朱 華,田發(fā)明綜述,張 柳審校
隨著全球老齡化人口的增加,骨性關(guān)節(jié)炎(osteoarthritis,OA)成為關(guān)節(jié)炎中最常見的類型,是導(dǎo)致50歲以上人群功能殘疾、造成經(jīng)濟損失和社會影響的主要疾病之一[1]。近年研究認(rèn)為OA是器官水平的疾病,其特征在于軟骨退變、軟骨下骨改變、骨贅形成及滑膜組織和肌腱的炎癥[2]。雖然軟骨退變一直被看做是OA的主要癥狀,但大量研究表明軟骨下骨改變在OA的發(fā)生和發(fā)展中也起著重要作用,是OA進程的主要標(biāo)志。不論軟骨下骨改變是先于軟骨損傷或疾病發(fā)展過程中出現(xiàn),軟骨下骨都是目前公認(rèn)的治療OA的潛在目標(biāo)[3-4]?,F(xiàn)對軟骨下骨在OA中的相關(guān)進展進行綜述。
軟骨下骨位于關(guān)節(jié)軟骨下方的骨骺區(qū),包括軟骨下骨板和底層的骨小梁。軟骨下骨板包括關(guān)節(jié)軟骨的最深層區(qū)域,即鈣化軟骨和薄的骨皮質(zhì)層[5]。從解剖學(xué)角度來講,軟骨下骨包括軟骨下骨皮質(zhì)和骨松質(zhì)。骨松質(zhì)疏松多孔,相對于骨皮質(zhì)具有較低的密度和硬度[6]。軟骨下骨與軟骨組成一個動態(tài)的承重結(jié)構(gòu),其主要功能是吸收和轉(zhuǎn)移關(guān)節(jié)受到的力學(xué)負荷,并通過代謝來維持關(guān)節(jié)內(nèi)環(huán)境的穩(wěn)態(tài)和關(guān)節(jié)的形狀[7-8]。
過度的力學(xué)負荷導(dǎo)致軟骨下骨產(chǎn)生微損傷,并啟動骨重塑過程,增加骨轉(zhuǎn)換,使軟骨下骨皮質(zhì)的密度增加,發(fā)生硬化改變[8-10]。硬化部位骨小梁的數(shù)目和范圍都增加,出現(xiàn)短暫的骨質(zhì)疏松現(xiàn)象[11]。同時為修復(fù)微損傷,纖維血管組織侵潤鈣化軟骨,為炎性組織的進入和破骨細胞的活化提供了條件,并導(dǎo)致軟骨內(nèi)骨化中心的激活和潮線的擴張,加速了關(guān)節(jié)軟骨的退變[9,12]。軟骨下骨在OA中的改變包括軟骨下骨皮質(zhì)的厚度增加,軟骨下骨小梁質(zhì)量降低,關(guān)節(jié)邊緣骨贅和骨囊腫的形成及潮線的擴張[10]。Hayami等[13]對大鼠前交叉韌帶切斷術(shù)及合并內(nèi)側(cè)半月板切除術(shù)等2種OA模型進行研究,發(fā)現(xiàn)術(shù)后2周2組動物模型的軟骨下骨均出現(xiàn)骨質(zhì)流失現(xiàn)象,前交叉韌帶切斷術(shù)模型在術(shù)后10周出現(xiàn)骨贅形成,而前交叉韌帶切斷術(shù)合并內(nèi)側(cè)半月板切除術(shù)模型在術(shù)后6周就有骨贅出現(xiàn)。李彬等[14]研究發(fā)現(xiàn),OA大鼠關(guān)節(jié)軟骨的退變與軟骨下骨增生硬化和微觀結(jié)構(gòu)改變有關(guān)。軟骨下骨的改變促進OA疾病的發(fā)展,加速了關(guān)節(jié)軟骨的退變。
一般認(rèn)為OA始自關(guān)節(jié)軟骨細胞合成的蛋白多糖減少,逐漸發(fā)展為膠原纖維框架的改變,最終導(dǎo)致關(guān)節(jié)軟骨的丟失和破壞[7]。OA中關(guān)節(jié)軟骨退變的發(fā)病機制主要包括生物力學(xué)因素和生物學(xué)因素,軟骨下骨則通過這兩方面對OA的進程產(chǎn)生影響[9,15]。
