范韻敏,李夏蘭,方柏山
(華僑大學(xué)工業(yè)生物技術(shù)福建省高校重點(diǎn)實(shí)驗(yàn)室,福建 泉州 362021)
阿魏酸酯酶產(chǎn)生菌的培養(yǎng)條件優(yōu)化
范韻敏,李夏蘭,方柏山
(華僑大學(xué)工業(yè)生物技術(shù)福建省高校重點(diǎn)實(shí)驗(yàn)室,福建 泉州 362021)
通過(guò)均勻設(shè)計(jì)法和二次多項(xiàng)式逐步回歸,對(duì)產(chǎn)阿魏酸酯酶的培養(yǎng)基配方進(jìn)行優(yōu)化,得出優(yōu)化的培養(yǎng)基配方(質(zhì)量分?jǐn)?shù)):0.30%KH2PO4,0.60%Na2HPO4·7H2O,0.01%NaCl,0.80%酵母粉,1.33%麥糟.在此基礎(chǔ)上,用單因素法考察發(fā)酵條件對(duì)產(chǎn)酶的影響,確定最佳條件:初始pH值為6.0,培養(yǎng)溫度為28℃,搖床轉(zhuǎn)速為210r·min-1,發(fā)酵時(shí)間為68h,裝液量為75mL,接種量為5%,麥糟粒徑為0.054mm.采用優(yōu)化的培養(yǎng)基組分進(jìn)行最優(yōu)發(fā)酵培養(yǎng),優(yōu)化后的阿魏酸酯酶酶活達(dá)到119.36μkat·L-1,比優(yōu)化前提高了32倍.
阿魏酸酯酶;麥糟;優(yōu)化;均勻設(shè)計(jì)
阿魏酸酯酶(EC 3.1.1.73,F(xiàn)erulic Acid Esterases,F(xiàn)AE)是羧酸酯水解酶的一個(gè)亞類(lèi),屬胞外酶,能水解阿魏酸甲酯、低聚糖阿魏酸酯和多糖阿魏酸酯中的酯鍵[1-2].真菌、細(xì)菌和酵母都能分泌阿魏酸酯酶[3].各種微生物分泌的阿魏酸酯酶,在氨基酸序列、肽鏈的結(jié)構(gòu)、物化性質(zhì)和催化特性上有所不同.目前,由黑曲霉(Aspergillusniger)得到的2種阿魏酸酯酶AnFae A和AnFae B受到研究者的普遍關(guān)注[4].在禾本植物纖維質(zhì)中,阿魏酸是含量最多的酚酸[5-7],主要是以酯鍵與半纖維素連結(jié)[8],阿魏酸及雙阿魏酸的含量和連結(jié)方式,是決定半纖維素生物降解的最關(guān)鍵因素.因此,通過(guò)阿魏酸酯酶斷裂阿魏酸與半纖維素連結(jié)的酯鍵,可提高半纖維素降解程度[7-8].本文對(duì)已篩選到一株能產(chǎn)阿魏酸酯酶,能降解麥糟的放線(xiàn)菌,進(jìn)行產(chǎn)阿魏酸酯酶發(fā)酵條件的優(yōu)化.
1.1 菌種
菌種從土壤中篩選得到,本實(shí)驗(yàn)室保藏,初步鑒定為放線(xiàn)菌白色種屬.
1.2 培養(yǎng)基及培養(yǎng)條件
(1)斜面培養(yǎng)基:高氏1號(hào)培養(yǎng)基,pH值自然.(2)液體種子培養(yǎng)基:高氏1號(hào)培養(yǎng)基,不加瓊脂,pH值自然,于28℃,200r·min-1的條件下培養(yǎng)4d.(3)基礎(chǔ)發(fā)酵培養(yǎng)基[9](質(zhì)量分?jǐn)?shù)):0.1%KH2PO4,0.4%Na2HPO4·12H2O,0.02%NaCl,0.02%MgSO4·7H2O,0.005%CaCl2,0.6%酵母粉,6.0%麥糟.(4)初始發(fā)酵條件:在250mL三角瓶中裝入100mL發(fā)酵培養(yǎng)基,按1%接種量接入種子培養(yǎng)液,pH值自然,于28℃,200r·min-1的條件下培養(yǎng)80h.
1.3 阿魏酸酯酶酶活定義及測(cè)定
阿魏酸采用高效液相色譜法[10]測(cè)定.取250μL離心后的發(fā)酵上清液加入到250μL阿魏酸甲酯溶液中,50℃保溫15min,加入500μL體積分?jǐn)?shù)為10%的冰乙酸.樣品于離心機(jī)(10 000r·min-1)離心15min,于4℃下保存.空白樣品為煮沸失活的發(fā)酵上清液,處理方法同上.阿魏酸酯酶的酶活定義:在50℃,pH值為6.0的條件下,每分鐘酯解阿魏酸甲酯,生成1μmol阿魏酸所需的酶量.
