摘 要:" 為了解喀斯特地區(qū)土壤生物活性的季節(jié)變化及其影響因素,該文以檵木群落老齡林階段根際和非根際土壤微生物群落為研究對(duì)象,探討其酶活性變化以及與環(huán)境因子的關(guān)系。結(jié)果表明:(1) 雨季時(shí),根際土壤pH值、有機(jī)質(zhì)、全碳、全氮、全鉀、全磷含量和堿性磷酸酶、過氧化氫酶、脲酶活性低于非根際土壤,說明根際土壤養(yǎng)分淋失更嚴(yán)重且影響相關(guān)酶活性,旱季變化相反是根際土壤為供植物健康生長(zhǎng)所采取的養(yǎng)分富集策略。(2) 根際和非根際土壤真菌多樣性為旱季顯著高于雨季,非根際土壤細(xì)菌多樣性為雨季顯著高于旱季,但根際土壤細(xì)菌多樣性季節(jié)差異不明顯;無(wú)論旱季還是雨季,根際和非根際土壤優(yōu)勢(shì)真菌門為子囊菌門(Ascomycota)、被孢霉門(Mortierellomycota)和擔(dān)子菌門(Basidiomycota),優(yōu)勢(shì)細(xì)菌門為放線菌門(Actinobacteriota)、變形菌門(Proteobacteria)、酸桿菌門(Acidobacteriota);季節(jié)變化對(duì)根際和非根際土壤微生物群落結(jié)構(gòu)影響差異顯著。(3) 不同季節(jié)下根際和非根際土壤微生物群落的主導(dǎo)因子不同,雨季時(shí),根際土壤為pH、過氧化氫酶和堿性磷酸酶活性,非根際土壤為過氧化氫酶、堿性磷酸酶、纖維素酶活性和全鉀含量;旱季時(shí),根際土壤為過氧化氫酶活性和土壤含水量,非根際土壤為纖維素酶和蔗糖酶活性;土壤酶活性與碳、氮、磷、鉀及土壤含水量顯著相關(guān)。(4) 與細(xì)菌相比,根際和非根際土壤真菌功能對(duì)季節(jié)變化的響應(yīng)更敏感。綜上表明,根際和非根際土壤微生物群落及酶活性在雨季和旱季時(shí)所采取的適應(yīng)性策略明顯不同,這為喀斯特地區(qū)植被恢復(fù)和土壤演替提供了理論參考。
關(guān)鍵詞: 喀斯特, 檵木群落, 老齡林, 旱雨季, 根際土壤, 土壤酶, 土壤微生物
中圖分類號(hào):" Q948
文獻(xiàn)標(biāo)識(shí)碼:" A
文章編號(hào):" 1000-3142(2024)10-1848-16
收稿日期:" 2024-01-26
接受日期:" 2024-06-20
基金項(xiàng)目:" 國(guó)家自然科學(xué)基金(U21A2007); 廣西創(chuàng)新驅(qū)動(dòng)發(fā)展專項(xiàng)(桂科 AA20161002-1); 廣西重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(桂科 AB21220057, 桂科 AB21196065)。
第一作者: 王雅楠(1998—),碩士研究生,主要從事植物生態(tài)學(xué)研究,(E-mail)18863093719@163.com。
*通信作者:" 馬姜明,博士,教授,博士研究生導(dǎo)師,主要從事退化生態(tài)系統(tǒng)的恢復(fù)與重建研究,(E-mail)mjming03@gxnu.edu.cn。
Variations of microbial communities and enzyme activities in
rhizosphere and non-rhizosphere soils of aged Loropetalum chinense
forests in karst rocky mountains during dry and rainy seasons
WANG Yanan1,2, MA Jiangming1,2*, LIANG Yueming3, YANG Hao1,2
(1. Key Laboratory of Rare and Endangered Animal and Plant Ecology and Environmental Protection, Ministry of Education, Guilin 541006,
Guangxi, China; 2 Key Laboratory of Landscape Resource Conservation and Sustainable Utilization in the Lijiang River Basin of Guangxi,
Guilin 541006, Guangxi, China; 3." Key Dynamics Laboratory, Ministry of Natural Resources, Institute of Karst Geology,
Chinese Academy of Geological Sciences, Guilin 541006, Guangxi, China )
Abstract:" To understand the seasonal changes and influencing factors of soil biological activity in karst areas, we investigated the changes in rhizosphere and non-rhizosphere soil microbial communities and enzyme activity of the Loropetalum chinense community in the aged forest stage of karst areas, as well as their relationships with environmental factors. The results were as follows: (1) During the rainy season, the pH value, organic matter, total carbon, total nitrogen, total potassium, total phosphorus contents, and alkaline phosphatase, catalase, and urease activities of rhizosphere soil were lower than those of non-rhizosphere soil, indicating that nutrient leaching in rhizosphere soil was more severe and affected the activity of related enzymes. In contrast, the changes in dry season were nutrient enrichment strategies adopted by rhizosphere soil for healthy plant growth. (2) The diversities of fungi in rhizosphere and non-rhizosphere soils were both significantly higher in the dry season than in the rainy season; the bacterial diversity of non-rhizosphere soil was significantly higher in the rainy season than in the dry season, but the seasonal differences in bacterial diversity of rhizosphere soil were not significant. Regardless of the dry and rainy seasons, the dominant fungal phyla in rhizosphere and non-rhizosphere soils were Ascomycota, Mortierellomycota, and Basidiomycota, while the dominant bacterial phyla were Actinobacteriota, Proteobacteria, and Acidobacteriota. The seasonal changes had significant differences in the structure of microbial communities in rhizosphere and non-rhizosphere soils. (3) The dominant factors of rhizosphere and non-rhizosphere soil microbial communities varied in different seasons. During the rainy season, the rhizosphere soil exhibited pH, catalase and alkaline phosphatase activities, while non-rhizosphere soil exhibited catalase, alkaline phosphatase, cellulase activities, and total potassium content; during the dry season, the rhizosphere soil exhibited catalase activity and soil water content, while non-rhizosphere soil exhibited cellulase and sucrase activity. In addition, soil enzyme activity was significantly correlated with carbon, nitrogen, phosphorus, potassium, and soil water content. (4) Compared to bacteria, fungal functions in rhizosphere and non-rhizosphere soils were more sensitive to seasonal changes. In summary, the adaptive strategies adopted for microbial communities and enzyme activities in rhizosphere and non-rhizosphere soils during the rainy and dry seasons are significantly different. The research results provide theoretical references for vegetation restoration and soil succession in karst areas.