3.1 生物力學(xué) 關(guān)節(jié)軟骨和軟骨下骨組成的生物復(fù)合材料是唯一適應(yīng)動關(guān)節(jié)中應(yīng)力負荷轉(zhuǎn)移的結(jié)構(gòu),任何組織的改變都將影響其他組件的結(jié)構(gòu)和功能[10]。在關(guān)節(jié)運動過程中,關(guān)節(jié)軟骨和軟骨下骨共同參與應(yīng)力的傳導(dǎo),軟骨下骨為關(guān)節(jié)軟骨提供力學(xué)支撐,并通過骨重塑活動來適應(yīng)不斷變化的力學(xué)環(huán)境[16]。關(guān)節(jié)中的關(guān)節(jié)面在轉(zhuǎn)移負荷方面起著重要的作用,負荷轉(zhuǎn)移的增加和分配模式的改變都會加速OA的進程[17]。由于關(guān)節(jié)的對合面未完全吻合,關(guān)節(jié)軟骨和軟骨下骨在負重時會通過變形來最大限度的增加關(guān)節(jié)面的接觸面積。軟骨下縱向排列的柱形膠原網(wǎng)狀基質(zhì)也將受力負荷向下傳遞到骨干,降低關(guān)節(jié)軟骨受到的應(yīng)力沖擊,保護其上方覆蓋的關(guān)節(jié)軟骨[7]。然而OA早期活躍的骨重塑活動導(dǎo)致軟骨下骨發(fā)生硬化改變,其吸收應(yīng)力、緩沖震蕩和維持關(guān)節(jié)形狀的能力減弱,使關(guān)節(jié)軟骨受到的應(yīng)力負荷增加,加速了關(guān)節(jié)軟骨的退變[18-19]。Henrotin 等[15]研究認(rèn)為,OA中過度壓力負荷導(dǎo)致軟骨下骨結(jié)構(gòu)改變,加速關(guān)節(jié)軟骨的退變。Bellido等[20-21]研究發(fā)現(xiàn),骨重塑導(dǎo)致的軟骨下骨結(jié)構(gòu)改變加重了關(guān)節(jié)軟骨的損害。軟骨下骨通過骨重塑活動適應(yīng)不斷變化的力學(xué)環(huán)境,對過度力學(xué)負荷的應(yīng)答改變了關(guān)節(jié)的生物力學(xué)特性,促進了OA的發(fā)展。
3.2 生物學(xué) Pan等[22]在鈣化軟骨中檢測到溶質(zhì)的運輸,表明軟骨下骨與軟骨之間存在物質(zhì)運輸?shù)耐?。Botter等[23]也發(fā)現(xiàn),軟骨下骨板較多的孔隙有助于關(guān)節(jié)軟骨與軟骨下骨之間信號分子的交流。OA中異常的力學(xué)環(huán)境導(dǎo)致軟骨鈣化層出現(xiàn)微裂縫,進一步促進軟骨與軟骨下骨之間分子的轉(zhuǎn)運[9,24]。在OA中軟骨與軟骨下骨分泌的小分子介質(zhì)和因子通過這些通路來維持關(guān)節(jié)內(nèi)環(huán)境的穩(wěn)態(tài)[8]。這些因子主要有胰島素樣生長因子(insulinlike growth factor1,IGF-1)、轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)、白細胞介素1β(interleukin-β,IL-1β)等。Weimer等[25]研究發(fā)現(xiàn),由腺相關(guān)病毒介導(dǎo)的IGF-1在關(guān)節(jié)軟骨的過度表達對治療OA有幫助。Zhen等[26]研究表明,小鼠前交叉韌帶切斷術(shù)模型中軟骨下骨表達高濃度的活性型TGF-β1可引起OA的病理變化,加速軟骨退變。OA中持續(xù)存在的炎癥反應(yīng)可直接影響軟骨細胞代謝活動。其中高表達的炎性因子IL-1β,可誘導(dǎo)軟骨細胞向肥大型分化,加速軟骨退變[27-29]。軟骨下骨異常的骨重塑是破骨細胞和成骨細胞活性失衡所致,而三聯(lián)分子骨保護素、核因子-κB、核激活因子受體配體是調(diào)節(jié)破骨細胞分化和功能的關(guān)鍵系統(tǒng)[30]。Kwan等[31]研究發(fā)現(xiàn),在OA軟骨下骨前列腺素含量低的成骨細胞中和核激活因子受體配體是降低的,表明OA時軟骨下骨區(qū)有活躍的骨重塑現(xiàn)象。Upton等[32]研究表明,在OA早期階段軟骨中高表達的核激活因子受體配體可促進軟骨下骨骨轉(zhuǎn)換。軟骨下骨的改變有助于其與軟骨之間信號分子的交流,分泌的異常代謝調(diào)節(jié)因子破壞了關(guān)節(jié)內(nèi)環(huán)境的穩(wěn)態(tài),促進OA的發(fā)展。