1.4 優(yōu)化設(shè)計(jì)
(1)培養(yǎng)基的優(yōu)化.根據(jù)DPS統(tǒng)計(jì)軟件[11],設(shè)計(jì)出7因素7水平均勻設(shè)計(jì)表U7*(77)[12-13].優(yōu)化因素(質(zhì)量分?jǐn)?shù)):X1為酵母粉,X2為麥糟,X3為KH2PO4,X4為Na2HPO4·7H2O,X5為NaCl,X6為MgSO4·7H2O,X7為CaCl2·H2O.(2)發(fā)酵條件的優(yōu)化.采用單因子設(shè)計(jì)實(shí)驗(yàn),按照初始發(fā)酵條件,先得到的優(yōu)化結(jié)果用于后續(xù)的實(shí)驗(yàn),分別進(jìn)行培養(yǎng)基裝液量(V1)、培養(yǎng)基的起始pH值、培養(yǎng)溫度(θ)、搖床轉(zhuǎn)速(v)、接種量(V2)、發(fā)酵時(shí)間(t)、麥糟粒徑(d)優(yōu)化.
2.1 培養(yǎng)基優(yōu)化結(jié)果
考察培養(yǎng)基成分對(duì)阿魏酸酯酶的影響,結(jié)果如表1所示.表1中,z為阿魏酸酯酶的酶活.以KH2PO4(X1),Na2HPO4·7H2O(X2),NaCl(X3),MgSO4·7H2O(X4),CaCl2·H2O(X5),酵母粉(X6),麥糟(X7)為自變量,阿魏酸酯酶的酶活為因變量,進(jìn)行二次多項(xiàng)式逐步回歸分析.以調(diào)整相關(guān)系數(shù)R最大為原則,對(duì)該模型進(jìn)行顯著性檢驗(yàn),建立回歸方程為
Y=26.762-1 713.678X4-2 622.615X5+41 831.527X42+47 299.663X3X5.
表1 優(yōu)化培養(yǎng)基組成的均勻設(shè)計(jì)實(shí)驗(yàn)結(jié)果Tab.1 Results of uniform-design for optimization of medium formulations
其相關(guān)系數(shù)R為0.996,F(xiàn)值為58.852,顯著水平p值為0.017,剩余標(biāo)準(zhǔn)差S為1.331,Durbin-Watson統(tǒng)計(jì)量d為1.299.說(shuō)明,該方程能很好地?cái)M合產(chǎn)酶的影響過(guò)程.對(duì)該模型的顯著性檢驗(yàn),結(jié)果如表2所示.從表2可知,對(duì)阿魏酸酯酶產(chǎn)量的影響的大小順序:r(y,X5)>r(y,X4)> r(y,X42)>r(y,X3X5).即因素之間存在交互作用.
表2 顯著性檢驗(yàn)結(jié)果Tab.2 Significant test results
由此可得,優(yōu)化的培養(yǎng)基成分(質(zhì)量分?jǐn)?shù)):0.30%KH2PO4,0.60%Na2HPO4·7H2O,0.01%NaCl,0.80%酵母粉,1.33%麥糟.根據(jù)以上結(jié)果進(jìn)行驗(yàn)證,測(cè)得阿魏酸酯酶酶活為4.818μkat·L-1,與DPS軟件預(yù)測(cè)值4.468μkat·L-1的相對(duì)誤差為7.84%.培養(yǎng)基優(yōu)化前,阿魏酸酯酶酶活力為3.734μkat·L-1,而優(yōu)化后的阿魏酸酯酶酶活力比優(yōu)化前提高了29%,能較好的達(dá)到優(yōu)化的目的.Mg2+,Ca2+是許多重要酶的激活劑,對(duì)培養(yǎng)基質(zhì)的氧化和蛋白質(zhì)的合成均有影響[10].但是,優(yōu)化后的培養(yǎng)基中沒(méi)有另添加Mg2+,Ca2+,這可能是因?yàn)樵邴溤阒幸押蠱g2+,Ca2+,不需要另外添加.
2.2 發(fā)酵條件對(duì)產(chǎn)酶量的影響
2.2.1 裝液量 按照初始發(fā)酵條件(下同),考察裝液量(V1)對(duì)產(chǎn)酶量(以阿魏酸酯酶的酶活力z表征,下同)的影響,如圖1所示.由圖1可知,培養(yǎng)基裝液量對(duì)產(chǎn)酶影響較大.隨著裝液量的增加,阿魏酸酯酶產(chǎn)量也增大.裝液量達(dá)到75mL時(shí),產(chǎn)酶量最大,隨后逐漸減小.這是因?yàn)檠b液量對(duì)供氧量有一定影響,從而影響菌體的生長(zhǎng).
