国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

細(xì)胞因子加速正畸牙移動(dòng)的研究進(jìn)展

2025-03-04 00:00:00孫屹男侯佳
新醫(yī)學(xué) 2025年1期
關(guān)鍵詞:免疫細(xì)胞因子

【摘要】 正畸牙移動(dòng)是正畸力介導(dǎo)的一系列高度有序的牙體—牙周膜—牙槽骨改建過(guò)程,牙周細(xì)胞微環(huán)境(包括細(xì)胞外基質(zhì)、細(xì)胞膜、細(xì)胞骨架、細(xì)胞核蛋白、基因組)的適應(yīng)性反應(yīng)涉及各種關(guān)鍵細(xì)胞因子的局部合成和釋放。本研究回顧近年來(lái)相關(guān)文獻(xiàn),從參與正畸過(guò)程的各類細(xì)胞出發(fā),對(duì)具有潛在臨床應(yīng)用前景的細(xì)胞因子進(jìn)行整理,重點(diǎn)關(guān)注各種因子在正畸牙移動(dòng)機(jī)械力——細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中的作用,旨在輔助研究人員開(kāi)展臨床前研究。

【關(guān)鍵詞】 正畸牙移動(dòng);細(xì)胞因子;免疫

Research progress on cytokines in accelerating orthodontic tooth movement

SUN Yinan1,2, HOU Jia2

(1.Department of Stomatology, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang 215600, China; 2.Department of Stomatology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China)

Corresponding author: HOU Jia, E-mail: houjia19880325@163.com

【Abstract】 Orthodontic tooth movement is a series of highly ordered dentin-periodontal membrane-alveolar bone remodeling processes mediated by orthodontic forces. The adaptive responses of the periodontal cellular microenvironment (including extracellular matrix, cell membrane, cytoskeleton, cellular nuclear proteins, and genome) involve the local synthesis and release of various key cytokines. In this study, we reviewed the recent relevant literature in recent years, and organized cytokines with potential clinical applications from various types of cells involved in the orthodontic process, focusing on the roles of various factors in the mechanical force of orthodontic tooth movement-cell signaling process, with the aim of assisting researchers to carry out preclinical studies.

【Key words】 Orthodontic tooth movement; Cytokines; Immunity

正畸牙移動(dòng)(orthodontic tooth movement,OTM)是通過(guò)正畸力刺激引起牙周膜、牙槽骨等牙周組織發(fā)生改建而實(shí)現(xiàn)的。經(jīng)典的拉-壓應(yīng)力學(xué)說(shuō)認(rèn)為,作用于牙齒的正畸力最先引起牙周膜組織形態(tài)發(fā)生改變,形成拉力側(cè)和壓力側(cè);拉力側(cè)牙周膜膠原纖維拉伸,促進(jìn)成骨細(xì)胞增殖活化,在牙槽骨表面形成新骨;壓力側(cè)牙周膜則出現(xiàn)玻璃樣變性并伴隨明顯的免疫炎癥應(yīng)答反應(yīng);待壞死的玻璃樣變組織被完全清除,新的牙周膜組織形成后,在持續(xù)的壓應(yīng)力下牙槽骨開(kāi)始在破骨細(xì)胞作用下發(fā)生直接骨吸收,牙齒隨之移動(dòng)。

正畸加力初期,牙周膜中的成纖維細(xì)胞首先感受力并啟動(dòng)牙周組織的系列生物學(xué)反應(yīng),引發(fā)牙槽骨改建,包括無(wú)菌性炎癥、微血管改建、骨吸收和新骨生成等。這是一個(gè)復(fù)雜的機(jī)械力-分子生物學(xué)信號(hào)的傳遞與轉(zhuǎn)化過(guò)程,已知參與其中的細(xì)胞因子包括前列腺素、神經(jīng)遞質(zhì)、炎性因子等。它們分別在局部破骨細(xì)胞分化、牙周膜炎性反應(yīng)、微血管網(wǎng)絡(luò)構(gòu)筑和成骨細(xì)胞活化方面發(fā)揮特定功能,在這些細(xì)胞因子的協(xié)同作用下,OTM的改建途徑可以概括為:一方面,炎性細(xì)胞因子分泌并暫時(shí)性高表達(dá),誘導(dǎo)區(qū)域破骨細(xì)胞生成,參與牙體部特別是牙根的吸收;另一方面,牙周膜內(nèi)環(huán)境趨于維持動(dòng)態(tài)穩(wěn)定,微血管網(wǎng)絡(luò)改建,成骨細(xì)胞分化,新骨生成。二者功能的平衡與活化共同決定了臨床正畸的質(zhì)量和速度。因此,正確認(rèn)識(shí)并合理應(yīng)用細(xì)胞因子制劑有望實(shí)現(xiàn)符合生理特性的正畸加速。本文就OTM相關(guān)細(xì)胞因子的研究意義、細(xì)胞因子加速OTM的潛在治療靶點(diǎn)以及研究場(chǎng)景等方面展開(kāi)闡述。

1 OTM相關(guān)細(xì)胞因子的研究意義

在OTM進(jìn)程中,牙移動(dòng)的限制主要取決于牙周膜和牙槽骨在正畸力施加后的改建重塑效率。牙周膜內(nèi)環(huán)境充斥著大量液體,牙周膜干細(xì)胞作為關(guān)鍵的機(jī)械信號(hào)傳感器,具有自我更新、多系分化和免疫調(diào)節(jié)特性,在維持OTM牙周膜穩(wěn)態(tài)中起著至關(guān)重要的作用。在OTM過(guò)程中,白介素11(interleukin 11,IL-11)、含膠原三螺旋重復(fù)蛋白1(collagen triple helix repeat containing-1,CTHRC1)和硫化氫(hydrogen sulfide,H2S)等多種細(xì)胞因子可能參與將正畸力轉(zhuǎn)導(dǎo)至牙周膜干細(xì)胞[1],介導(dǎo)牙周膜纖維的初步礦化和成骨前體細(xì)胞的增殖。牙槽骨重塑是一個(gè)涉及區(qū)域內(nèi)破骨細(xì)胞、成骨細(xì)胞、炎癥細(xì)胞、免疫細(xì)胞和血管上皮細(xì)胞等多細(xì)胞活動(dòng)的過(guò)程[2]。起始階段,機(jī)械負(fù)荷可以激發(fā)骨細(xì)胞與其長(zhǎng)樹(shù)突狀細(xì)胞突起腔隙內(nèi)的細(xì)胞間液流動(dòng),骨細(xì)胞分泌的可溶性細(xì)胞因子在此過(guò)程中發(fā)揮了重要作用,稱為自分泌刺激。感知機(jī)械負(fù)荷后,骨細(xì)胞傳遞機(jī)械及生理信號(hào)到其他細(xì)胞,控制破骨細(xì)胞生成的主要細(xì)胞因子是核因子-κB受體激活因子(receptor activator of the nuclear factor-κB,RANK)、RANK配體(receptor activator of the nuclear factor-κB ligand,RANKL)和骨保護(hù)素(osteoprotegerin,OPG)。RANKL與RANK的結(jié)合對(duì)于促進(jìn)破骨細(xì)胞分化和存活至關(guān)重要。RANKL作為一種成骨細(xì)胞/基質(zhì)細(xì)胞衍生因子,可以與其在破骨祖細(xì)胞上表達(dá)的受體RANK結(jié)合,激活與細(xì)胞生長(zhǎng)分化相關(guān)的下行信號(hào)通路,促進(jìn)破骨細(xì)胞的分化和成熟。OPG作為誘餌受體,可競(jìng)爭(zhēng)性結(jié)合RANK,抑制破骨細(xì)胞的形成[3]。因此,RANKL與OPG的比例控制是近期一些OTM加速研究的熱點(diǎn)。大量研究表明,在分子水平,Wnt、絲裂原激活化蛋白激酶(mitogen-activated protein kinase,MAPK)和RhoA/Rho激酶(rho-associated kinase,RhoA/Rho)信號(hào)通路與破骨細(xì)胞和成骨細(xì)胞譜系的分化、成熟密切相關(guān)。其中,Wnt信號(hào)通路主導(dǎo)牙槽骨重塑的研究證據(jù)較為充分[4]。Wnt受體蛋白LRP5/6與骨質(zhì)疏松癥或骨的吸收與生成相關(guān),當(dāng)硬化蛋白與之結(jié)合后,成骨細(xì)胞核內(nèi)β連環(huán)蛋白的轉(zhuǎn)運(yùn)被阻斷,從而抑制成骨細(xì)胞功能表達(dá)[5]。此外,dickkopf相關(guān)蛋白1(dickkopf-1,DKK-1)是典型的Wnt通路抑制劑,同樣可以阻斷成骨分化[6]。

