王衛(wèi)東,下茂 徹朗
(1.吉林化工學(xué)院化工與材料工程學(xué)院,吉林長春 132022;2.鹿兒島大學(xué) 工學(xué)部,日本 鹿兒島 890-0065)
光化學(xué)接近于綠色化學(xué)范疇,在天然產(chǎn)物、醫(yī)藥、香料等精細(xì)有機(jī)合成中具有特別重要的意義[1]。2-吡喃酮是一類含有 α,β:γ,δ不飽和鍵的六元環(huán)內(nèi)酯,廣泛存在于很多天然產(chǎn)物中[2,3],其衍生物不僅具有重要的生理活性[4,5],而且還是非常重要的有機(jī)合成中間體[6]。由于共軛雙鍵和酯基的存在,2-吡喃酮在光激發(fā)狀態(tài)下不僅在溶液中,而且在固相都具有較強(qiáng)的光化學(xué)反應(yīng)性。
我們曾報(bào)道過2-吡喃酮與順丁烯二酰亞胺,2-吡喃酮與二苯酮類化合物異分子的固相[2+2]光化學(xué)環(huán)化加成反應(yīng)[7~13]。本文報(bào)道在二苯甲酮的光敏化作用下,C4-位上苯甲酰氧基[或4-(4-甲氧基苯甲酰氧基]取代6-甲基-2-吡喃酮(1a或1b)的固相光二聚反應(yīng)穿過1的C3-C4-位高選擇性地發(fā)生[2+2]環(huán)加成獲得1的分子間anti頭-頭二聚物(2a或2b)及其分解產(chǎn)物安息香酸(3)(Scheme 1),其結(jié)構(gòu)經(jīng)1H NMR,F(xiàn)I-IR,MS和元素分析表征。采用WINMOPAC PM5法通過計(jì)算分析對該反應(yīng)的機(jī)理進(jìn)行解釋,并對二聚物的加成取向和立體構(gòu)造進(jìn)行了推定。
Scheme 1
Yamagimoto型顯微熔點(diǎn)儀(溫度未經(jīng)校正);JNM-GSX400 MHz型核磁共振儀(CDCl3為溶劑,TMS 為內(nèi)標(biāo));IR-Report-100 型紅外分光光度計(jì)(KBr壓片);JEOLJMS-HX110A型質(zhì)譜儀;Yanaco MT-5型元素分析儀。
4-苯甲酰氧基-6-甲基-2-吡喃酮(1a)和 4-(4-甲氧基苯甲酰氧基)-6-甲基-2-吡喃酮(1b)參照文獻(xiàn)[13]方法合成;其余所用試劑均為化學(xué)純。
將1a 260 mg(1.0 mmol)和二苯甲酮182 mg(1.0 mmol)用研缽研磨10 min使之呈細(xì)粉末狀,平鋪夾在兩片Pyrex玻璃板間,室溫和氮?dú)獗Wo(hù)下,用400 W高壓水銀燈照射5 h。經(jīng)硅膠柱層析[洗脫劑:V(乙酸乙酯)∶V(正己烷)=1∶2]純化后,用氯仿重結(jié)晶得2a。
用類似的方法合成2b。
2a:白色固體,m.p.215℃ ~217℃;1H NMR δ:2.04(s,3H,CH3),3.49(s,1H,CH),5.26(s,1H,=CH),7.49(t,J=8.0 Hz,4H,ArH),7.64(t,J=7.4 Hz,2H,ArH),8.04(d,J=7.6 Hz,4H,ArH);IR ν:1 781,1 709 cm-1;LR FABMSm/z:461(MH+);Anal.calcd for C26H20O8:C 67.82,H 4.39;found C 67.63,H 4.27。
2b:白色固體,m.p.285℃ ~287℃;1H NMR δ:2.03(s,3H,CH3),3.46(s,1H,CH),3.89(s,3H,OCH3),5.24(s,1H,=CH),6.95(d,J=8.8 Hz,4H,ArH),7.99(d,J=8.8 Hz,4H,ArH);IR ν:1 788,1 712 cm-1;LR FAB-MSm/z:521(MH+);Anal.calcd for C28H24O10:C 64.61,H 4.65;found C 64.34,H 4.58。
反應(yīng)條件同1.2,考察光照射時(shí)間對2收率的影響,結(jié)果見表1。從表1可見,在二苯甲酮的光敏化作用下,1分子間的二聚反應(yīng)屬于快速光反應(yīng);光照2 h時(shí),1a和1b的轉(zhuǎn)化率分別達(dá)88%和74%。2的收率隨光照時(shí)間的延長變化不大,這由于2隨著光照時(shí)間的延長,發(fā)生了光分解反應(yīng)生成3所致。
表1 固體狀態(tài)下1的光敏化二聚反應(yīng)*Table 1 Photosensitized[2+2]photocycloadditon reaction of 1 in the solid state