3.3 影像學(xué) Wang等[33]通過計算機斷層掃描技術(shù)對豚鼠OA模型進行研究,發(fā)現(xiàn)軟骨下骨超微結(jié)構(gòu)的改變要先于軟骨退變出現(xiàn),這可能進一步損害關(guān)節(jié)軟骨,從影像學(xué)角度提出軟骨下骨改變是OA的始發(fā)因素。由于關(guān)節(jié)軟骨的退變在OA早期很難被發(fā)現(xiàn),因此通過影像學(xué)來監(jiān)測軟骨下骨的改變,對OA的早期診斷、早期治療和全面預(yù)防也許有幫助。新近開發(fā)的動態(tài)無創(chuàng)定量超聲是檢測OA關(guān)節(jié)早期和晚期結(jié)構(gòu)損傷敏感的成像技術(shù),能同時描繪軟骨下骨、關(guān)節(jié)軟骨和其他解剖結(jié)構(gòu),其動態(tài)成像的特點為從多角度研究 OA 提供了條件[34]。Yang等[35]用顯微紅外光譜分析雌性Hartley豚鼠軟骨下骨小梁和骨髓的分子組織,在分子水平上對OA中軟骨下骨組織提供了病理信息。傳統(tǒng)的膝關(guān)節(jié)X線片只能檢測出關(guān)節(jié)間隙變窄和骨贅,而磁共振成像可直接可視化和分析整個膝關(guān)節(jié)結(jié)構(gòu),包括骨的大小,軟骨缺損和軟骨體積的損失[36]。Chiba等[37]用 3T 磁共振成像分析OA患者軟骨下骨小梁結(jié)構(gòu),認(rèn)為這是評估OA進展和治療效果的有用參數(shù)。從影像學(xué)角度觀察軟骨下骨改變要先于軟骨退變出現(xiàn),但也有學(xué)者得出不同結(jié)論,認(rèn)為軟骨下骨改變是繼發(fā)于關(guān)節(jié)軟骨損傷[38]。不論兩者的先后關(guān)系如何,軟骨下骨的改變都是OA進程中的活躍組成部分,促進關(guān)節(jié)軟骨的退變[39]。
3.4 基因?qū)W 最新的研究方向試圖通過全基因譜來詮釋OA中各種病理變化的發(fā)生順序和復(fù)雜的調(diào)節(jié)機制,軟骨下骨在OA的發(fā)生和發(fā)展中起著重要作用,理解OA中軟骨下骨早期基因表達的改變可能有助于闡明OA的發(fā)病機制。Chou等[40]通過對人類OA患者軟骨下骨組織的基因分析,發(fā)現(xiàn)有27個基因協(xié)同上調(diào)或下調(diào),其中19個基因的表達水平與軟骨下骨結(jié)構(gòu)變化的嚴(yán)重程度相關(guān)。Zhang等[41]用微陣列技術(shù)研究大鼠模型中軟骨下骨在OA早期階段分子變化的時間過程,發(fā)現(xiàn)了軟骨下骨基因表達譜的多個時間點,并確定了在軟骨下骨發(fā)育和骨重塑過程中的差異表達基因。Pickarski等[42]通過大鼠前交叉韌帶切斷術(shù)和前交叉韌帶切斷術(shù)合并內(nèi)側(cè)半月板切除術(shù)等2種模型檢測軟骨下骨基因表達譜的時間變化,并采用實時聚合酶鏈?zhǔn)椒磻?yīng)和免疫組織化學(xué)法來確認(rèn)軟骨退化、軟骨細胞分化、血管侵犯和骨重塑在基因表達譜的時間依賴性和順序變化,表明用全基因譜來闡明OA的發(fā)病機制是可行的。理解軟骨下骨基因表達的變化,不僅有助于闡明OA的發(fā)病機制,也為治療OA提供了新的思路和靶點。