2.2.2 培養(yǎng)基的起始pH值 考察培養(yǎng)基起始pH值對(duì)產(chǎn)酶量的影響,如圖2所示.從圖2可知,和胞內(nèi)酶不同的,pH值對(duì)胞外酶的影響較大.該菌株在pH值為5.0~8.0的條件下均能產(chǎn)酶,但產(chǎn)酶量變化較大;在pH值為6.0處,菌株產(chǎn)酶達(dá)到最大值.酸性有利于該菌體的發(fā)酵產(chǎn)酶,但偏酸會(huì)導(dǎo)致產(chǎn)酶量急劇下降;而堿性環(huán)境對(duì)酶的生產(chǎn)是否有抑制作用,還需進(jìn)一步研究.
2.2.3 搖床轉(zhuǎn)速 考察搖床轉(zhuǎn)速(v)對(duì)產(chǎn)酶量的影響,如圖3所示.從圖3可知,轉(zhuǎn)速影響溶解氧的含量,隨著溶解氧的增大,酶的表達(dá)量相應(yīng)提高.在210r·min-1時(shí),阿魏酸酯酶的產(chǎn)量最高.
圖1 裝液量對(duì)產(chǎn)酶的影響Fig.1 Effects of volumes on FAE
圖2 培養(yǎng)基的起始pH對(duì)產(chǎn)酶的影響Fig.2 Effects of p H on FAE
圖3 搖床轉(zhuǎn)速對(duì)產(chǎn)酶的影響Fig.3 Effects of shaker speed on FAE
2.2.4 搖床溫度 考察搖床溫度(θ)對(duì)產(chǎn)酶量的影響,如圖4所示.搖床溫度在28~32℃之間,酶的表達(dá)量較高.這是由于28~32℃是菌種的最適宜生長(zhǎng)溫度,可能在此條件下,菌種的活力較高,產(chǎn)酶能提也較高.
2.2.5 接種量 考察接種量(V2)對(duì)產(chǎn)酶量的影響,如圖5所示.從圖5可知,隨著菌體濃度的增多,阿魏酸酯酶產(chǎn)量隨之增加.當(dāng)接種量為4mL時(shí),阿魏酸酯酶產(chǎn)量最大.
2.2.6 發(fā)酵時(shí)間 不同培養(yǎng)時(shí)間(t)對(duì)產(chǎn)酶量的影響,如圖6所示.從圖6可知,發(fā)酵68h左右,酶的表達(dá)量最高;隨后開(kāi)始呈下降趨勢(shì).這可能與阿魏酸誘導(dǎo)作用有關(guān).適當(dāng)濃度的阿魏酸能誘導(dǎo)生成大量的阿魏酸酯酶,而過(guò)高濃度的阿魏酸對(duì)細(xì)胞產(chǎn)生毒害作用,反而使阿魏酸酯酶的產(chǎn)量有所下降.
圖4 培養(yǎng)溫度對(duì)產(chǎn)酶的影響Fig.4 Effects of temperature on FAE
圖5 接種量對(duì)產(chǎn)酶的影響Fig.5 Effects of bacteria concentration on FAE
圖6 發(fā)酵時(shí)間對(duì)產(chǎn)酶的影響Fig.6 Effects of culture time on FAE
2.2.7 麥糟粒徑 考察麥糟粒徑(d)對(duì)產(chǎn)酶量的影響,如圖7所示.從圖7可知,麥糟粒徑對(duì)產(chǎn)酶影響較大.麥糟粒徑越小,相對(duì)表面積越大,菌種產(chǎn)酶量越高.
通過(guò)上述發(fā)酵條件的考察,可以確定產(chǎn)酶的最優(yōu)條件:培養(yǎng)溫度為28℃,搖床轉(zhuǎn)速為210r·min-1,發(fā)酵時(shí)間為68h,裝液量為75mL,接種量為5%,初始pH值為6.0,麥糟粒徑為0.054mm.采用優(yōu)化的培養(yǎng)基組分進(jìn)行最優(yōu)發(fā)酵培養(yǎng),阿魏酸酯酶的酶活為119.36μkat·L-1,比優(yōu)化前酶活3.734μkat·L-1提高了32倍.其中,發(fā)酵時(shí)間對(duì)阿魏酸酯酶的影響最大.