為進(jìn)一步探討該體系光敏化二聚反應(yīng),本文分別考察了2 h光照射條件下1在溶液中的光敏化反應(yīng)以及1單獨(dú)固相和溶液中的單獨(dú)反應(yīng),實(shí)驗(yàn)結(jié)果表明,在溶液1的光敏化反應(yīng)中2的收率(<3%)較其固相光敏化反應(yīng)(>23%)低得多;無敏化劑二苯甲酮的光照條件下,1無論是在固相還是在溶液中都不發(fā)生任何光化學(xué)反應(yīng)??疾旖Y(jié)果表明1只有在固體狀態(tài)下才有利于光敏化二聚反應(yīng)的快速進(jìn)行。
為了探索該反應(yīng)的機(jī)理,以1a的反應(yīng)為例,采用WINMOPAC PM5法計(jì)算躍遷狀態(tài)(TS)的解析方法[12,14~17],推定加成二聚物的配向和立體構(gòu)造,并對反應(yīng)機(jī)理進(jìn)行解釋。
首先,1a的激發(fā)三重態(tài)1a*(1T)和基態(tài)1a(0S)之間的相對生成熱(H.O.F.)為40.2 kcal·mol-1。在敏化劑的作用下,經(jīng)歷1a激發(fā)三重態(tài)后,反應(yīng)配向選擇性存在著形成頭-頭和頭-尾激基締合物兩種可能。頭-頭(hh)結(jié)合時(shí),兩分子反應(yīng)點(diǎn)距離為 γre(C1-C1)=2.2 ?,經(jīng)歷第一過渡態(tài)(TS1)形成頭-頭雙自由基(BRhh)的TS1活化能為 7.8 kcal·mol-1(圖 1)。頭-尾(ht)結(jié)合時(shí),兩分子反應(yīng)點(diǎn)距離為 γre(C1- C1)=2.15 ?,形成頭-尾雙自由基(BRht)的TS1活化能為13.0 kcal·mol-1(圖2)。通過對比可推定該反應(yīng)的路徑為頭-頭加成反應(yīng)過程。
圖1 利用MOPAC PM5計(jì)算1a獲得anti頭-頭二聚物(2a)的光二聚反應(yīng)相對生成熱(H.O.F.)Figure 1 Relative heat of formation(H.O.F.)of the photodimerization of 1a to give anti head-head dimer 2a)calculated by MOPAC PM5
圖2 利用MOPAC PM5計(jì)算1a頭-尾獲得二聚物的光二聚反應(yīng)相對生成熱(H.O.F)Figure 2 Relative heat of formation(H.O.F)of the photodimerization of 1a to give head-tail dimer calculated by MOPAC PM5
其次,雙自由基BRhh經(jīng)歷第二過渡態(tài)(TS2)后,可能形成anti頭-頭和syn頭-頭兩種類型加成產(chǎn)物。對比它們的TS2活化能可知,anti頭-頭加成(5.1 kcal·mol-1)比syn頭-頭加成(8.1 kcal·mol-1)低,因此可以推定該反應(yīng)經(jīng)歷激基締合物生成anti頭-頭[2+2]環(huán)加成二聚物2a。
此外,通過1H NMR和IR的譜圖分析,對比香豆素[18~21]及 4-甲氧基-6-甲基-2-吡喃酮[22]的光二聚反應(yīng)可知,該反應(yīng)體系的目標(biāo)產(chǎn)物亦可推定為anti頭-頭[2+2]環(huán)加成二聚物2a。
本文對 C4-位苯甲酸基取代 6-甲基-2-吡喃酮的固相[2+2]光二聚反應(yīng)進(jìn)行了研究。反應(yīng)機(jī)理可描述為在1的激發(fā)三重態(tài)與基態(tài)分子之間形成激基締合物后,先后經(jīng)歷第一和第二過渡態(tài),高配向選擇性地生成anti-頭-頭[2+2]加成二聚物。
該反應(yīng)具有反應(yīng)條件溫和、操作簡單和對環(huán)境有好等優(yōu)點(diǎn)。
[1]張寶文,程學(xué)新,劉勇勇,等.有機(jī)合成光化學(xué)及其研究現(xiàn)狀[J].感光科學(xué)與光化學(xué),2001,19(2):139-155.
[2]Li Y,Ye D,Chen X,et al.Breviane spiroditerpenoids from an extreme-tolerant penicillium sp.isolated from a deep sea sediment sample[J].J Nat Prod,2009,27(3):912 -916.