現(xiàn)代化數(shù)字化診療系統(tǒng)的應(yīng)用使得臨床操作更加簡(jiǎn)便、高效,但并未改變正畸治療的潛在細(xì)胞生物學(xué)機(jī)制,不會(huì)明顯縮短正畸治療過(guò)程。繼續(xù)探索OTM中與牙移動(dòng)速率和牙槽骨穩(wěn)態(tài)相關(guān)的細(xì)胞因子,對(duì)于闡釋OTM機(jī)制及尋找OTM加速的新特異性療法具有重要意義。

2 OTM相關(guān)的細(xì)胞因子

2.1 牙周膜干細(xì)胞相關(guān)細(xì)胞因子

牙周膜干細(xì)胞(periodontal ligament stem cells,PDLSCs)自2004年被成功分離以來(lái),已經(jīng)顯示出與間充質(zhì)干細(xì)胞相似的特性[7]。PDLSCs具有免疫調(diào)節(jié)功能,能夠增殖并生成類似牙骨質(zhì)/牙周韌帶的復(fù)合體,這在牙周組織的穩(wěn)態(tài)中起著重要作用。PDLSCs對(duì)機(jī)械載荷敏感[8],并在牙周組織重塑過(guò)程中率先發(fā)揮作用。Zhang等[9]通過(guò)在大鼠體內(nèi)追蹤PDLSCs,提供了OTM進(jìn)程中PDLSCs行為模式的新理解。他們觀察了正畸治療開(kāi)始3 d后,血小板衍生的生長(zhǎng)因子α受體(platelet-derived growth factor alpha receptor,PDGFRα)和內(nèi)巢素兩種標(biāo)記物的變化,發(fā)現(xiàn)壓力側(cè)和對(duì)側(cè)PDGFRα或內(nèi)巢素陽(yáng)性細(xì)胞數(shù)量均有所增加,7 d后又開(kāi)始下降。這證實(shí)了OTM啟動(dòng)后,前后側(cè)的PDLSCs可能同時(shí)被重新激活。因此,尋找PDLSCs在感知生物力學(xué)刺激后釋放的重點(diǎn)信號(hào)分子有助于更好地理解PDLSCs如何響應(yīng)正畸力,以及這些細(xì)胞如何通過(guò)分泌某些因子,如RANKL、OPG和巨噬細(xì)胞集落刺激因子(macrophage-colony stimulating factor,M-CSF)來(lái)調(diào)節(jié)OTM過(guò)程。

如前所述,IL-11、CTHRC1和H2S有助于體內(nèi)PDLSCs的力學(xué)響應(yīng)。已知IL-11與破骨細(xì)胞和成骨細(xì)胞的調(diào)控有關(guān)。PDLSCs分泌的內(nèi)源性IL-11可以刺激成骨細(xì)胞和骨樣細(xì)胞特異性標(biāo)記物,增加骨涎蛋白的表達(dá),促進(jìn)人PDLSCs的增殖。CTHRC1主要在骨髓間充質(zhì)干細(xì)胞(bone marrow stromal cells,BMSCs)的分化中起作用,Wang等[10]研究發(fā)現(xiàn),CTHRC1在體外培養(yǎng)的PDLCs中表達(dá)上調(diào),CTHRC1過(guò)表達(dá)可促進(jìn)人PDLSCs的成骨分化,表明CTHRC1的細(xì)胞調(diào)節(jié)作用也是正向的。H2S是一種氣態(tài)細(xì)胞遞質(zhì),近年來(lái)被發(fā)現(xiàn)與BMSCs的功能有關(guān)。在PDLSCs中,力誘導(dǎo)產(chǎn)生的H2S可以通過(guò)調(diào)節(jié)單核細(xì)胞趨化蛋白-1和RANKL/OPG受體激活劑的分泌,介導(dǎo)牙槽骨中巨噬細(xì)胞的積累和破骨成骨活性,參與OTM過(guò)程。Liu等[11]通過(guò)小鼠OTM模型觀察到,正畸力的施加增加了牙周膜中H2S的產(chǎn)生,并上調(diào)了半胱甘氨酸β-合成酶的表達(dá)。壓縮力誘導(dǎo)的H2S刺激后,可以觀察到與破骨細(xì)胞數(shù)量相關(guān)的抗酒石酸酸性磷酸酶(tartrate-resistant acid phosphatase,TRAP)在C57BL/6小鼠OTM模型的壓力側(cè)標(biāo)記增加。人為阻斷內(nèi)源性H2S的產(chǎn)生可以抑制正畸力誘導(dǎo)的巨噬細(xì)胞積累和壓力側(cè)破骨細(xì)胞的活性,并減小OTM的牙移動(dòng)距離。

當(dāng)前,在PDLSCs中只研究了細(xì)胞骨架和壓電通道。研究發(fā)現(xiàn),低幅高頻機(jī)械刺激后,人PDLSCs中的絲狀肌動(dòng)蛋白(filamentous actin,F(xiàn)-actin)纖維變得更清晰、更粗,這表明機(jī)械刺激可以導(dǎo)致細(xì)胞骨架的重塑。這種細(xì)胞骨架的重塑水平影響了PDLSCs的機(jī)械驅(qū)動(dòng)成骨分化能力,并且這種影響與施加的振動(dòng)刺激的大小有關(guān)[12]。最近,PDLSCs內(nèi)一種被稱為Piezo1家族的新型機(jī)械敏感離子通道受到關(guān)注[13],其通過(guò)增加RANKL/OPG比例的方式參與到壓力側(cè)破骨細(xì)胞分化的關(guān)鍵過(guò)程中,Wnt/β-catenin通道是潛在的下游信號(hào)[14]。類似地,在PDLSCs中,芳香烴受體核轉(zhuǎn)位蛋白1(aryl hydrocarbon receptor nuclear translocator-like protein 1,BMAL1)能夠通過(guò)增強(qiáng)C-C基序趨化因子2

(C-C motif chemokine 2,CCL2)和RANKL的分泌募集單核細(xì)胞,從而分化為破骨細(xì)胞[15]。

2.2 破骨細(xì)胞、成骨細(xì)胞及骨細(xì)胞相關(guān)細(xì)胞因子

破骨細(xì)胞的形成取決于基質(zhì)和成骨細(xì)胞衍生因子對(duì)破骨細(xì)胞前體的影響[16]。RANKL是破骨細(xì)胞形成中起決定作用的細(xì)胞因子,它與發(fā)育中的破骨細(xì)胞表面的受體RANK結(jié)合,對(duì)破骨細(xì)胞的分化、功能和存活至關(guān)重要。RANKL和OPG表達(dá)的相互調(diào)節(jié)協(xié)調(diào)了壓力側(cè)骨吸收和對(duì)側(cè)骨形成,是OTM的關(guān)鍵限速靶點(diǎn)。在Li等[17]的研究中,6周齡雄性ICR小鼠被局部注射可溶性RANKL,14 d

