劑量體積的關(guān)系
贊美骨髓
文苑(2018年18期)2018-11-08 11:12:42
骨髓穿刺涂片聯(lián)合骨髓活檢切片在骨髓增生異常綜合征診斷中的應(yīng)用
利巴韋林片致溶血性貧血伴急性腎衰竭1例
驻马店市| 二连浩特市| 阿拉善右旗| 辽源市| 新龙县| 兴义市| 安图县| 龙里县| 滨海县| 舞阳县| 葵青区| 万载县| 田阳县| 息烽县| 龙胜| 页游| 锦州市| 永泰县| 安顺市| 班玛县| 榆中县| 奉节县| 郑州市| 余姚市| 霍城县| 叶城县| 荔波县| 东乌珠穆沁旗| 平遥县| 汕头市| 宁城县| 吉木乃县| 永新县| 克拉玛依市| 册亨县| 玉龙| 远安县| 新兴县| 慈利县| 松溪县| 鞍山市|