Key words: karst, Loropetalum chinense community, aging forest, dry and rainy seasons, rhizosphere soil, soil enzymes, soil microorganisms
根際是連接植物-土壤-微生物之間相互作用的最重要區(qū)域,也是物質(zhì)和能量循環(huán)的場(chǎng)所,與非根際土壤間差異性明顯(Xia et al., 2022)。根際土壤酶和微生物群落對(duì)環(huán)境變化十分敏感,能更快地響應(yīng)旱、雨季節(jié)變化導(dǎo)致的土壤變化(Thakur et al., 2019)。旱、雨季變化使得地表土壤一直經(jīng)歷干、濕循環(huán)作用,不僅通過改變土壤水分直接影響土壤酶活性和土壤微生物群落(Yang et al., 2021),還通過影響植物群落和其他土壤理化性質(zhì)對(duì)土壤酶活性和微生物群落產(chǎn)生間接影響(Lu et al., 2019)。廣西是我國(guó)典型喀斯特地貌代表之一,屬熱帶、亞熱帶季風(fēng)氣候,旱、雨季降水差異極大。喀斯特地區(qū)土層淺薄,土壤富鈣且儲(chǔ)水力差,對(duì)氣候變化響應(yīng)敏感且承受力弱(陳燕麗等,2022),其脆弱的生態(tài)系統(tǒng)一旦遭受破壞,將會(huì)面臨植被易退化、難修復(fù)等嚴(yán)重石漠化生態(tài)問題。Wang等(2023)研究表明,喀斯特石漠化演變是多種因素綜合作用的結(jié)果,與氣候變化關(guān)系的探究目前主要集中在宏觀層面,若細(xì)化到林、草、微生物、動(dòng)物、土壤養(yǎng)分對(duì)月份、季節(jié)氣候因子的響應(yīng)研究,則將有助于人們?cè)谖⒂^層面上對(duì)石漠化演變和氣候作用機(jī)制更深入了解。目前,國(guó)內(nèi)外已有學(xué)者對(duì)季節(jié)變化下喀斯特生態(tài)系統(tǒng)的調(diào)控進(jìn)行研究?;魻N燦等(2022)研究發(fā)現(xiàn)廣西喀斯特區(qū)生長(zhǎng)的山核桃葉片生理特性隨季節(jié)變化存在顯著差異,隨著不同環(huán)境因子變化表現(xiàn)出不同的適應(yīng)機(jī)制;Wu等(2020)研究表明極端氣候事件會(huì)顯著降低喀斯特洼地土壤中的碳氮儲(chǔ)量;Leitner等(2020)研究表明全球氣候變化下對(duì)中歐喀斯特地區(qū)溫帶山地森林的NO3-淋出容易受到夏季干旱的影響;Sheng等(2016)研究表明濕季水分的再分配和干季蒸散發(fā)的空間變化是控制露頭周圍土壤水分格局的因素等。但是,對(duì)喀斯特區(qū)季節(jié)變化下根際土壤研究鮮有報(bào)道。因此,從植物根際和非根際土壤理化性質(zhì)、酶活性與微生物之間的動(dòng)態(tài)變化和關(guān)聯(lián)性對(duì)旱、雨季的響應(yīng)規(guī)律展開研究有助于深入理解植被和土壤生態(tài)系統(tǒng)的調(diào)節(jié)機(jī)制。
檵木(Loropetalum chinensis)作為喀斯特生境植被恢復(fù)的優(yōu)勢(shì)木本植物之一,在防治喀斯特石山石漠化、維持物種多樣性和生態(tài)系統(tǒng)穩(wěn)定等方面均有重要的生態(tài)學(xué)意義(盤遠(yuǎn)方等,2023)。目前,相關(guān)檵木的研究較多關(guān)注植物本身的變化,如藥用價(jià)值(Song et al., 2023)、凋落物分解(Qin et al.,2017)、葉性狀(Cai et al., 2023)等,而對(duì)檵木群落土壤生物因子的研究鮮有報(bào)道。因此,本文以檵木群落老齡林根際和非根際土壤為研究對(duì)象,采用Illumina高通量測(cè)序技術(shù)通過對(duì)雨、旱季的土壤理化性質(zhì)、酶活性及微生物結(jié)構(gòu)與多樣性指標(biāo)進(jìn)行相關(guān)性分析,擬探討:(1) 根際和非根際土壤理化性質(zhì)、酶活性及微生物在旱季和雨季的變化情況;(2) 旱季和雨季,根際和非根際土壤生物與非生物因子間的相互作用;(3) 旱、雨季節(jié)下介導(dǎo)檵木根際和非根際土壤微生物群落和酶活性變化主要環(huán)境因子的差異。本研究結(jié)果有助于完善喀斯特地區(qū)土壤生態(tài)系統(tǒng)在微觀層面上應(yīng)對(duì)季節(jié)變化的理論研究體系,為該地區(qū)石漠化治理提供科學(xué)依據(jù)。
1 研究區(qū)概況
研究地位于廣西壯族自治區(qū)桂林市陽(yáng)朔縣興坪碼頭附近(110°31′ E、24°55′ N),處于廣西東北部。典型的巖溶地貌,土壤結(jié)構(gòu)簡(jiǎn)單,由白云巖、石灰?guī)r風(fēng)化形成的石灰土,土壤發(fā)育不全,土層較薄,深淺不一。屬中亞熱帶濕潤(rùn)季風(fēng)氣候,氣候溫和,海拔100~500 m,年均氣溫18.9 ℃,最冷的1月平均氣溫7.8 ℃,最熱的7月平均氣溫28 ℃;雨量充沛,年均降水量1 949.5 mm,降水量年分配不均,秋、冬干燥少雨;光照充足,全年無(wú)霜期300 d,年均蒸發(fā)量1 490~1 905 mm。本研究中檵木群落主要分布在山坡陽(yáng)面(坡度15°~25°),呈集群分布。境內(nèi)植物資源豐富,灌木層主要有楠藤(Mussaenda erosa)、子楝樹(Decaspermum gracilentum)、山合歡 (Albizia kalkora) 、魚骨木 (Canthium dicoccum)和檵木 (Loropetalum chinense),喬木層主要有桂花 (Osmanthus fragrans)、楓香樹(Liquidambar formosana) 、南酸棗 (Choerospondias axillaris)和檵木。
2 材料與方法
2.1 供試材料
根據(jù)研究區(qū)氣象站點(diǎn)對(duì)2018—2022年內(nèi)雨季(5—7月)和旱季(8—10月)降水量的檢測(cè)數(shù)據(jù)(圖1),整個(gè)雨季為6月降雨量達(dá)到最高和整個(gè)旱季為10月降雨量達(dá)到最低。因此,選擇在6月和10月于研究區(qū)內(nèi)采集土樣進(jìn)行研究,并選取重要值≥1的物種進(jìn)行采樣測(cè)量。