內(nèi)觀察到明顯的上切牙移動(dòng)加快。組織學(xué)分析顯示,牙移動(dòng)過(guò)程中,壓力側(cè)上頜骨前部觀察到破骨細(xì)胞的數(shù)量增加。值得一提的是,RANKL代謝快,局部濃度難以控制,需要短期(14 d)內(nèi)頻繁給藥。相反地,在青少年患者中,施加正畸力1 h

后,壓力側(cè)齦溝液中OPG濃度相較于基礎(chǔ)水平出現(xiàn)下降,且在24 h后明顯低于對(duì)側(cè)。壓力側(cè)OPG的表達(dá)降低可與RANKL表達(dá)增加呈現(xiàn)出類似的作用趨勢(shì)。在一些OPG缺乏的患者群體中,局部遞送破骨細(xì)胞特異性抑制劑能顯著解決骨吸收過(guò)快的問(wèn)題[18]。

M-CSF是另一種由基質(zhì)和成骨細(xì)胞產(chǎn)生的因子,對(duì)于破骨細(xì)胞的早期前體細(xì)胞的招募和分化具有至關(guān)重要的作用。在OTM的早期階段,可以在牙槽骨和牙周韌帶的成骨細(xì)胞和成纖維細(xì)胞中檢測(cè)到M-CSF的表達(dá)。Zhou等[19]在Wistar大鼠的OTM模型中引入骨皮質(zhì)切開(kāi)技術(shù),聯(lián)合手術(shù)組大鼠M-CSF的表達(dá)在第14天達(dá)到峰值,壓力側(cè)骨吸收激活得到增強(qiáng)。該研究證實(shí)了M-CSF在OTM早期階段作為特異性骨代謝標(biāo)志物支持區(qū)域加速理論的研究?jī)r(jià)值。Brooks等[20]研究了使用M-CSF加速OTM的可行性,在牙移動(dòng)早期階段,單核細(xì)胞在被募集到牙周韌帶之前可能已經(jīng)分化為破骨細(xì)胞前體細(xì)胞。此時(shí)給予低劑量的M-CSF刺激可有效增加下游基因和破骨細(xì)胞標(biāo)志物TRAP的表達(dá)。

此外,成骨細(xì)胞衍生的細(xì)胞因子也能在OTM早期調(diào)控破骨細(xì)胞前體表達(dá)。壓縮力能顯著增加成骨細(xì)胞中前列腺素E2(prostaglandin E2,PGE2)受體EP2和EP4的表達(dá),PGE2可以增加成骨細(xì)胞中RANKL的表達(dá)和降低OPG的表達(dá),刺激破骨細(xì)胞的形成。研究顯示,機(jī)械應(yīng)變期間與壓縮力響應(yīng)的成骨細(xì)胞內(nèi)缺氧誘導(dǎo)因子-1α(hypoxia-inducible factor 1α,HIF-1α)介導(dǎo)前列腺素E2的下游合成,并穩(wěn)定血管內(nèi)皮細(xì)胞生長(zhǎng)因子(vascular endothelial growth factor,VEGF)的表達(dá),整合素機(jī)械轉(zhuǎn)導(dǎo)和激酶的下游磷酸化作用在體外的OTM模型中能夠穩(wěn)定HIF-1α[21]。壓縮力還能增加成骨細(xì)胞中IL-17及其受體的表達(dá)。向成骨細(xì)胞培養(yǎng)液中加入IL-17則可以有效模擬壓縮力環(huán)境,相應(yīng)增加M-CSF和RANKL的表達(dá),同時(shí)降低OPG的表達(dá),這強(qiáng)烈暗示IL-17也參與介導(dǎo)了壓縮力的生物力學(xué)效應(yīng)[22]。

轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor beta1,TGF-β1)是一種分泌型活性蛋白,通過(guò)趨化成骨細(xì)胞促進(jìn)骨形成。Sasaki等[23]研究了TGF-β1在通過(guò)補(bǔ)充振動(dòng)加速正畸牙移動(dòng)中的作用,OTM動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)通過(guò)對(duì)上頜第一磨牙進(jìn)行3 min的補(bǔ)充振動(dòng)(3 g,70 Hz),觀察到受壓側(cè)牙槽骨中TGF-β1陽(yáng)性骨細(xì)胞的數(shù)量增加以及相應(yīng)的破骨形成。張疆弢等[24-25]和黃瑾等[26]探討了重組人血小板衍生生長(zhǎng)因子BB(recombinant human platelet -derived growth factor-BB,rhPDGF-BB)與重組人轉(zhuǎn)化生長(zhǎng)因子β1(recombinant human transforming growth factor-β1,rhTGF-β1)聯(lián)合應(yīng)用對(duì)OTM大鼠壓力側(cè)破骨細(xì)胞FAK蛋白的表達(dá)變化,通過(guò)局部注射rhPDGF-BB和rhTGF-β1,發(fā)現(xiàn)rhPDGF-BB和rhTGF-β1的協(xié)同作用上調(diào)了正畸牙牙周組織中FAK mRNA基因、FAK蛋白和整合素β3的表達(dá),進(jìn)一步促進(jìn)破骨細(xì)胞的分化、增殖及骨吸收。骨皮質(zhì)切開(kāi)術(shù)聯(lián)合正畸治療可以產(chǎn)生更為復(fù)雜的協(xié)同作用,可部分歸功于TGF-β在成骨細(xì)胞分化標(biāo)志物骨鈣素、骨橋蛋白和骨涎蛋白表達(dá)中的重要作用[27]。近年來(lái),一些學(xué)者對(duì)以TGF-β作為刺激因子的干細(xì)胞工程進(jìn)行了研究。TGF-β1信號(hào)通路可誘導(dǎo)FAK Y397(整合素下游的一個(gè)關(guān)鍵調(diào)節(jié)因子)活化、肌動(dòng)蛋白纖維增強(qiáng)、細(xì)胞核扁平化和YAP核易位等機(jī)械感覺(jué)信號(hào)通路的激活,形成機(jī)械正向調(diào)節(jié),促進(jìn)間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)成骨分化[28]。

骨細(xì)胞是在骨形成過(guò)程中嵌入骨基質(zhì)的終末分化成骨細(xì)胞。機(jī)械負(fù)荷可引起骨細(xì)胞結(jié)構(gòu)的應(yīng)變,導(dǎo)致腔隙-小管系統(tǒng)的間質(zhì)液流動(dòng),從而在骨細(xì)胞表面產(chǎn)生剪切應(yīng)力,激活骨細(xì)胞胞質(zhì)膜上的機(jī)械受體,并觸發(fā)細(xì)胞內(nèi)信號(hào),最典型的是Wnt通路[29]。硬化蛋白是一種骨細(xì)胞產(chǎn)生的細(xì)胞因子,它通過(guò)拮抗Wnt通路抑制成骨細(xì)胞的功能、存活和骨形成[30]。據(jù)報(bào)道,機(jī)械載荷降低了硬化蛋白的表達(dá),有利于骨形成。Ueda等[31]研究發(fā)現(xiàn),硬化蛋白的表達(dá)在張力側(cè)的牙槽骨淺層區(qū)域顯著降低。成纖維細(xì)胞生長(zhǎng)因子是另一種抑制成骨細(xì)胞分化和基質(zhì)礦化的骨細(xì)胞衍生因子。類似于硬化蛋白,在OTM過(guò)程中,成纖維細(xì)胞生長(zhǎng)因子同樣在牙根張力側(cè)表達(dá)降低。這些研究有力地支持了骨細(xì)胞在正畸牙齒運(yùn)動(dòng)過(guò)程中特定部位骨形成的關(guān)鍵作用。