[3]Debbab A,Aly A H,Edrada-Ebel R,et al.Bioactive metabolites from the endophytic fungus stemphylium globuliferum isolated from mentha pulegium[J].J Nat Prod,2009,72(4):626 -631.
[4]Sunazuka T,Omura S.Total sysnthesis of α-pyrone meroterpenoids,novel bioactive microbial metabolites[J].Chem Rev,2005,105(12):4559 -4580.
[5]Mcglacken G P,F(xiàn)airlamb I J S.2-Pyrone natural products and mimetics:Isolation,characterisation and biological activity[J].Nat Prod Rep,2005,22(3):369-385.
[6]周慶發(fā),趙慎,王珣,等.2-吡喃酮衍生物合成研究進(jìn)展[J].有機(jī)化學(xué),2010,30(11):1652 -1663.
[7]Obata T,Shimo T,Yoshimoto S,et al.Peri-,Siteand stereocontrolled photocycloaddition of 4-methoxy-6-methyl-2-pyrone with maleimide Induced by the hydrogen bond and CT stacking in the dolid state[J].Chem Lett,1999,28(2):181 -182.
[8]Obata T,Shimo T,Yasutake M,et al.Remarkable interaction effects of molecular packing on site-and stereoselectivity in photocycloaddition of 2-pyrones with maleimide in the solid state[J].Tetrahedron,2001,57(8):1531-1541.
[9]Shimo T,Uezono T,Obata T,et al.X-ray and MO analysis of highly stereoselective solid-state photocycloadditions of 2-pyrones with maleimide[J].Tetrahedron,2002,58(30):6111 -6116.
[10]Shimo T,Yamaguchi R,Odo Y,et al.Efficient photochemical oxetane formation from 2-pyrones and benzophenones in the solid state[J].Heterocycles,2004,63(7):1541 -1545.
[11]Wang W W,Shimo T,Shinmyozu T,et al.Solidstate photocycloaddition of 6,6-dimethyl-4,4-polymethylenedioxy-di-2-pyrones to benzophenone[J].Heterocycles,2006,68(7):1381 -1392.
[12]Wang W,Shimo T,Hashimoto H,et al.Solid-state photocycloaddition of 6,6'-dimethyl-4,4'-[bis(methylenoxy)phenylene]-di-2-pyrones with benzophenone[J].Tetrahedron,2007:12367 -12372.
[13]Marcus E,Stephen J F,Chan J K.A study of the acylation of 4-hydroxy-6-methyl-2-pyrone and 4-hydroxy-6-phenyl-2-pyrone[J].J Heterocycl Chem,1969,6:13-22.
[14]Omar H I,Odo Y,Shigemitsu Y,et al.Transition state analysis on regioselectivity in[2+2]photocycloaddition reactions of substituted 2-cyclohexenone with cycloalkenecarboxylates[J].Tetrahedron,2003,59(41):8099-8105.
[15]Odo Y,Shimo T,Hori K,et al.Origin of regioselectivity in photocycloaddition reactions of 2-cyclohexenone with cycloalkenecarboxylates[J].Bul Chem Soc Jpn,2004,77(6):1209 -1215.
[16]Kiri S,Odo Y,Omar H I,et al.Origin of the endo/exo stereoselectivity and syn/anti aace-selectivity in Diels– Alder reactions,determined by transition state energy partitioning[J].Bull Chem Soc Jpn,2004,77(8):1499-1504.
[17]Omar H I,Shimo T,Somekawa K.Origin of regioselectivity in the intramolecular[2+2]photoreaction of α,β-unsaturated furanones to a terminal alkene[J].J Mol Struc(Theochem),2006,763(1 -3):115 -121.
[18]Anet R.The photodimers of coumarin and related coumpounds[J].Can J Chem,1962,40(7):1249 -1257.
[19]Yu X,Scheller D,Rademacher O,et al.Selectivity in the photodimerization of 6-alkylcoumarins[J].J Org Chem,2003,68(21):7386 -7399.
[20]Gnanaguru K,Ramasubbu N,Venkatesan K,et al.A study on the photochemical dimerization of coumarins in the solid state[J].J Org Chem,1985,50(13):2337-2346.
[21]Narasimha Moorthy J,Venkatesan K,Weiss Richard G.Photodimerization of coumarins in solid cyclodextrin inclusion complexes[J].J Org Chem,1992,57(12):3292-3297.
[22]Shimo T,Ueda S,Suishu T,et al.Intramolecular photocycloadditions of 6,6'-dimethyl-4,4'-polymethylenedioxy-di-2-pyrones[J].The Journal of Heterocyclic Chemistry,1995,32(3):727 -730.