軟骨下骨的各種病理變化都會影響OA的發(fā)生和發(fā)展,是治療OA的潛在目標(biāo)[43]。OA早期軟骨下骨活躍的骨重塑和骨吸收的增加使軟骨下骨發(fā)生硬化改變,導(dǎo)致其上方的關(guān)節(jié)軟骨承受異常的應(yīng)力并發(fā)生退變,因此開發(fā)藥物來調(diào)控軟骨下骨代謝活性、抑制骨重塑速度,改善軟骨下骨硬化可作為治療OA的一個突破點。Zhang等[44]研究發(fā)現(xiàn),阿侖磷酸鈉通過抑制軟骨下骨骨重塑延緩關(guān)節(jié)不穩(wěn)造成的兔膝關(guān)節(jié)OA的進程。Cheng等[45]研究發(fā)現(xiàn),降鈣素可降低軟骨細胞對炎癥刺激的反應(yīng),減少軟骨細胞外基質(zhì)降解,改善OA引起的軟骨下骨小梁微結(jié)構(gòu)的破壞,從而保護關(guān)節(jié)軟骨。Yu等[46]研究發(fā)現(xiàn),在鼠內(nèi)側(cè)半月板撕裂OA模型中,高劑量的雷奈酸鍶處理可緩解關(guān)節(jié)軟骨退變和軟骨下骨重塑。另外,Zhang等[41]在OA模型中確定了軟骨下骨發(fā)育和骨重塑過程中的差異表達基因,為診斷和治療OA提供了新的靶點。
雖然軟骨下骨改變與軟骨退變的先后關(guān)系還不清楚,但是軟骨下骨通過生物力學(xué)因素和生物學(xué)因素對OA的進程產(chǎn)生影響。因此,在OA治療中不僅要關(guān)注軟骨的退變,也要防止軟骨下骨的改變[47]。在未來的研究中應(yīng)完善監(jiān)測軟骨下骨改變的技術(shù),做到OA的早期診斷和早期治療,開發(fā)調(diào)控軟骨下骨代謝和骨重塑的藥物,從基因水平上闡明OA的發(fā)病機制并提出防治策略。
[1] Wenham CY,Conaghan PG.New horizons in osteoarthritis[J].Age Ageing,2013,42(3):272-278.
[2] Suri S,Walsh DA.Osteochondral alterations in osteoarthritis[J].Bone,2012,51(2):204-211.
[3] Li G,Yin J,Gao J,et al.Subchondral bone in osteoarthritis:insight into risk factors and microstructural changes[J].Arthritis Res Ther,2013,15(6):223.
[4] Casta?eda S,Roman-Blas JA,Largo R,et al.Subchondral bone as a key target for osteoarthritis treatment[J].Biochem Pharmacol,2012,83(3):315-323.
[5] Burr DB.Anatomy and physiology of the mineralized tissues:role in the pathogenesis of osteoarthrosis[J].Osteoarthritis Cartilage,2004,12(Suppl A):S20-S30.
[6] Yu D,Liu F,Liu M,et al.The inhibition of subchondral bone lesions significantly reversed the weight-bearing deficit and the overexpression of CGRP in DRG neurons,GFAP and Iba-1 in the spinal dorsal Horn in the monosodium iodoacetate induced model of osteoarthritis pain[J].PLoS One,2013,8(10):e77824.