圖7 麥糟粒徑對(duì)產(chǎn)酶的影響Fig.7 Effects of grain diameter on FAE
通過(guò)實(shí)驗(yàn)分析不同培養(yǎng)條件對(duì)阿魏酸酯酶生產(chǎn)菌產(chǎn)酶的影響.采用均勻設(shè)計(jì),二次多項(xiàng)式逐步回歸分析所得的發(fā)酵培養(yǎng)基組成,并通過(guò)單因素實(shí)驗(yàn)得到發(fā)酵培養(yǎng)的最優(yōu)條件.結(jié)果表明,優(yōu)化后的酶活比優(yōu)化前提高了近32倍,起到了優(yōu)化的效果,有助于木質(zhì)纖維降解工藝的研究.在此基礎(chǔ)上,下一步工作是研究此菌種分泌的阿魏酸酯酶的分離和純化條件,為木質(zhì)纖維的生物煉制提供前期的研究基礎(chǔ).
[1]MARK L J,SUN R,BANKS W B.Fractional characterization of alkali-labile lignin and alkali-insoluble lignin from wheat straw[J].Industrial Crops and Products,1996,5(4):291-300.
[2]RAL ET M C,F(xiàn)AULDS C B,WILLIAMSON G,et al.Degradation of feruloylated oligosaccharides from sugarbeet pulp and wheat bran by ferulic acid esterase fromAspergillus niger[J].Carbohyd Res,1994,263(2):257-269.
[3]CARVAL HEIRO F,ESTEVES M P,PARAJO J C.Production of oligosaccharides by autohydrolysis if brewery’s spent grain[J].Bioresource Tech,2004,91(1):93-100.
[4]SINDHU M,ABRAHAM T.Ferulic acid:An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications[J].Critical Reviews in Biotechnology,2004,24(2/3):59-83.
[5]BREZILLON C,KROON P A,F(xiàn)AULDS C B,et al.Novel ferulic acid esterases are induced by growth ofAspergillus nigeron sugar-beet pulp[J].Appl Microbiol Biotechnol,1996,45(3):371-376.
[6]MICARD V,THIBAUL T J F.Oxidative gelation of sugar-beet pectins:Use of laccases and hydration propertries of the cross-linked pectins[J].Carbohyd Polym,1999,39(1):265-273.
[7]BARTOLOME B,SANTOS M,J IMENEZ J J,et al.Pentoses and hydroxycinnamic acids in brewer’s spent grain[J].Cereal Sci,2002,36(1):51-58.
[8]FAULDS C B,WILLIAMSON G.Effect of hydroxycinnamates and benzoates on the production of feruloyl esterases byAspergillus niger[J].Sci Food agric,1999,79(3):450-452.
[9]CRAWFORD D L.Lignocellulose decomposition by selected Streptomyces strains[J].Appl Environ Microbiol,1978,35(6):104-105.
[10]俞俊棠,唐孝宣,鄒行彥,等.新編生物工藝學(xué)[M].北京:化學(xué)工業(yè)出版社,2003:104-106.
[11]唐啟義,馮明光.實(shí)用統(tǒng)計(jì)分析及其DPS數(shù)據(jù)處理系統(tǒng)[M].北京:科學(xué)出版社,2002:311-313.
[12]方開(kāi)泰.均勻設(shè)計(jì)與均勻設(shè)計(jì)表[M].北京:科學(xué)出版社,1994:75.
[13]李夏蘭,魏國(guó)棟,王昭晶,等.均勻設(shè)計(jì)法優(yōu)化芥菜多糖提取工藝的研究[J].食品與發(fā)酵工業(yè),2005,31(8):104-106.
Optimization of Fermentation Conditions of Ferulic Acid Esterase Producers
FAN Yun-min,LI Xia-lan,F(xiàn)AN G Bai-shan
(Key Laboratory of Industrial Biotechnology of Fujian Province,Huaqiao University,Quanzhou 362021,China)
The optimal parameters of fermentation conditions of ferulic acid esterase from brewer’s spent grain were obtained through uniform-design and quadratic polynomial regression techniques.The optimal culture medium were as follows(%):KH2PO40.30,Na2HPO4·7H2O 0.60,NaCl 0.01,yeast powder 0.80,brewer’s spent grain 1.33.Based on the results above,the influence of fermentation conditions on enzymes were also studied by single factor method and the optimal conditions were confirmed as follows:the optimization initial p H 6.0,cultural temperature 28℃,the strain was cultivated with 75mL medium in a 250mL flask for 68 h on 210 r·min-1shaker,inoculum concentration 5%and grain diameter 0.054 mm.Ferulic acid esterase reached 119.36μkat·L-1under optimal conditions,increased 32 times than that before optimization.
ferulic acid esterase;brewer’s spent grain;optimization;uniform-design
TQ 920.6;Q 814.9
A
1000-5013(2010)04-0426-04
(責(zé)任編輯:黃曉楠 英文審校:劉源崗)
2008-11-19
方柏山(1957-),男,教授,主要從事生物信息化的研究.E-mail:fangbs@hqu.edu.cn.
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展(973)計(jì)劃項(xiàng)目(2007CB707804)