2.2 土樣采集與處理
2.2.1 土樣采集 研究區(qū)內(nèi)設(shè)置3個(gè)20 m × 20 m的大樣地(每個(gè)樣地間距>50 m),每個(gè)大樣地內(nèi)設(shè)置5個(gè)5 m × 5 m的小樣地(每個(gè)樣方間距>20 m)。分別于雨季(2022年6月)和旱季(2022年10月)進(jìn)行土樣采集,每個(gè)土樣設(shè)3個(gè)重復(fù)。先將檵木周圍土壤表面可見的石塊和植物殘留物清理干凈,后用鏟子將根部四周的土壤下挖0~20 cm,采用“抖落法”收集附著于細(xì)根上的根際土壤(Li et al., 2023),并進(jìn)行混合作為根際混合樣;非根際土則在樣地內(nèi)采用“S”型采樣法取樣,采集0~20 cm深度的檵木非根際土壤混成一個(gè)土樣。根際和非根際土壤采樣的每個(gè)小樣點(diǎn)的采土深度、數(shù)量力求一致,將采集的土樣分別裝入自封袋,編號(hào)后帶回實(shí)驗(yàn)室。
2.2.2 樣品保存 對(duì)采集的土壤樣品去除動(dòng)植物殘?bào)w、石礫等其他雜物,過2 mm(10目)土篩后分成3部分備用:第一部分,用于測(cè)定土壤酶活性的新鮮土樣放于4 ℃冰箱保存;第二部分,用于分析土壤微生物群落結(jié)構(gòu)和多樣性的新鮮土樣放于超低溫冰箱(-80 ℃)保存;第三部分,用于測(cè)定土壤理化性質(zhì)的土樣經(jīng)風(fēng)干后研磨過0.125 mm(100目)土篩后常溫下保存。
2.3 土壤指標(biāo)測(cè)定
2.3.1 土壤理化性質(zhì)測(cè)定(鮑士旦,2000) 土壤含水量(soil water content,SWC)用烘干法測(cè)定;土壤pH值用pH計(jì)(Mettler-Toledo, S40 SevenMultiTM,
Greifensee, Switzerland)測(cè)量,水土比為2.5∶1(m/V);土壤全碳(total carbon,TC)、全氮(total nitrogen,TN)含量用過100目篩的風(fēng)干土用元素分析儀直接測(cè)定;土壤有機(jī)質(zhì)(soil organic matter,SOM)含量用重鉻酸鉀稀釋熱法測(cè)定;土壤全磷(total phosphorus,TP)含量采用HClO4-H2SO4熔融——鉬銻抗比色法測(cè)定;土壤全鉀(total potassium,TK)含量用NaOH熔融——火焰光度計(jì)法測(cè)定。
2.3.2 土壤酶活性測(cè)定(Li et al., 2016) 土壤蔗糖酶(sucrase,SUC)、纖維素酶(cellulase,CEL)活性用3,5-二硝基水楊酸比色法測(cè)定;堿性磷酸酶(alkaline phosphatase,ALP)活性用磷酸苯二鈉比色法測(cè)定;脲酶(urease,URE)活性用苯酚鈉—次氯酸鈉比色法測(cè)定;過氧化氫酶(catalase,CAT)活性用胞外酶的方法測(cè)定。
2.3.3 土壤微生物群落組成和多樣性分析 微生物多樣性云分析采用高通量測(cè)序技術(shù)和當(dāng)前主流的擴(kuò)增子測(cè)序數(shù)據(jù)降噪方法DADA2/Deblur,對(duì)16S/18S/ITS/功能基因等特定區(qū)段的高通量測(cè)序序列進(jìn)行錯(cuò)誤校正,獲得每個(gè)樣本的ASV代表序列及豐度表,基于序列降噪結(jié)果進(jìn)行微生物多樣性分析。完成基因組DNA抽提后用1%瓊脂糖凝膠檢測(cè)DNA完整性,用NanoDrop2000檢測(cè)DNA的純度和濃度。細(xì)菌16S rRNA基因V3+V4區(qū)引物為338F (5′-ACTCCTACGGGAGGCAGCA-3)和 806R (5′-GGACTACHVGGGTWTCTAAT-3′),真菌18S rRNA 基因ITS1區(qū)引物為ITS1F(5′-CTTGGTCATTTAGAGGAAGTAA-3′)和ITS2(5′-GCTGCGTTCTTCATCGATGC-3′)。在引物末端加上測(cè)序接頭進(jìn)行PCR擴(kuò)增,并對(duì)其產(chǎn)物進(jìn)行純化、定量和均一化構(gòu)建PE文庫(kù),將建好的文庫(kù)先進(jìn)行文庫(kù)質(zhì)檢,質(zhì)檢合格的文庫(kù)用Illumina(上海美吉生物醫(yī)藥科技有限公司)進(jìn)行測(cè)序。
2.4 數(shù)據(jù)處理
土壤理化性質(zhì)及酶活性用Excel 2022軟件進(jìn)行數(shù)據(jù)整理,其差異顯著性和相關(guān)性用SPSS 23.0軟件進(jìn)行分析。土壤微生物群落組成和多樣性分析,先根據(jù)測(cè)序質(zhì)量對(duì)雙端Reads進(jìn)行質(zhì)控和過濾,再根據(jù)雙端Reads之間的overlap關(guān)系進(jìn)行拼接,獲得質(zhì)控拼接后的優(yōu)化數(shù)據(jù)。使用序列降噪方法(DADA2/Deblur)等處理優(yōu)化數(shù)據(jù),獲得ASV(amplicon sequence variant)代表序列和豐度信息。用R語(yǔ)言(V4.1.3)進(jìn)行群落組成分析及相關(guān)性熱圖分析等,用QIIME軟件,對(duì)樣本Alpha多樣性指數(shù)(SOBS、ACE、Chao、Shannon、Shannoneven、Pd)和Beta多樣性(PCoA)分析,用Cannoco 5.0軟件進(jìn)行RDA分析,用FUNGuild (v1.0)、PICRUSt2 (v2.2.0-b)分別進(jìn)行真菌、細(xì)菌群落的功能預(yù)測(cè)分析。
3 結(jié)果與分析
3.1 土壤含水量及理化性質(zhì)的旱、雨季節(jié)動(dòng)態(tài)
由圖2可知,根際和非根際的SWC雨季顯著高于旱季(Plt;0.05),旱季時(shí)期SWC約占雨季的50%;無(wú)論旱季還是雨季,SWC含量均表現(xiàn)為非根際土高于根際土。