2.3 血管系統(tǒng)相關(guān)細(xì)胞因子

血管生成是天然膜內(nèi)成骨過(guò)程的一個(gè)必要部分,其中MSCs在血管網(wǎng)絡(luò)形成后分化為成骨細(xì)胞,成骨細(xì)胞隨后分泌細(xì)胞外基質(zhì)(extra cellular matrix,ECM)并最終礦化成骨。VEGF等生長(zhǎng)因子是常見(jiàn)的促血管生成劑,而它們的時(shí)空遞送和活性維持是治療用細(xì)胞因子制劑開(kāi)發(fā)的主要挑戰(zhàn)。在施加正畸力后,牙周膜受壓側(cè)出現(xiàn)血管閉塞,從而誘導(dǎo)血管生成以適應(yīng)局部缺氧。近期的研究強(qiáng)調(diào)骨重塑和血管生成耦合的概念,據(jù)報(bào)道,破骨細(xì)胞在分化過(guò)程中可增強(qiáng)VEGF的分泌[32],促進(jìn)內(nèi)皮細(xì)胞的血管生成[33]。因此,學(xué)者們?cè)噲D找到為破骨細(xì)胞和血管生成之間提供通訊的潛在調(diào)節(jié)因子,這對(duì)實(shí)現(xiàn)安全的OTM加速意義重大。Kohno等[34]的研究探討了VEGF在牙移動(dòng)和成骨細(xì)胞活動(dòng)中的作用,他們發(fā)現(xiàn)VEGF可以促進(jìn)小鼠上切牙的移動(dòng)和成骨細(xì)胞的增殖。使用抗VEGF抗體可以抑制牙移動(dòng)過(guò)程中的成骨細(xì)胞分化,并同期減少牙移動(dòng)和復(fù)位程度[35]。這些研究結(jié)果揭示了VEGF在正畸治療中的關(guān)鍵作用,并提供了一種潛在的思路,即通過(guò)局部注射抗VEGF抗體來(lái)維持支抗穩(wěn)定和鞏固牙齒排列。

脂聯(lián)素(adiponectin,ADP)是血漿中含量豐富的脂肪因子,ADP對(duì)牙周膜細(xì)胞的有益作用已得到證實(shí),ADP可能影響骨代謝,并可能通過(guò)潛在的調(diào)控機(jī)制作用于血管內(nèi)皮細(xì)胞。Wang等[36]利用重組慢病毒轉(zhuǎn)移siADP,研究了ADP在血管生成中的作用。轉(zhuǎn)染siADP后,人臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells,HUVECs)中VEGF的表達(dá)降低。在傷口愈合實(shí)驗(yàn)中,與對(duì)照組相比,siADP組的細(xì)胞表現(xiàn)出較低的遷移能力。Ibrahimi Disha等[37]通過(guò)對(duì)大鼠進(jìn)行內(nèi)皮素B(endothelin B receptors,ETB)受體基因敲除,發(fā)現(xiàn)敲低組顯示出明顯較低的成骨活性、骨量減少和牙移動(dòng)減少,證明內(nèi)皮素參與OTM晚期的骨改建過(guò)程。血小板源性生長(zhǎng)因子(platelet-derived growth factor,PDGF)是由健康的血小板蛋白球體分離出來(lái)的二聚體和酪氨酸激酶。Jin等[38]研究發(fā)現(xiàn),牽張力刺激牙周膜細(xì)胞上調(diào)runt相關(guān)轉(zhuǎn)錄因子2(runt-related transcription factor-2,Runx-2)、骨鈣素(osteocalcin,OCN)并誘導(dǎo)成骨分化,促進(jìn)牙周組織和牙槽骨界面處的骨代謝。PDGF-BB在該過(guò)程中明顯上調(diào),并與血小板衍生生長(zhǎng)因子受體β陽(yáng)性(platelet-derived growth factor receptor β+,PDGFRβ+)/α平滑肌肌動(dòng)蛋白陽(yáng)性(α-smooth muscle actin+,α-SMA+)纖維細(xì)胞表達(dá)呈正相關(guān)。體內(nèi)實(shí)驗(yàn)表明,局部應(yīng)用PDGFRβ和JAK/STAT3信號(hào)通路抑制劑能夠抑制牙移動(dòng)、降低成骨分化和新骨形成。上述研究表明,靶向破骨細(xì)胞與血管內(nèi)皮細(xì)胞間通訊因子的策略有望實(shí)現(xiàn)壓縮力環(huán)境下的骨重塑與血管化耦合。

2.4 炎癥免疫反應(yīng)相關(guān)細(xì)胞因子

Klein等[39]提出“免疫正畸”的概念,引發(fā)了學(xué)者對(duì)OTM不同時(shí)段背后相關(guān)細(xì)胞和分子免疫事件的關(guān)注。在OTM早期階段,牙通過(guò)壓縮牙周膜和輕微的骨彎曲在牙槽骨內(nèi)移動(dòng)。進(jìn)入停滯階段后,為了應(yīng)對(duì)硬骨膜的機(jī)械阻擋和牙周膜局部壞死區(qū)域內(nèi)血管閉塞、缺氧的微環(huán)境,巨噬細(xì)胞和從牙槽骨髓側(cè)募集的活化破骨細(xì)胞啟動(dòng)復(fù)雜但高度協(xié)調(diào)的炎癥免疫反應(yīng),刺激骨代謝。隨后,在加速階段,組織通過(guò)適應(yīng)性免疫反應(yīng)試圖返回內(nèi)穩(wěn)態(tài),與細(xì)胞增殖和遷移、傷口愈合、細(xì)胞骨架重塑、上皮間充質(zhì)轉(zhuǎn)化、血管生成等相關(guān)的信號(hào)通路上調(diào)。牙周組織細(xì)胞這種從急性免疫反應(yīng)向正常生理穩(wěn)態(tài)過(guò)渡的趨勢(shì)將一直持續(xù)到下一次的正畸復(fù)診,且隨著加力后重復(fù)上述免疫周期。因此,可以嘗試?yán)霉δ苄悦庖哒{(diào)控因子來(lái)補(bǔ)充現(xiàn)有的OTM加速方法。

在OTM啟動(dòng)后2 h至3 d內(nèi),中性粒細(xì)胞逐漸活化達(dá)峰值,其首要作用是清除組織碎片,但更重要的是,它們分泌趨化介質(zhì)以募集單核細(xì)胞和巨噬細(xì)胞(初期以M1型為主)。單核細(xì)胞是破骨細(xì)胞、樹(shù)突狀細(xì)胞和巨噬細(xì)胞的前體細(xì)胞。巨噬細(xì)胞除了具有重要的吞噬功能外,還會(huì)產(chǎn)生多種促炎細(xì)胞因子,影響其他牙周膜細(xì)胞的活性,促進(jìn)破骨細(xì)胞的生成。短期內(nèi)活躍的炎癥反應(yīng)導(dǎo)致自然殺傷(NK)細(xì)胞和介導(dǎo)NK細(xì)胞殺傷的2B4受體基因的信號(hào)傳導(dǎo)上調(diào),NK細(xì)胞能夠殺死受損細(xì)胞,并分泌腫瘤壞死因子α(tumor necrosis factor-alpha,TNF-α)和干擾素γ(interferon-gamma,IFN-γ)參與破骨細(xì)胞發(fā)生、骨吸收和白細(xì)胞募集[40]。它們?cè)贠TM中的作用值得進(jìn)一步研究。粒細(xì)胞,如肥大細(xì)胞、嗜酸性粒細(xì)胞和嗜堿性粒細(xì)胞通過(guò)釋放組胺參與構(gòu)筑先天免疫防御的第一道防線。組胺能夠增強(qiáng)血管通透性、白細(xì)胞募集和破骨細(xì)胞生成。樹(shù)突狀細(xì)胞是牙周膜內(nèi)的常駐細(xì)胞,同樣隸屬于先天免疫系統(tǒng),但它們主要作為抗原遞呈細(xì)胞對(duì)T細(xì)胞和B細(xì)胞起作用。樹(shù)突狀細(xì)胞上表達(dá)的CD11b和iCOS配體上調(diào),以及樹(shù)突成熟和樹(shù)突狀細(xì)胞-NK細(xì)胞串?dāng)_相關(guān)通路上調(diào)也證明了其在OTM初期發(fā)揮免疫調(diào)節(jié)作用。B細(xì)胞和T細(xì)胞直接或間接地產(chǎn)生促炎細(xì)胞因子,是間充質(zhì)細(xì)胞中RANKL的重要來(lái)源。然而,僅有少量的研究關(guān)注了它們?cè)贠TM初始階段的作用。Kook等[41]發(fā)現(xiàn)牙周膜中的CD220+ B細(xì)胞在添加壓縮應(yīng)力后立即增加,Klein等[39]則觀察到T細(xì)胞信號(hào)和iCOS配體的上調(diào)。到了停滯階段,骨吸收仍在繼續(xù),組織需要通過(guò)一個(gè)過(guò)渡階段來(lái)恢復(fù)穩(wěn)態(tài),這對(duì)于減輕炎癥和避免永久性組織損傷至關(guān)重要。樹(shù)突狀細(xì)胞和γδT細(xì)胞將架起先天免疫和適應(yīng)性免疫的橋梁。調(diào)節(jié)性T細(xì)胞可以選擇性抑制Th1和Th17細(xì)胞以及T細(xì)胞相關(guān)細(xì)胞因子,從而抑制炎癥反應(yīng),促進(jìn)骨形成。