[7] 陳百成,張 靜.骨關(guān)節(jié)炎[M].北京:人民衛(wèi)生出版社,2004:69-73.
[8] Sharma AR,Jagga S,Lee SS,et al.Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis[J].Int J Mol Sci,2013,14(10):19805-19830.
[9] Burr DB,Radin EL.Microfractures and microcracks in subchondral bone:are they relevant to osteoarthrosis[J].Rheum Dis Clin North Am,2003,29(4):675-685.
[10] Goldring SR.Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis[J].Ther Adv Musculoskelet Dis,2012,4(4):249-258.
[11] Buckland-Wright C.Subchondral bone changes in hand and knee osteoarthritis detected by radiography[J].Osteoarthritis Cartilage,2004,12(Suppl A):S10-S19.
[12] Chiba K,Osaki M,Ito M,et al.Osteoarthritis and bone structural changes[J].Clin Calcium,2013,23(7):973-981.
[13] Hayami T,Pickarski M,Zhuo Y,et al.Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis[J].Bone,2006,38(2):234-243.
[14] 李 彬,張 柳,胡宏宇,等.降鈣素在體內(nèi)體外實驗中對兔關(guān)節(jié)炎關(guān)節(jié)軟骨退變及軟骨下骨骨代謝的影響[J].中國矯形外科雜志,2009,17(21):1651-1656.
[15] Henrotin Y,Pesesse L,Sanchez C.Subchondral bone and osteoarthritis:biological and cellular aspects[J].Osteoporos Int,2012,23(Suppl 8):S847-S851.
[16] Madry H,van Dijk CN,Mueller-Gerbl M.The basic science of the subchondral bone[J].Knee Surg Sports Traumatol Arthrosc,2010,18(4):419-433.
[17] Goldring MB,Goldring SR.Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis[J].Ann N Y Acad Sci,2010,1192(1):230-237.
[18] Ding M.Microarchitectural adaptations in aging and osteoarthrotic subchondral bone issues[J].Acta Orthop Suppl,2010,81(340):51-53.
[19] Cox LG,van Donkelaar CC,van Rietbergen B,et al.Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis[J].Bone,2012,50(5):1152-1161.
[20] Bellido M,Lugo L,Roman-Blas JA,et al.Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis[J].Arthritis Res Ther,2010,12(4):R152.
[21] Bellido M,Lugo L,Roman-Blas JA,et al.Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis[J].Osteoarthritis Cartilage,2011,19(10):1228-1236.
[22] Pan J,Wang B,Li W,et al.Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints[J].Bone,2012,51(2):212-217.
[23] Botter SM,van Osch GJ,Clockaerts S,et al.Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice:an in vivo microfocal computed tomography study[J].Arthritis Rheum,2011,63(9):2690-2699.
[24] Maldonado M,Nam J.The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis[J].Biomed Res Int,2013,2013:284873.
[25] Weimer A,Madry H,Venkatesan JK,et al.Benefits of recombinant adeno-associated virus(rAAV)-mediated insulinlike growth factor I(IGF-I)overexpression for the long-term Reconstruction of human osteoarthritic cartilage by modulation of the IGF-I axis[J].Mol Med,2012,9(18):346-358.
[26] Zhen G,Wen C,Jia X,et al.Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J].Nat Med,2013,19(6):704-712.
[27] Benito MJ,Veale DJ,F(xiàn)itzgerald O,et al.Synovial tissue inflammation in early and late osteoarthritis[J].Ann Rheum Dis,2005,64(9):1263-1267.
[28] Merz D,Liu R,Johnson K,et al.IL-8/CXCl8 and growth-related oncogene α/CXCL1 induce chondrocyte hypertrophic differentiation[J].J Immunol,2003,171(8):4406-4415.
[29] 賞后來,郭 亭,趙建寧.骨性關(guān)節(jié)炎實驗室診斷指標(biāo)的意義及研究進展[J].醫(yī)學(xué)研究生學(xué)報,2012,25(2):204-207.