檵木群落根際和非根際土壤pH、SOM、TC、TN、TP和TK含量對(duì)旱、雨季節(jié)變化表現(xiàn)出顯著性差異(Plt;0.05,圖3)。雨季根際土偏弱酸性,pH約6.78;旱季根際土偏弱堿性,pH約7.15,而非根際土都偏弱堿性,無(wú)季節(jié)性差異(P>0.05)。雨季,土壤TC、TN、TK、TP、SOM的含量均表現(xiàn)為非根際土高于根際土,旱季則反之。根際和非根際SOM均為雨季高于旱季,而土壤TP含量為旱季高于雨季;非根際土壤TC、TN、TK含量雨季高于旱季,而根際土壤則相反。
3.2 土壤微生物及酶活性的旱、雨季節(jié)動(dòng)態(tài)
3.2.1 土壤酶活性分析 由圖4可知,無(wú)論旱季還是雨季,土壤SUC、CEL活性為根際土高于非根際土,而土壤ALP、CAT活性則相反;雨季,土壤URE活性為根際土低于非根際土,旱季則反之。旱、雨季節(jié)變化對(duì)土壤酶活性的影響相對(duì)顯著(Plt;0.05)。根際土壤SUC、CEL活性為雨季高于旱季,而URE、ALP活性則相反;非根際土壤SUC、CEL、URE和ALP活性都為雨季高于旱季,而根際和非根際土壤CAT活性為旱季高于雨季。
3.2.2 土壤微生物多樣性分析 由表1可知,無(wú)論旱季還是雨季,真菌和細(xì)菌多樣性變化均表現(xiàn)為根際土顯著高于非根際土(Plt;0.05)。此外,根際和非根際土壤真菌多樣性變化均表現(xiàn)為旱季顯著高于雨季;非根際土壤細(xì)菌多樣性變化表現(xiàn)為雨季顯著高于旱季,而根際土壤細(xì)菌多樣性旱、雨季節(jié)變化不明顯(P>0.05),說明根際土壤細(xì)菌群落更穩(wěn)定、更復(fù)雜,從而導(dǎo)致較低的微生物代謝活動(dòng)。
本研究基于BrayCurtis距離的主坐標(biāo)分析(principal coordinate analysis,PCoA)顯示,季節(jié)變化對(duì)根際和非根際土壤微生物群落結(jié)構(gòu)影響差異顯著(Plt;0.05),能夠解釋真菌群落結(jié)構(gòu)差異的76.65% (圖5:A)和細(xì)菌群落結(jié)構(gòu)差異的67.48% (圖5:B)。
3.2.3 土壤微生物群落組成 在門水平上,無(wú)論旱季還是雨季,根際與非根際土壤真菌群落的優(yōu)勢(shì)菌群是子囊菌門、被孢霉門和擔(dān)子菌門。擔(dān)子菌門的相對(duì)豐度為非根際土高于根際土,而被孢霉門和羅茲菌門(Rozellomycota)則反之。季節(jié)變化對(duì)真菌群落組成豐度變化影響顯著(Plt;0.05)。根際和非根際土壤被孢霉門的相對(duì)豐度為雨季高于旱季;根際土壤子囊菌門的相對(duì)豐度為旱季高于雨季;根際土壤擔(dān)子菌門的相對(duì)豐度為雨季高于旱季,而非根際土反之(圖6:A)。
在門水平上,無(wú)論旱季還是雨季,根際與非根際土壤細(xì)菌群落的優(yōu)勢(shì)菌群是放線菌門、變形菌門、酸桿菌門。變形菌門的相對(duì)豐度根際土高于非根際土,而放線菌門相反。季節(jié)變化對(duì)細(xì)菌群落組成豐度變化影響顯著(Plt;0.05)。根際和非根際土壤變形菌門的相對(duì)豐度為雨季高于旱季,而酸桿菌門相反(圖6:B)。根際土壤放線菌門的相對(duì)豐度為旱季高于雨季,而非根際土相反。這說明植物根系可根據(jù)其自身的生命活動(dòng)選擇性地改變(提高或降低)某些細(xì)菌的相對(duì)豐度或多樣性,形成更有利于其自身生長(zhǎng)發(fā)育的微生物群落結(jié)構(gòu)。
3.3 土壤理化性質(zhì)、微生物及酶活性間的相關(guān)性
由7可知,雨季,根際土壤ALP與TN、TP呈顯著正相關(guān),與TK呈極顯著正相關(guān),URE與TC呈顯著正相關(guān);根際土壤CAT與SWC、TK呈顯著負(fù)相關(guān),與TP呈極顯著負(fù)相關(guān);非根際土壤URE與SWC、TC、TK呈顯著正相關(guān),與TN呈極顯著正相關(guān)。旱季,根際土壤SUC與SWC呈顯著正相關(guān),根際土壤CEL與SOM呈顯著負(fù)相關(guān);非根際土壤SUC與pH呈顯著正相關(guān),TK與URE、ALP呈顯著正相關(guān),CAT與TN呈極顯著正相關(guān)??梢?,根際和非根際土壤因子之間相互作用的活躍性雨季強(qiáng)于旱季,與土壤水分變化密切相關(guān)。
冗余分析(redundancy analysis,RDA)結(jié)果(圖8)表明,根際和非根際土壤的環(huán)境因子對(duì)真菌和細(xì)菌群落結(jié)構(gòu)變異的總解釋度分別為64.48%、63.58%。其中,SWC、CEL、CAT、CEL驅(qū)動(dòng)土壤真菌落結(jié)構(gòu)發(fā)生分離(圖8:A)。pH、TK、SWC、SUC、CAT、ALP、CEL導(dǎo)致細(xì)菌群落結(jié)構(gòu)的差異(圖8:B)。這表明真菌和細(xì)菌群落結(jié)構(gòu)受到不同環(huán)境因素的影響。
由圖9可知,雨季,影響根際和非根際土壤真菌群落變化的主要環(huán)境因子是CAT、ALP,均與土壤真菌群落呈正相關(guān)。旱季,驅(qū)動(dòng)根際土壤真菌群落變化的關(guān)鍵因子是CAT,與土壤真菌被孢霉門和羅茲菌門呈負(fù)相關(guān);驅(qū)動(dòng)非根際土壤真菌群落變化的關(guān)鍵因子是CEL,與土壤真菌群落呈正相關(guān)。總體上,季節(jié)變化下影響根際和非根際土壤真菌群落結(jié)構(gòu)的環(huán)境因子差異顯著(Plt;0.05),土壤酶活性在調(diào)節(jié)真菌群落變化中占主要作用。
不同季節(jié)影響根際和非根際土壤細(xì)菌群落結(jié)構(gòu)的環(huán)境因子差異顯著(Plt;0.05,圖10)。雨季,影響根際土壤細(xì)菌群落變化的主要因子是pH,與土壤細(xì)菌群落多呈負(fù)相關(guān);影響非根際土壤細(xì)菌群落變化的主要因子是ALP、CEL和TK,ALP與綠彎菌門(Chloroflexi)和浮霉菌門(Planctom-ycetota)呈正相關(guān),CEL與放線菌門呈負(fù)相關(guān),TK與細(xì)菌群落呈正相關(guān)。旱季,影響根際土壤細(xì)菌群落變化的主要因子是SWC,與土壤細(xì)菌群落多呈負(fù)相關(guān),影響非根際土壤細(xì)菌群落變化的主要因子是SUC,與放線菌門呈負(fù)相關(guān),與綠彎菌門和芽單胞菌門(Gemmatimonadota)呈正相關(guān)。土壤理化和酶活性在調(diào)節(jié)細(xì)菌群落變化中均占主要作用。