Chaushu等[42]總結(jié)了免疫正畸早期發(fā)揮特定功能的可溶性細(xì)胞介質(zhì),如TNF-α、IFN-γ、白介素(IL-1β、IL-2、IL-3、IL-4、IL-6、IL-7、IL-9、IL-12、IL-15和IL-17)、粒細(xì)胞-巨噬細(xì)胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)、趨化因子(CCR1、CCL3和CCL5)和模式識(shí)別受體(toll樣受體TLR2、TLR4、TLR7和TLR8)等。本文重點(diǎn)關(guān)注具有促進(jìn)炎癥反應(yīng)、誘導(dǎo)破骨細(xì)胞活化等與OTM速度相關(guān)的細(xì)胞因子。Andrade等[43]在野生型小鼠(WT)和CCR5缺陷小鼠(CCR5-deficient mice,CCR5-/-)口內(nèi)安置矯治器,通過(guò)實(shí)時(shí)熒光定量PCR評(píng)估參與骨重塑的介質(zhì)在牙周組織中的表達(dá)。結(jié)果表明,CCR5-/-

小鼠無(wú)論是TRAP陽(yáng)性破骨細(xì)胞數(shù)量還是組織蛋白酶K、RANKL和基質(zhì)金屬蛋白酶13(matrix metalloprotease 13,MMP-13)的表達(dá)均顯著升高;而兩種成骨細(xì)胞分化標(biāo)志物(Runx-2和OPG)在CCR5-/-小鼠中表達(dá)減低。Wald等[44]的研究發(fā)現(xiàn)由于γδT細(xì)胞消融導(dǎo)致IL-17A的早期下調(diào),相應(yīng)地,單核細(xì)胞和中性粒細(xì)胞的募集受阻,RANKL下調(diào)。上述研究提示CCR5、IL-17A等可能是限制OTM速度過(guò)快的治療靶點(diǎn)。相反地,也有學(xué)者發(fā)現(xiàn)IL-6、IL-8、IL-1β和IFN-γ與OTM速度呈正相關(guān)[45-46],并且通過(guò)光生物調(diào)節(jié)(photobiomodulation,PBM)等可以上調(diào)其表達(dá)[47-50]。

2.5 外源性細(xì)胞因子

學(xué)者們?nèi)栽诔掷m(xù)尋找可用的外源性細(xì)胞因子(特指在正常牙周組織中少量或不分布的細(xì)胞因子)來(lái)加速OTM,其要求之一是獲取方式經(jīng)濟(jì),同時(shí)必須具有強(qiáng)大的目標(biāo)功效。

瘦素可通過(guò)作用于下丘腦神經(jīng)元的受體,在調(diào)節(jié)機(jī)體攝食和能量代謝中發(fā)揮重要作用。瘦素也可通過(guò)調(diào)節(jié)骨吸收與骨形成參與骨軟骨發(fā)育進(jìn)程[51]。Schr?der等[52]研究了瘦素對(duì)牙周膜成纖維細(xì)胞的影響。實(shí)驗(yàn)結(jié)果表明,瘦素可以促進(jìn)成纖維細(xì)胞的生長(zhǎng),導(dǎo)致牙移動(dòng)速度加快,但同時(shí)也伴隨壓力側(cè)骨質(zhì)吸收和牙根吸收增加。瘦素對(duì)OTM的影響尚需進(jìn)一步實(shí)驗(yàn)證實(shí)。肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)最初是從大鼠血漿和血小板中分離得到,主要由MSCs產(chǎn)生,如肺kupffer細(xì)胞,肝成纖維細(xì)胞和腎小球系膜細(xì)胞等。研究發(fā)現(xiàn)牙周膜細(xì)胞也可以合成和分泌HGF[53]。在不同的骨細(xì)胞中發(fā)現(xiàn)了HGF的影響,例如促進(jìn)細(xì)胞的有絲分裂、細(xì)胞間連接和運(yùn)動(dòng)、血管再生、凋亡抑制、免疫調(diào)節(jié)等多種生物活性。HGF參與調(diào)節(jié)骨重塑過(guò)程主要是通過(guò)與其受體(cellular-mesenchymal epithelial transition factor,

c-Met)在骨細(xì)胞表面結(jié)合,導(dǎo)致下游信號(hào)級(jí)聯(lián)的激活,如PI3K/Akt和MAPK途徑。HGF信號(hào)可能與其他生長(zhǎng)因子和細(xì)胞因子(如下文中提到的胰島素樣生長(zhǎng)因子)相互作用,以協(xié)同或拮抗骨細(xì)胞功能。Cao等[54]在2015年首次將HGF應(yīng)用于牙周再生。載HGF基因的腺病毒被轉(zhuǎn)移到人牙髓干細(xì)胞中,隨后被注射到規(guī)范化的牙周缺損中,12周后,腺病毒介導(dǎo)的HGF轉(zhuǎn)移顯著降低了細(xì)胞凋亡,并增加了血管再生。Xue等[55]使用1.5 MHz頻率正弦波(輸出強(qiáng)度:30 mW/cm2;每天持續(xù)

20 min,共持續(xù)14 d)確定了低強(qiáng)度脈沖超聲(low intensity pulsed ultrasound,LIPUS)誘導(dǎo)牙槽骨重塑的潛在機(jī)制。結(jié)果表明,LIPUS通過(guò)刺激HGF/Runx2/BMP-2信號(hào)通路和RANKL表達(dá)促進(jìn)了牙槽骨重塑,并通過(guò)Runx2調(diào)節(jié)增加了BMP-2表達(dá)。類似地,李慧等[56]通過(guò)構(gòu)建殼聚糖/BMP-2質(zhì)粒溫敏水凝膠復(fù)合修復(fù)體系,直接遞送BMP-2,獲得了更顯著的促牙槽骨再生作用。然而,HGF在牙槽骨重塑中可能存在時(shí)空關(guān)聯(lián)的雙向調(diào)控作用。Zhao等[57]的研究使用絲線縫扎建立了小鼠實(shí)驗(yàn)性牙周炎模型,其中HGF過(guò)表達(dá)轉(zhuǎn)基因小鼠的牙周炎癥和牙槽骨破壞程度在實(shí)驗(yàn)早期明顯低于野生型小鼠。但是當(dāng)牙周炎進(jìn)展至后期,HGF過(guò)表達(dá)轉(zhuǎn)基因小鼠出現(xiàn)更重的炎癥反應(yīng),并隨著炎癥的持續(xù)刺激而進(jìn)行性加重骨破壞。IL-17/RANKL/TRAF6通路是HGF對(duì)牙周炎進(jìn)展調(diào)控的一個(gè)信號(hào)通路。胰島素樣生長(zhǎng)因子(insulin like growth factor,