[30] Zupan J,Komading R,Marc J.The relationship between osteoclastogenic and anti-osteoclastogenic pro-inflammatory cytokines differs in human osteoporotic and osteoarthritic bone tissues[J].J Biomed Sci,2012,19(1):19-28.
[31] Kwan Tat S,Pelletier JP,Lajeunesse D,et al.The differential expression of osteoprotegerin(OPG)and receptor activator of nuclear factor kappaB ligand(RANKL)in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells[J].Clin Exp Rheumatol,2008,26(2):295-304.
[32] Upton AR,Holding CA,Dharmapatni AA,et al.The expression of RANKL and OPG in the various grades of osteoarthritic cartilage[J].Rheumatol Int,2012,32(2):535-540.
[33] Wang T,Wen CY,Yan CH,et al.Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in Guinea pigs with spontaneous osteoarthritis[J].Osteoarthritis Cartilage,2013,21(4):574-581.
[34] Podlipska J,Koski JM,Pulkkinen P,et al.In vivo quantitative ultrasound image analysis of femoral subchondral bone in knee osteoarthritis[J].ScientificWorldJournal,2013,2013:182562.
[35] Yang LP,Liu JL,Song QH,et al.FTIR microspectroscopic investigation of the age-related changes of subchondral bone of the knee in Guinea pig[J].Guang Pu Xue Yu Guang Pu Fen Xi,2013,33(9):2369-2373.
[36] Ding C,Cicuttini F,Jones G.Tibial subchondral bone size and knee cartilage defects:relevance to knee osteoarthritis[J].Osteoarthritis Cartilage,2007,15(5):479-486.
[37] Chiba K,Uetani M,Kido Y,et al.Osteoporotic changes of subchondral trabecular bone in osteoarthritis of the knee:a 3-T MRI study[J].Osteoporos Int,2012,23(2):589-597.
[38] Chappard C,Peyrin F,Bonnassie A,et al.Subchondral bone micro-architectural alterations in osteoarthritis:a synchrotron micro-computed tomography study[J].Osteoarthritis Cartilage,2006,14(3):215-223.
[39] 唐 勇,王漢東,馬馳原,等.基于CT平掃圖像處理的顱底骨性結(jié)構(gòu)相關(guān)參數(shù)測量[J].醫(yī)學(xué)研究生學(xué)報,2014,27(1):77-81.
[40] Chou CH,Lee CH,Lu LS,et al.Direct assessment of articular cartilage and underlying subchondral bone reveals a progressive gene expression change in human osteoarthritic knees[J].Osteoarthritis Cartilage,2013,21(3):450-461.
[41] Zhang R,F(xiàn)ang H,Chen Y,et al.Gene expression analyses of subchondral bone in early experimental osteoarthritis by microarray[J].PLoS One,2012,7(2):e32356.
[42] Pickarski M,Hayami T,Zhuo Y,et al.Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis[J].BMC Musculoskelet Disord,2011,24(12):197.
[43] Tsai PH,Lee HS,Siow TY,et al.Sequential change in t2*values of cartilage,meniscus,and subchondral bone marrow in a rat model of knee osteoarthritis[J].PLoS One,2013,8(10):e76658.
[44] Zhang L,Hu H,Tian F,et al.Enhancement of subchondral bone quality by alendronate administration for the reduction of cartilage degeneration in the early phase of experimental osteoarthritis[J].Clin Exp Med,2011,11(4):235-243.
[45] Cheng T,Zhang L,F(xiàn)u X,et al.The potential protective effects of calcitonin involved in coordinating chondrocyte response,extracellular matrix,and subchondral trabecular bone in experimental osteoarthritis[J].Connect Tissue Res,2013,54(2):139-146.
[46] Yu DG,Ding HF,Mao YQ,et al.Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model[J].Acta Pharmacol Sin,2013,34(3):393-402.
[47] Li Q,Zhang L.Research progress on relationship between subchondral bone and cartilage degeneration in osteoarthritis[J].Zhongguo Xiufu Chongjian Waike Zazhi,2009,23(2):245-248.