3.4 根際和非根際土壤微生物功能預(yù)測(cè)
由圖11可知,旱、雨季節(jié)變化對(duì)根際和非根際土壤真菌群落功能的影響更為顯著(Plt;0.05)。無(wú)論根際土還是非根際土,土壤真菌中營(yíng)腐生功能的菌群占比為雨季大于旱季,說明雨季時(shí)土壤腐殖質(zhì)分解速率加快。然而,細(xì)菌群落功能的季節(jié)性變化并不明顯(P>0.05),表明真菌群落功能對(duì)季節(jié)變化響應(yīng)更為敏感。
4 討論
4.1 季節(jié)變化對(duì)根際和非根際土壤理化性質(zhì)的影響
本研究結(jié)果顯示,SWC在雨季和旱季均為非根際土高于根際土,與Zhang等(2018)研究結(jié)果不一致,是因?yàn)榭λ固貐^(qū)獨(dú)特的地上地下二元結(jié)構(gòu),水容易通過落水洞、管道與裂隙流失(盧中科等,2023),植物為維持自生長(zhǎng)形成發(fā)達(dá)的根系, 導(dǎo)致根部土層更淺薄,土壤蓄水能力更弱。雨季根際土偏弱酸性,可能是因?yàn)橥寥篮扛?、通透性差,在缺氧條件時(shí)林下枯枝落葉的主要分解者產(chǎn)生有機(jī)酸溶于水輸入土壤中使pH值降低(王杰等,2014);旱季根際土偏弱堿性,與喀斯特地區(qū)土壤富鈣密切相關(guān);而非根際土都偏弱堿性,無(wú)季節(jié)性差異,說明土壤水熱條件改變對(duì)非根際土壤pH的影響較小。旱季變化規(guī)律相反是根際土壤應(yīng)對(duì)干旱脅迫的一種適應(yīng)策略,協(xié)調(diào)內(nèi)部機(jī)制使養(yǎng)分富集,供植物健康生長(zhǎng)。根際和非根際SOM均為雨季高于旱季,而土壤TP含量則反之。Matías等(2011)研究表明,降水多使得凋落物分解效率高,土壤有機(jī)質(zhì)增加。P作為喀斯特區(qū)植被生長(zhǎng)的限制性因素之一,降水可能會(huì)使P淋失嚴(yán)重(Ma et al., 2023)。
4.2 季節(jié)變化對(duì)根際和非根際土壤微生物及酶活性的影響
季節(jié)變化對(duì)土壤微生物及酶活性水平波動(dòng)的影響占主導(dǎo)地位。本研究中,根際土壤SUC、CEL活性和非根際土壤SUC、CEL、URE和ALP活性都為雨季高于旱季,適當(dāng)水分范圍內(nèi)酶活性較高,土壤物質(zhì)與能量代謝旺盛;而根際和非根際土壤CAT活性在雨季降低,可能是因水分過多而形成厭氧環(huán)境,從而抑制酶活性。本研究高通量測(cè)序結(jié)果表明,無(wú)論旱季還是雨季,根際土壤真菌和細(xì)菌多樣性均顯著高于非根際土,這與Steinauer等(2016)的研究結(jié)果相反,說明檵木的根系活動(dòng)導(dǎo)致其根際土壤真菌和細(xì)菌群落出現(xiàn)一定的富集現(xiàn)象。根際和非根際土壤真菌多樣性變化均表現(xiàn)為旱季顯著高于雨季,這是因?yàn)橥寥篮繙p少,好氧真菌活動(dòng)增強(qiáng),促使土壤有機(jī)質(zhì)分解速率加快,有利于增加土壤真菌數(shù)量及多樣性(張樹萌等,2018);而根際土壤細(xì)菌多樣性旱、雨季節(jié)變化不明顯,說明根際相比于非根際土壤細(xì)菌群落更穩(wěn)定、更復(fù)雜,導(dǎo)致較低的微生物代謝活動(dòng)(熊文君等,2021)。本研究根際與非根際土壤優(yōu)勢(shì)真菌群與Song等(2021)的研究結(jié)果一致。無(wú)論旱季還是雨季, 被孢霉門和羅茲菌門的豐度為根際土高于非根際土,可能是因?yàn)槠渚哂写龠M(jìn)植物根系吸收養(yǎng)分、抑制病原菌等功能(Miao et al., 2016),在植物根際中占比較大。根際和非根際土壤被孢霉門的豐度在雨季較高,而子囊菌門的豐度在旱季較高,說明不同真菌群具有不同的生活習(xí)性。一方面,適宜的土壤水分會(huì)增強(qiáng)部分土壤生物活性;另一方面,土壤水分低、通氣條件好的環(huán)境適合部分土壤生物生存與繁殖(Challacombe et al., 2019);根際土壤擔(dān)子菌門的豐度為雨季較高,而非根際土反之,原因是擔(dān)子菌門營(yíng)腐生或寄生,在潮濕的土壤中分解木質(zhì)纖維素(徐鵬等,2022),并且可與植物共生形成菌根,提高植株對(duì)養(yǎng)分的吸收和利用。此外,本研究中根際和非根際土壤優(yōu)勢(shì)細(xì)菌群與Wang等(2020)研究結(jié)果一致。無(wú)論旱季還是雨季,變形菌門的豐度在根際土中較高,放線菌門則相反,是因?yàn)樽冃尉T屬富營(yíng)養(yǎng)菌, 能夠增強(qiáng)土壤固氮能力,土壤有機(jī)質(zhì)含量越高,其生長(zhǎng)狀況越好(Zhang et al., 2016)。放線菌門具有分解幾丁質(zhì)、纖維素和脂類等難降解有機(jī)物的功能(Kalam et al., 2022),非根際土表層覆蓋的枯枝落葉被降解后用于土壤微環(huán)境生物生存。根際和非根際土壤變形菌門的豐度在雨季較高,酸桿菌門則相反。吳憲等(2020)研究表明,變形菌門參與土壤有機(jī)質(zhì)、氮、磷循環(huán)等過程,維持土壤生態(tài)穩(wěn)定。酸桿菌門為寡營(yíng)養(yǎng)細(xì)菌門,可降解結(jié)構(gòu)復(fù)雜的纖維素和木質(zhì)素,為土壤提供養(yǎng)分。因此,雨季土壤水熱條件改變,加快土壤有機(jī)物料分解與吸收,變形菌門豐度增加參與養(yǎng)分循環(huán)。旱季土壤養(yǎng)分含量降低,為維持植物生長(zhǎng),土壤微生物群落適當(dāng)調(diào)整,增加酸桿菌門豐度為土壤提供營(yíng)養(yǎng)源。