IGF)是各種細(xì)胞類型的強(qiáng)效有絲分裂原和存活因子[58],包括骨細(xì)胞。它在調(diào)節(jié)骨組織中的細(xì)胞增殖、分化和存活方面發(fā)揮著關(guān)鍵作用[59]。區(qū)別于HGF,IGF微調(diào)骨細(xì)胞對(duì)環(huán)境刺激的反應(yīng)主要依賴于膠原蛋白和蛋白多糖等細(xì)胞外基質(zhì)蛋白的合成。Peng等[60]研究重組人胰島素樣生長(zhǎng)因子1(recombinant human IGF-1,rhIGF-1)對(duì)SD大鼠牙周組織中成骨細(xì)胞形成數(shù)量、正畸牙齒移動(dòng)的影響,Wang等[61]研究IGF-1對(duì)糖尿病大鼠正畸牙齒運(yùn)動(dòng)中牙槽骨重塑及BMP-2表達(dá)的影響,結(jié)果顯示IGF-1可以刺激牙周韌帶中成骨細(xì)胞的形成,促進(jìn)BMP-2表達(dá)和正畸牙齒移動(dòng)。Alves等[62]利用脂質(zhì)體包封表皮生長(zhǎng)因子(epidermal growth factor,EGF),旨在探討局部遞送EGF在OTM大鼠機(jī)械應(yīng)力骨重塑中的作用。結(jié)果顯示,EGF-脂質(zhì)體組大鼠的牙移動(dòng)更快以及破骨細(xì)胞數(shù)量更多,這與RANKL表達(dá)強(qiáng)相關(guān)。

上述各類細(xì)胞因子的功能綜述見(jiàn)表1。

3 結(jié)語(yǔ)與展望

OTM相關(guān)的骨重塑調(diào)控機(jī)制是口腔正畸學(xué)的研究熱點(diǎn)。細(xì)胞因子在OTM過(guò)程中發(fā)揮著關(guān)鍵作用,通過(guò)介導(dǎo)無(wú)菌性炎癥、骨吸收、骨形成、血管化和免疫轉(zhuǎn)變等生理功能,調(diào)控牙周組織的改建。盡管近年來(lái)相關(guān)研究取得了顯著進(jìn)展,但細(xì)胞因子在OTM中的具體作用機(jī)制尚未完全明確,且不同研究結(jié)果存在差異。未來(lái)研究應(yīng)進(jìn)一步探索細(xì)胞因子的時(shí)空表達(dá)模式及其相互作用網(wǎng)絡(luò),結(jié)合多學(xué)科技術(shù)手段,深入挖掘其在OTM中的作用機(jī)制。這將為開(kāi)發(fā)基于細(xì)胞因子的新型正畸治療策略提供理論基礎(chǔ),有望實(shí)現(xiàn)安全、高效、可控的正畸加速治療。

利益沖突聲明:本研究未受到企業(yè)、公司等第三方資助,不存在潛在利益沖突。

參 考 文 獻(xiàn)

[1] HUANG H, YANG R, ZHOU Y H. Mechanobiology of periodontal ligament stem cells in orthodontic tooth movement[J]. Stem Cells Int, 2018, 2018: 6531216. DOI: 10.1155/2018/6531216.

[2] ARAúJO M G, SILVA C O, MISAWA M, et al. Alveolar socket healing: what can we learn[J]. Periodontol 2000, 2015, 68(1): 122-134. DOI: 10.1111/prd.12082.

[3] PéREZ IDARRAGA A, YESTE OJEDA F, VIRTO RUIZ L, et al. Randomized clinical trial on the effect of intermittent vibrational force application during orthodontic treatment with aligners on RANKL and OPG concentrations in crevicular fluid [J]. Bioeng Transl Med, 2023, 8(3): e10491. DOI: 10.1002/btm2.10491.

[4] SEKI Y, TAKEBE H, NAKAO Y, et al. Osteoblast differentiation of Gli1+ cells via Wnt and BMP signaling pathways during orthodontic tooth movement[J]. J Oral Biosci, 2024,

66(2): 373-380. DOI: 10.1016/j.job.2024.03.004.

[5] WANG J, YANG H, MA X, et al. LRP6/filamentous-actin signaling facilitates osteogenic commitment in mechanically induced periodontal ligament stem cells[J]. Cell Mol Biol Lett, 2023, 28(1): 7. DOI: 10.1186/s11658-023-00420-5.

[6] ZHAO D, WU L, HONG M, et al. DKK-1 and its influences on bone destruction: a comparative study in collagen-induced arthritis mice and rheumatoid arthritis patients[J]. Inflammation, 2024, 47(1): 129-144. DOI: 10.1007/s10753-023-01898-z.

[7] RU L, PAN B, ZHENG J. Signalling pathways in the osteogenic differentiation of periodontal ligament stem cells[J]. Open Life Sci, 2023, 18(1): 20220706. DOI: 10.1515/biol-2022-0706.

[8] PAKPAHAN N D, KYAWSOEWIN M, MANOKAWINCHOKE J, et al. Effects of mechanical loading on matrix homeostasis and differentiation potential of periodontal ligament cells: a scoping review[J]. J Periodontal Res, 2024 May 12. DOI: 10.1111/jre.13284.

[9] ZHANG L, LIU W, ZHAO J, et al. Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/β-catenin pathway[J]. Biochim Biophys Acta, 2016, 1860(10): 2211-2219. DOI: 10.1016/j.bbagen.2016.05.003.

[10] WANG C, GU W, SUN B, et al. CTHRC1 promotes osteogenic differentiation of periodontal ligament stem cells by regulating TAZ[J]. J Mol Histol, 2017, 48(4): 311-319. DOI: 10.1007/

s10735-017-9729-0.

[11] LIU F, WEN F, HE D, et al. Force-induced H2S by PDLSCs modifies osteoclastic activity during tooth movement[J]. J Dent Res, 2017, 96(6): 694-702. DOI: 10.1177/0022034517690388.

[12] ZHANG C, LU Y, ZHANG L, et al. Influence of different intensities of vibration on proliferation and differentiation of human periodontal ligament stem cells[J]. Arch Med Sci, 2015, 11(3): 638-646. DOI: 10.5114/aoms.2015.52370.

[13] ZHENG F, WU T, WANG F, et al. Low-intensity pulsed ultrasound promotes the osteogenesis of mechanical force-treated periodontal ligament cells via Piezo1[J]. Front Bioeng Biotechnol, 2024, 12: 1347406. DOI: 10.3389/fbioe.2024.1347406.

[14] JIANG Y, LIN H, CHEN Y, et al. Piezo1 contributes to alveolar bone remodeling by activating β-catenin under compressive stress[J]. Am J Orthod Dentofacial Orthop, 2024, 165(4): 458-470. DOI: 10.1016/j.ajodo.2023.10.020.

[15] XIE Y, TANG Q, YU S, et al. Orthodontic force-induced BMAL1 in PDLCs is a vital osteoclastic activator [J]. J Dent Res, 2022, 101(2): 177-186. DOI: 10.1177/00220345211019949.

[16] MARAHLEH A, KITAURA H, OHORI F, et al. The osteocyte and its osteoclastogenic potential[J]. Front Endocrinol, 2023, 14: 1121727. DOI: 10.3389/fendo.2023.1121727.

[17] LI C, CHUNG C J, HWANG C J, et al. Local injection of RANKL facilitates tooth movement and alveolar bone remodelling[J]. Oral Dis, 2019, 25(2): 550-560. DOI: 10.1111/odi.13013.

[18] MINAMOTO C, MIYAZAWA K, TABUCHI M, et al. Alteration of tooth movement by reveromycin A in osteoprotegerin-deficient mice[J]. Am J Orthod Dentofacial Orthop, 2020, 157(5): 680-689. DOI: 10.1016/j.ajodo.2019.04.037.

[19] ZHOU Y, HE X, ZHANG D. Study of bone remodeling in corticotomy-assisted orthodontic tooth movement in rats[J]. J Cell Biochem, 2019, 120(9): 15952-15962. DOI: 10.1002/jcb.28872.

[20] BROOKS P J, HECKLER A F, WEI K, et al. M-CSF accelerates orthodontic tooth movement by targeting preosteoclasts in mice [J]. Angle Orthod, 2011, 81(2): 277-283. DOI: 10.2319/051210-258.1.

[21] KIRSCHNECK C, THUY M, LEIKAM A, et al. Role and regulation of mechanotransductive HIF-1α stabilisation in periodontal ligament fibroblasts [J]. Int J Mol Sci, 2020, 21 (24): 9530. DOI: 10.3390/ijms21249530.

[22] LIN T, YANG L, ZHENG W, et al. Th17 cytokines and its correlation with receptor activator of nuclear factor kappa B ligand during orthodontic tooth movement[J]. Iran J Immunol, 2020, 17(2): 137-143. DOI: 10.22034/iji.2020.85915.1731.

[23] SASAKI K, TAKESHITA N, FUKUNAGA T, et al. Vibration accelerates orthodontic tooth movement by inducing osteoclastogenesis via transforming growth factor-β signalling in osteocytes[J]. Eur J Orthod, 2022, 44(6): 698-704. DOI: 10.1093/ejo/cjac036.

[24] 張疆弢, 梅梅, 江策, 等. rhPDGF-BB與rhTGF-β1聯(lián)合應(yīng)用對(duì)大鼠正畸牙破骨細(xì)胞FAK蛋白表達(dá)的影響[J]. 上??谇会t(yī)學(xué), 2015, 24(4): 423-427.

ZHANG J T, MEI M, JIANG C, et al. The influence of combined use of rhPDGF-BB and rhTGF-β1 on protein expression of FAK in osteoclast during orthodontic tooth movement in rats[J]. Shanghai J Stomatol, 2015, 24(4): 423-427.

[25] 張疆弢, 梅梅, 劉建國(guó), 等. rhPDGF-BB與rhTGF-β1聯(lián)合應(yīng)用對(duì)大鼠正畸牙壓力側(cè)破骨細(xì)胞FAK mRNA表達(dá)的影

響[J]. 實(shí)用口腔醫(yī)學(xué)雜志, 2014, 30(5): 619-623.

ZHANG J T, MEI M, LIU J G, et al. The effects of rhPDGF-BB combined with rhTGF-β1 on FAK mRNA expression of osteoclasts in the alveolar bone on the pressure side of orthodontic teeth in rats[J]. J Pract Stomatol, 2014, 30(5): 619-623.

[26] 黃瑾, 劉建國(guó), 宋琦, 等. 血小板衍生生長(zhǎng)因子-BB、轉(zhuǎn)化生長(zhǎng)因子-β1聯(lián)合應(yīng)用對(duì)大鼠正畸牙牙周膜中整合素β3表達(dá)的影響[J]. 華西口腔醫(yī)學(xué)雜志, 2014, 32(4): 413-417. DOI: 10.7518/hxkq.2014.04.022.

HUANG J, LIU J G, SONG Q, et al. Synergistic effect of platelet-derived growth factor-BB and transforming growth factor-β1 on expression of integrin β3 in periodontal membrane of rat orthodontic tooth[J]. West China J Stomatol, 2014, 32(4):

413-417. DOI: 10.7518/hxkq.2014.04.022.

[27] WANG L, LEE W, LEI D L, et al. Tisssue responses in corticotomy-and osteotomy-assisted tooth movements in rats: histology and immunostaining[J]. Am J Orthod Dentofacial Orthop, 2009, 136(6): 770.e1-770.11; discussion 770-771. DOI: 10.1016/j.ajodo.2009.05.015.

[28] WAN W, ZHANG H, NIU L, et al. TGF-β1 promotes osteogenesis of mesenchymal stem cells via integrin mediated mechanical positive autoregulation[J]. iScience, 2024, 27(7): 110262. DOI: 10.1016/j.isci.2024.110262.

[29] SEDDIQI H, KLEIN-NULEND J, JIN J. Osteocyte mechanot-ransduction in orthodontic tooth movement[J]. Curr Osteoporos Rep, 2023, 21(6): 731-742. DOI: 10.1007/s11914-023-00826-2.

[30] YU Y, WANG L, NI S, et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation[J]. Nat Commun, 2022, 13(1): 4241. DOI: 10.1038/s41467-022-31997-8.

[31] UEDA M, KUROISHI K N, GUNJIGAKE K K, et al. Expression of SOST/sclerostin in compressed periodontal ligament cells[J]. J Dent Sci, 2016, 11(3): 272-278. DOI: 10.1016/j.jds.2016.02.006.

[32] KAKU M, KOHNO S, KAWATA T, et al. Effects of vascular endothelial growth factor on osteoclast induction during tooth movement in mice[J]. J Dent Res, 2001, 80(10): 1880-1883. DOI: 10.1177/00220345010800100401.

[33] MIYAGAWA A, CHIBA M, HAYASHI H, et al. Compressive force induces VEGF production in periodontal tissues[J]. J Dent Res, 2009, 88(8): 752-756. DOI: 10.1177/0022034509341637.

[34] KOHNO S, KAKU M, TSUTSUI K, et al. Expression of vascular endothelial growth factor and the effects on bone remodeling during experimental tooth movement[J]. J Dent Res, 2003,

82(3): 177-182. DOI: 10.1177/154405910308200306.

[35] KOHNO S, KAKU M, KAWATA T, et al. Neutralizing effects of an anti-vascular endothelial growth factor antibody on tooth movement[J]. Angle Orthod, 2005, 75(5): 797-804. DOI: 10.1043/0003-3219(2005)75[797: NEOAAE]2.0.CO;2.

[36] WANG Y, ZHENG Y, LI W. Compression loading of osteoclasts attenuated microRNA-146a-5p expression, which promotes angiogenesis by targeting adiponectin[J]. Sci China Life Sci, 2022, 65(1): 151-166. DOI: 10.1007/s11427-020-1869-7.

[37] IBRAHIMI DISHA S, FURLANI B, DREVENSEK G, et al. The role of endothelin B receptor in bone modelling during orthodontic tooth movement: a study on ETB knockout rats[J]. Sci Rep, 2020, 10(1): 14226. DOI: 10.1038/s41598-020-71159-8.

[38] JIN Y, DING L, DING Z, et al. Tensile force-induced PDGF-BB/PDGFRβ signals in periodontal ligament fibroblasts activate JAK2/STAT3 for orthodontic tooth movement[J]. Sci Rep, 2020, 10(1): 11269. DOI: 10.1038/s41598-020-68068-1.

[39] KLEIN Y, FLEISSIG O, POLAK D, et al. Immunorthodontics: in vivo gene expression of orthodontic tooth movement[J]. Sci Rep, 2020, 10(1): 8172. DOI: 10.1038/s41598-020-65089-8.

[40] MI?EK O, TUR D, AH?IN L, et al. Osteogenic differentiation of human periodontal ligament stromal cells influences their immunosuppressive potential toward allogenic CD4+ T cells[J]. Int J Mol Sci, 2023, 24(22): 16439. DOI: 10.3390/ijms242216439.

[41] KOOK S H, JANG Y S, LEE J C. Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-mediated activation of CD4+ T cells[J]. J Cell Biochem, 2011, 112(10): 2891-2901. DOI: 10.1002/jcb.23205.