通過對(duì)土壤真菌和細(xì)菌群落進(jìn)行FUNGuild和PICRUSt2功能預(yù)測(cè)可以更加直觀的認(rèn)識(shí)其在土壤微生態(tài)環(huán)境中的重要作用。根際和非根際土壤真菌中營(yíng)腐生功能的菌群在雨季占比較大。這可能是雨季時(shí)土壤水分增加,表層腐敗物質(zhì)增多,腐生真菌發(fā)揮作用提供更多養(yǎng)分(李茂森等,2022)。此外,根際和非根際土壤細(xì)菌的新陳代謝功能通路相對(duì)豐度最高,土壤細(xì)菌可通過代謝活動(dòng)參與土壤養(yǎng)分循環(huán)與轉(zhuǎn)化,進(jìn)而促進(jìn)植物生長(zhǎng)(楊盼等,2020)。
4.3 季節(jié)變化對(duì)根際和非根際土壤理化、酶和微生物間相關(guān)性的影響
土壤微生物及酶活性與土壤理化因子密切相關(guān)。本研究的相關(guān)性和冗余分析結(jié)果表明,雨季非根際土壤URE與SWC、TC、TN、TK呈顯著正相關(guān)。URE催化尿素水解成氨,促進(jìn)植株吸收,可反映土壤的供氮能力(Nevins et al., 2021);土壤脲酶活性與有機(jī)質(zhì)和速效鉀含量呈顯著正相關(guān)(潘語(yǔ)卓等,2023),與本研究結(jié)果一致。根際土壤ALP與TN、TP、TK呈顯著正相關(guān),這與嚴(yán)紹裕(2020)研究結(jié)果相似,反映出土壤碳氮磷鉀在土壤酶活性變化中發(fā)揮重要作用。土壤CAT、ALP活性是影響根際和非根際土壤真菌群落變化的主要因子,與土壤真菌呈正相關(guān)。這是由于微生物群落與土壤酶活性高度的自相關(guān)性,CAT、ALP分別參與土壤碳、氮、磷循環(huán),酶活性促進(jìn)土壤養(yǎng)分相互促進(jìn)(Wang et al., 2015)。土壤pH在根際土壤細(xì)菌群落變化中占主導(dǎo)作用,與土壤細(xì)菌群落多呈負(fù)相關(guān)。Stewart等(2017)研究顯示,植物凋落物使根際土壤pH酸化,pH與土壤微生物多樣性呈負(fù)相關(guān),土壤pH與一些土壤特性密切相關(guān),可能會(huì)通過影響土壤條件(養(yǎng)分、水分狀況等)共同驅(qū)動(dòng)微生物群落的變化;土壤ALP、CEL活性和TK含量在非根際土壤細(xì)菌群落變化中起主要作用,APL與綠彎菌門和浮霉菌門呈正相關(guān),原因是綠彎菌門和浮霉菌門促進(jìn)土壤碳、氮和磷循環(huán),并且土壤C、N、P循環(huán)正向作用于土壤ALP活性,彼此間聯(lián)系密切(Hou et al., 2019);CEL與放線菌門呈負(fù)相關(guān),TK與細(xì)菌群落呈正相關(guān),楚海燕等(2019)研究表明土壤細(xì)菌可以釋放植物可利用的鉀、磷和其他微量元素。旱季,根際土壤CEL與SOM呈顯著負(fù)相關(guān),可能與干旱脅迫抑制土壤CEL活性和植物生長(zhǎng)營(yíng)養(yǎng)需求有關(guān);非根際土壤SUC與pH呈顯著正相關(guān),周澤建等(2022)研究表明互花米草土壤有機(jī)碳含量與蔗糖酶活性呈顯著正相關(guān),而碳源的攝入能顯著提高土壤pH值。土壤CAT活性是影響根際土壤真菌變化的主要因子,與土壤真菌被孢霉門和羅茲菌門呈負(fù)相關(guān),主要原因是CAT活性受土壤水分影響顯著,土壤水分減少在一定程度上對(duì)CAT活性起到激活作用(Zhang et al., 2016)。而土壤真菌被孢霉門和羅茲菌門活性減弱與土壤環(huán)境條件改變密切相關(guān),如養(yǎng)分、水分含量下降及根系分泌物等(肖方南等,2021);土壤CEL活性是影響非根際土壤真菌變化的主要因子,與土壤真菌呈正相關(guān)。土壤CEL和真菌活性均下降,這與土壤中碳含量減少有關(guān),已被證實(shí)(Men et al., 2023),土壤CEL活性影響土壤碳素代謝,提供可利用的碳源營(yíng)養(yǎng)物質(zhì)。旱季脅迫使得土壤養(yǎng)分匱乏,直接或間接影響富營(yíng)養(yǎng)型真菌的數(shù)量和多樣性。SWC在根際土壤細(xì)菌群落變化占主導(dǎo)作用,與土壤細(xì)菌群落多呈負(fù)相關(guān),說明土壤通透性增強(qiáng),好氧細(xì)菌和寡營(yíng)養(yǎng)型細(xì)菌占比較大。土壤SUC活性在非根際土壤細(xì)菌群落變化中起主要作用,與放線菌門呈負(fù)相關(guān)。Han等(2021)研究發(fā)現(xiàn)放線菌門對(duì)干旱具有較強(qiáng)的抵抗性,較差土壤環(huán)境質(zhì)量會(huì)抑制土壤生物活性,需要調(diào)整細(xì)菌豐度來分解提供植物及自身生長(zhǎng)所需的營(yíng)養(yǎng)物質(zhì)。
5 結(jié)論
旱、雨季節(jié)變化對(duì)根際和非根際土壤pH、SWC、SOM、TC、TN、TP、TK、SUC、CEL、CAT、URE和ALP的影響差異顯著。其中,雨季根際土偏弱酸性,旱季根際土偏弱堿性,而非根際土都偏弱堿性,無(wú)季節(jié)性差異。旱季顯著提高根際和非根際土壤真菌多樣性,雨季顯著提高非根際土壤細(xì)菌多樣性,但根際土壤細(xì)菌多樣性旱、雨季節(jié)變化不明顯。無(wú)論旱季還是雨季,根際和非根際土壤真菌群落的優(yōu)勢(shì)類群為子囊菌門、被孢霉門和擔(dān)子菌門,細(xì)菌群落的優(yōu)勢(shì)類群為放線菌門、變形菌門、酸桿菌門。雖然群落組成相似,但在不同季節(jié)和土壤類型的影響下各菌門相對(duì)豐度差異顯著。根際和非根際土壤生物與非生物因子間相互作用的活躍性雨季強(qiáng)于旱季。土壤酶活性與C、N、P、K及SWC含量顯著相關(guān)。季節(jié)變化下驅(qū)動(dòng)根際和非根際土壤真菌和細(xì)菌群落發(fā)生變化的關(guān)鍵因子差異顯著,土壤CAT、ALP和CEL主要影響真菌群落,土壤pH、ALP、CEL、TK、SUC和SWC主要影響細(xì)菌群落。旱、雨季節(jié)變化對(duì)根際和非根際土壤真菌群落功能的影響較為顯著,而對(duì)細(xì)菌群落功能的影響不顯著,可能是因?yàn)檎婢鷮?duì)各種環(huán)境變化更敏感。
參考文獻(xiàn):
BAO SD, 2000. Soil agrochemical analysis [M]." Beijing: China Agriculture Press." [鮑士旦, 2000. 土壤農(nóng)化分析 [M]." 北京: 中國(guó)農(nóng)業(yè)出版社.]