[42] CHAUSHU S, KLEIN Y, MANDELBOIM O, et al. Immune changes induced by orthodontic forces: a critical review[J]. J Dent Res, 2022, 101(1): 11-20. DOI: 10.1177/00220345211016285.

[43] ANDRADE I Jr, TADDEI S R A, GARLET G P, et al. CCR5 down-regulates osteoclast function in orthodontic tooth movement[J]. J Dent Res, 2009, 88(11): 1037-1041. DOI: 10.1177/0022034509346230.

[44] WALD S, LEIBOWITZ A, AIZENBUD Y, et al. γδT cells are essential for orthodontic tooth movement[J]. J Dent Res, 2021, 100(7): 731-738. DOI: 10.1177/0022034520984774.

[45] PURWANINGRUM M, GIACHELLI C M, OSATHANON T, et al. Dissecting specific Wnt components governing osteogenic differentiation potential by human periodontal ligament stem cells through interleukin-6[J]. Sci Rep, 2023, 13(1): 9055. DOI: 10.1038/s41598-023-35569-8.

[46] LUO S, LI Z, LIU L, et al. Static magnetic field-induced IL-6 secretion in periodontal ligament stem cells accelerates orthodontic tooth movement[J]. Sci Rep, 2024, 14(1): 9851. DOI: 10.1038/s41598-024-60621-6.

[47] FERNANDES M R U, SUZUKI S S, SUZUKI H, et al. Photobiomodulation increases intrusion tooth movement and modulates IL-6, IL-8 and IL-1β expression during orthodontically bone remodeling[J]. J Biophotonics, 2019, 12(10): e201800311. DOI: 10.1002/jbio.201800311.

[48] MURAKAMI-MALAQUIAS-SILVA F, PERIM ROSA E, MALAVAZZI T C S, et al. Photobiomodulation increases uprighting tooth movement and modulates IL-1β expression during orthodontically bone remodeling[J]. J Biophotonics, 2023, 16(9): e202300013. DOI: 10.1002/jbio.202300013.

[49] WANG X, LIU Q, PENG J, et al. The effects and mechanisms of PBM therapy in accelerating orthodontic tooth movement [J].

Biomolecules, 2023, 13(7): 1140. DOI: 10.3390/biom13071140.

[50] 覃雅慶,劉俊峰,張文忠.光生物調(diào)節(jié)療法在口腔正畸中的現(xiàn)狀與展望[J].實(shí)用醫(yī)學(xué)雜志,2023,39(7):919-922.DOI: 10.3969/j.issn.1006-5725.2023.07.023.

QIN Y Q,LIU J F,ZHANG W Z. Current status and prospect of photobiomodulation therapy in orthodontics[J]. J Pract Med, 2023, 39(7): 919-922.DOI: 10.3969/j.issn.1006-

5725.2023.07.023.

[51] PADDENBERG E, OSTERLOH H, JANTSCH J, et al. Impact of leptin on the expression profile of macrophages during mechanical strain in vitro[J]. Int J Mol Sci, 2022, 23(18): 10727. DOI: 10.3390/ijms231810727.

[52] SCHR?DER A, MEYER A, SPANIER G, et al. Impact of leptin on periodontal ligament fibroblasts during mechanical strain[J]. Int J Mol Sci, 2021, 22(13): 6847. DOI: 10.3390/ijms22136847.

[53] WADA N, MENICANIN D, SHI S, et al. Immunomodulatory properties of human periodontal ligament stem cells[J]. J Cell Physiol, 2009, 219(3): 667-676. DOI: 10.1002/jcp.21710.

[54] CAO Y, LIU Z, XIE Y, et al. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine[J]. Stem Cell Res Ther, 2015, 6: 249. DOI: 10.1186/s13287-015-0244-5.

[55] XUE H, ZHENG J, CUI Z, et al. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway[J]. PLoS One, 2013, 8(7): e68926. DOI: 10.1371/journal.pone.0068926.

[56] 李慧, 吉秋霞. 殼聚糖/BMP-2質(zhì)粒溫敏水凝膠復(fù)合體促犬牙槽骨再生的研究[J]. 新醫(yī)學(xué), 2023, 54(12): 872-878. DOI: 10.3969/j.issn.1671-4695.2023.14.002.

LI H, JI Q X. The promoting effect of chitosan thermosensitive hydrogel complex with chitosan nanoparticles carrying BMP-2 plasmid DNA on alveolar bone regeneration in beagle

dogs[J]. J New Med, 2023, 54(12): 872-878. DOI: 10.3969/

j.issn.1671-4695.2023.14.002.

[57] ZHAO X, LIU W, WU Z, et al. Hepatocyte growth factor is protective in early stage but bone-destructive in late stage of experimental periodontitis[J]. J Periodontal Res, 2024, 59(3): 565-575. DOI: 10.1111/jre.13237.

[58] SCALIA P, WILLIAMS S J, FUJITA-YAMAGUCHI Y, et al. Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation[J].

Cell Cycle, 2023, 22(1): 1-37. DOI: 10.1080/15384101.

2022.2108117.

[59] LAU K H, BAYLINK D J, ZHOU X D, et al. Osteocyte-derived insulin-like growth factor I is essential for determining bone mechanosensitivity[J]. Am J Physiol Endocrinol Metab, 2013, 305(2): E271-E281. DOI: 10.1152/ajpendo.00092.2013.

[60] PENG J X, GUAN X Y, LI G H, et al. Recombinant human insulin-like growth factor-1 promotes osteoclast formation and accelerates orthodontic tooth movement in rats[J]. J Appl Oral Sci, 2021, 29: e20200791. DOI: 10.1590/1678-7757-2020-0791.

[61] WANG M, QIU Y, GAO L, et al. The impact of IGF-1 on alveolar bone remodeling and BMP-2 expression in orthodontic tooth movement in diabetic rats[J]. Adv Clin Exp Med, 2023, 32(3): 349-356. DOI: 10.17219/acem/153956.

[62] ALVES J B, FERREIRA C L, MARTINS A F, et al. Local delivery of EGF-liposome mediated bone modeling in orthodontic tooth movement by increasing RANKL expression[J]. Life Sci, 2009, 85(19/20): 693-699. DOI: 10.1016/j.lfs.2009.09.010.

(責(zé)任編輯:鄭巧蘭)

猜你喜歡
免疫細(xì)胞因子
成人HPS臨床特征及多種細(xì)胞因子水平與預(yù)后的相關(guān)性
抗GD2抗體聯(lián)合細(xì)胞因子在高危NB治療中的研究進(jìn)展
對(duì)奶牛飼養(yǎng)獸醫(yī)防疫的分析
藏藥對(duì)免疫系統(tǒng)調(diào)節(jié)作用的研究
早期腸內(nèi)營(yíng)養(yǎng)對(duì)急性重型顱腦外傷患者免疫及炎癥指標(biāo)的影響
運(yùn)動(dòng)與機(jī)體免疫能力關(guān)系研究綜述
人間(2016年24期)2016-11-23 19:12:24
愛(ài)尚生活(2016年9期)2016-10-21 10:52:39
血清中細(xì)胞因子的檢測(cè)在胃癌中的意義
急性心肌梗死病人細(xì)胞因子表達(dá)及臨床意義
細(xì)胞因子在慢性腎缺血與腎小管-間質(zhì)纖維化過(guò)程中的作用
莱西市| 娄烦县| 睢宁县| 静安区| 平遥县| 武义县| 康保县| 叶城县| 招远市| 乐安县| 株洲市| 蒙自县| 房山区| 乐业县| 大名县| 株洲县| 叙永县| 家居| 巴东县| 土默特左旗| 凉城县| 钟山县| 泸溪县| 桐柏县| 长顺县| 连平县| 铜山县| 安徽省| 湖口县| 桐城市| 涞水县| 永平县| 龙井市| 定襄县| 通海县| 稷山县| 遵义市| 永清县| 五莲县| 宁强县| 嘉兴市|