CAI WQ, ZHANG DM, ZHANG X, et al., 2023. Leaf color change and photosystem function evaluation under heat treatment revealed the stress resistance variation between Loropetalum chinense and L. chinense var. rubrum [J]." PeerJ, 11: e14834.
CHALLACOMBE JF, HESSE CN, BRAMER LM, et al., 2019. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis [J]." BMC Genom, 20(1): 976.
CHEN YL, TANG MR, ZHANG H, et al., 2022. Differences in response of vegetation coverage and net primary productivity to SPEI drought index in karst areas of Guangxi [J]." J Arid Meteorol, 40(6): 1042-1050." [陳燕麗, 唐梅蓉, 張會(huì), 等, 2022. 廣西喀斯特地區(qū)植被覆蓋度和凈初級(jí)生產(chǎn)力對(duì)SPEI干旱指數(shù)的響應(yīng)差異 [J]." 干旱氣象, 40(6): 1042-1050.]
CHU HY, LI RN, LI JW, et al., 2019. The impact of subtropical forest transformation on soil microbial community structure [J]." J Appl Environ Biol, 25 (1): 23-28." [楚海燕, 李若南, 李靖雯, 等, 2019. 中亞熱帶森林轉(zhuǎn)換對(duì)土壤微生物群落結(jié)構(gòu)的影響 [J]." 應(yīng)用與環(huán)境生物學(xué)報(bào), 25(1): 23-28.]
HAN W, WANG G, LIU J, et al., 2021. Effects of vegetation type, season, and soil properties on soil microbial community in subtropical forests [J]." Appl Soil Ecol, 158: 103813.
HOU XL, HAN H, TIGABOU M, et al., 2019. Changes in soil physico-chemical properties following vegetation" restoration mediate bacterial community composition and diversity in Changting, China [J]." Ecol Eng, 138: 171-179.
HUO CC, ZHAO LJ, ZHU LQ, et al., 2022. Seasonal dynamics of physiological characteristics of Carya cathayensis leaves in karst regions of Guangxi [J]." Tropical Agric Sci, 42(9): 44-50." [霍燦燦, 招禮軍, 朱栗瓊, 等, 2022. 廣西喀斯特區(qū)山核桃葉片生理特性的季節(jié)動(dòng)態(tài) [J]." 熱帶農(nóng)業(yè)科學(xué), 42(9): 44-50.]
KALAM S, BASU A, PODILE AR, 2022. Difficult-to-culture bacteria in the rhizosphere:the underexplored signature microbial groups [J]." Pedosphere, 32(1): 75-89.
LEITNER S, THOMAS D, JOHANNES K, et al., 2020. Legacy effects of drought on nitrate leaching in a temperate mixed forest on karst [J]. J Environ Manage, 262: 110338.
LI J, CHENG XY, CHU GX, et al., 2023. Continuous cropping of cut chrysanthemum reduces rhizospheric soil bacterial community diversity and co-occurrence network complexity [J]." Appl Soil Ecol, 185: 104801.
LI MS, WANG LY, YANG B, et al., 2022. Effect of biochar on the structure and functional prediction of rhizosphere fungal communities in flue-cured tobacco during maturity [J]." J Agric Resour Environ, 39(5): 1041-1048." [李茂森, 王麗淵, 楊波, 等, 2022. 生物炭對(duì)烤煙成熟期根際真菌群落結(jié)構(gòu)的影響及功能預(yù)測(cè)分析 [J]." 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 39(5): 1041-1048.]
LI YF, GENG YQ, ZHOU HJ, et al., 2016. Comparison of soil acid phosphatase activity determined by different methods [J]." Chin J Eco-Agric, 24(1): 98-104.
LU XK, MO JM, ZHANG W, et al., 2019. Effect of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview [J]." J Trop Subtrop Bot, 27(5): 500-522.
LU ZK, ZENG QM, SUN JC, et al., 2023. Accumulation characteristics and risk assessment of heavy metals in forest soil of karst areas in western Guizhou [J]." J NW For Univ, 38(6): 81-88." [盧中科, 曾欽朦, 孫建昌, 等, 2023. 貴州西部喀斯特地區(qū)森林土壤重金屬的累積特征及風(fēng)險(xiǎn)評(píng)價(jià) [J]." 西北林學(xué)院學(xué)報(bào), 38(6): 81-88.]
MA YZ, LIU WW, QIAO YZ, et al. 2023. Effects of soil salinity on foxtail millet osmoregulation, grain yield, and soil water utilization under varying water conditions [J]." Agric Water Manage, 284: 108354.
MATIAS L, CASTRO J, ZAMORA R, 2011. Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem [J]." Glob Change Biol, 17(4): 1646-1657.
MEN XX, BAO Y, WU MH, et al., 2023. Soil enzyme activities responded differently to short-term litter input manipulation under coniferous and broad-leaved forests in the subalpine area of Southwest China [J]." For Ecol Manage, 546: 121360.
MIAO CP, MI QL, QIAO XG, et al., 2016. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens [J]." J Ginseng Res, 40(2): 127-134.
NEVINS CJ, LACEY C, ARMSTRONG S, 2021. Cover crop enzyme activities and resultant soil ammonium concentrations under different tillage systems [J]." Eur J Agr, 126: 126277.
PAN YF, ZHUO WH, JIANG Y, et al., 2023. Spatial distribution pattern and correlation analysis of dominant populations of Cyclobalanopsis glauca in karst rocky mountains of Guilin [J]." Guihaia, 43(3): 527-535." [盤遠(yuǎn)方, 卓文花, 姜勇, 等, 2023. 桂林巖溶石山青岡優(yōu)勢(shì)種群空間分布格局及關(guān)聯(lián)分析 [J]." 廣西植物, 43(3): 527-535.]
PAN YZ, QIU ZL, WANG WH, et al., 2023. Short term effects of mixed tillage and returning ryegrass and sweet potato on soil enzyme activity and nutrients [J]." Jiangsu Agric Sci, 51(16): 230-239." [潘語(yǔ)卓, 邱澤龍, 王偉虎, 等, 2023. 黑麥草和苕子混合翻壓還田對(duì)土壤酶活性和養(yǎng)分的短期影響 [J]." 江蘇農(nóng)業(yè)科學(xué), 51(16): 230-239.]
QIN YH, MA JM, MEI JL, et al., 2017. Preliminary dynamics of litter decomposition in different recovery stages of Loropetalum chinense community in karst areas of the Lijiang River Basin [J]." Acta Ecol Sin, 37(20): 6792-6799.
SHENG L, STEFFEN B, LIANG X, et al., 2016. Seasonal changes in the soil moisture distribution around bare rock outcrops within a karst rocky desertification area (Fuyuan County, Yunnan Province, China) [J]. Environ Earth Sci, 75(23): 1-10.
SONG JF, JIANG ZH, WEI XL, et al., 2023. Integrated transcriptomics and lipidomics investigation of the mechanism underlying the gastrointestinal mucosa damage of Loropetalum chinense (R. Br.) and its representative component [J]." Phytomedicine, 114: 154758.
SONG X, FANG C, YUAN ZQ, et al., 2021. Long-Term growth of alfalfa increased soil organic matter accumulation and nutrient mineralization in a semi-arid environment [J]." Fron Environ Sci, 9: 649346.
STEINAUER K, JENSEN B ,STRECKER T, et al., 2016. Convergence of soil microbial properties after plant colonization of an experimental plant diversity gradient [J]." BMC Ecol, 16(1): 19.
STEWART CE, ROOSENDAAL D, DENEF K, et al., 2017. Seasonal switchgrass ecotype contributions to soil organic carbon,deep soil microbial community composition and rhizodeposit uptake during an extreme drought [J]." Soil Biol Biochem, 112: 191-203.
THAKUR MP, DEL RIM, CESARZ S, et al., 2019. Soil microbial, nematode, and enzymatic responses to elevated CO2 N fertilization, warming, and reduced precipitation [J]." Soil Biol Biochem, 135: 184-193.
WANG J, LI G, XIU WM, et al., 2014. Effects of nitrogen and water on soil enzyme activity and microbial biomass in Stipa baicalensis steppe, Inner Mongolia North China [J]." J Agric Resour Environ, 31(3): 237-245." [王杰, 李剛, 修偉明, 等, 2014. 氮素和水分對(duì)貝加爾針茅草原土壤酶活性和微生物量碳氮的影響 [J]." 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 31(3): 237-245.
WANG JQ, JIANG J, CHI YK,, et al., 2023. Diversity and community structure of typhlocybinae in the typical karst rocky ecosystem, Southwest China [J]." Diversity, 15(3): 387.
WANG JQ, SHI XZ, ZHENG CY, et al., 2020. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest [J]." Sci Total Environ, 755(1): 142449-142478.
WANG XB, SONG DL, LIANG GQ, et al., 2015. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil [J]." Appl Soil Ecol, 96: 265-272.
WU FJ, LIU N, HU PL, et al., 2020. Soil carbon and nitrogen dynamics during vegetation restoration and their responses to extreme water-logging disasters in a typical karst depression [J]. Chin J Eco-Agr, 28(3): 429-437.
WU X, WANG R, HU H, et al., 2020. Response of bacterial and fungal communities to chemical fertilizer reduction combined with organic fertilizer and straw in fluvo-aquic soil [J]." Environ Sci, 41(10): 4669-4681." [吳憲, 王蕊, 胡菏, 等, 2020. 潮土細(xì)菌及真菌群落對(duì)化肥減量配施有機(jī)肥和秸稈的響應(yīng) [J]." 環(huán)境科學(xué), 41(10): 4669-4681.]
XIA L, ZHAO B Q, LUO T, et al., 2022. Microbial functional diversity in rhizosphere and non-rhizosphere soil of different dominant species in a vegetation concrete slope [J]." Biotechnol Biotechnol Equip, 36(1): 379-388.
XIAO FN, JIANG M, LI YY, et al., 2021. Community structure and diversity of soil fungi in Tamarix chinensis shrubs in the lower reaches of Tarim River [J]." Arid Land Geogr, 44(3):759-768." [肖方南, 姜夢(mèng), 李媛媛, 等, 2021. 塔里木河下游檉柳灌叢土壤真菌群落結(jié)構(gòu)及多樣性分析 [J]." 干旱區(qū)地理, 44(3): 759-768.]
XIONG WJ, ZHU H, LI JB, et al., 2021. The spatiotemporal distribution and influencing factors of bacterial communities in the rhizosphere and non-rhizosphere soil of Emei fir in Gongga Mountain [J]." J Appl Environ Biol, 27(5): 1130-1138." [熊文君, 祝賀, 李家寶, 等, 2021. 貢嘎山峨眉冷杉根際、非根際土壤細(xì)菌群落的時(shí)空分布及影響因素 [J]." 應(yīng)用與環(huán)境生物學(xué)報(bào), 27(5): 1130-1138.]
XU P, RONG XY, LIU CH, et al., 2022. The impact of extreme drought on fungal communities and ecological networks in temperate desert soil [J]." Biodivers Sci, 30(3): 70-83." [徐鵬, 榮曉瑩, 劉朝紅, 等, 2022. 極端干旱對(duì)溫帶荒漠土壤真菌群落和生態(tài)網(wǎng)絡(luò)的影響 [J]." 生物多樣性, 30(3): 70-83.]
YAN SY, 2020. Soil enzyme activity and soil nutrient characteristics of wetland pine forests of different ages [J]." J For Environ, 40(1): 24-29." [嚴(yán)紹裕, 2020. 不同林齡濕地松林土壤酶活性與土壤養(yǎng)分特征 [J]." 森林與環(huán)境學(xué)報(bào), 40(1): 24-29.]
YANG P, ZHAI YP, ZHAO X, et al., 2020. Effect of interaction between arbuscular mycorrhizal fungi and Rhizobium on Medicago sativa rhizosphere soil bacterial community structure and PICRUSt functional prediction [J]." J Microbiol, 47(11): 3868-3879." [楊盼, 翟亞萍, 趙祥, 等, 2020. 叢枝菌根真菌和根瘤菌互作對(duì)苜蓿根際土壤細(xì)菌群落結(jié)構(gòu)的影響及PICRUSt功能預(yù)測(cè)分析 [J]." 微生物學(xué)通報(bào), 47(11): 3868-3879.]
YANG XC, ZHU K, LOIK ME, et al., 2021. Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe [J]." Geoderma, 384: 114812.
ZHANG B, KONG W, WU N, et al., 2016. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China [J]." J Basic Microb, 56(6): 670-679.
ZHANG C, LIU GB, XUE S, et al., 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau [J]." Soil Biol Biochem, 97: 40-49.
ZHANG SM, HUANG YM, NI YX, et al., 2018. Effects of artificial forest and grass on soil fungal community at southern Ningxia Mountain [J]. "J Environ Sci-Chin, 38(4): 1449-1458." [張樹萌, 黃懿梅, 倪銀霞, 等, 2018. 寧南山區(qū)人工林草對(duì)土壤真菌群落的影響 [J]." 中國(guó)環(huán)境科學(xué), 38(4): 1449-1458.]
ZHANG T, LIN L, XIAO H, et al., 2018. Research on occurrence and development of pasture drought events in alpine grassland using the drought threshold [J]." Nat Hazards Earth Syst Sci, 305(9): 1-18.
ZHOU ZJ, LUO CS, TAO YH, et al., 2022. Characteristics of soil enzyme activity and its correlation with physicochemical factors in the Beihai Spartina alterniflora wetland [J]." J Ocean Univ Chin, 42(6): 97-103." [周澤建, 羅昌盛, 陶玉華, 等, 2022. 北?;セ撞轁竦赝寥烂富钚蕴卣骷芭c理化因子相關(guān)性 [J]." 廣東海洋大學(xué)學(xué)報(bào), 42(6): 97-103.]
(責(zé)任編輯 李 莉)