国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

記憶快速鞏固:基于圖式的學(xué)習(xí)與重復(fù)再激活

2024-11-07 00:00:00周帆田昊月姜英杰
心理科學(xué)進(jìn)展 2024年11期

摘 要 記憶鞏固通常被認(rèn)為是一個(gè)緩慢的過程, 需要數(shù)年甚至更長時(shí)間。然而, 新的研究顯示, 當(dāng)新信息與已有圖式一致或采用特定編碼方式時(shí), 記憶能夠迅速鞏固。此外, 睡眠和提取對記憶的促進(jìn)也被認(rèn)為與記憶的快速鞏固有關(guān)。這些現(xiàn)象揭示了記憶快速鞏固兩種可能的途徑:基于圖式的學(xué)習(xí)和記憶重復(fù)再激活。在未來的研究中, 可以進(jìn)一步探索海馬在皮層學(xué)習(xí)中的作用, 干擾抑制對記憶鞏固的意義, 以及在理解記憶快速鞏固兩面性的基礎(chǔ)上, 從適應(yīng)環(huán)境的視角來考察記憶鞏固的快與慢。

關(guān)鍵詞 記憶鞏固, 海馬, 圖式, 再激活

分類號 B842

1 引言

早期的研究發(fā)現(xiàn), 當(dāng)海馬受到損傷時(shí), 病人不僅難以形成新的情景記憶, 還會出現(xiàn)回溯性記憶損傷, 即失去海馬損傷前一段時(shí)間內(nèi)所發(fā)生事件的記憶, 而更久遠(yuǎn)的記憶則不受影響(Squire etal., 1975)。為了解釋這一現(xiàn)象, 研究者提出了記憶鞏固這一概念, 認(rèn)為依賴海馬的記憶會逐漸鞏固到皮層, 因此記憶痕跡在形成初期依賴海馬, 而一旦鞏固完成, 其存儲和檢索就不再依賴海馬(Squire & Alvarez, 1995)。準(zhǔn)確來說, 鞏固是指將新獲得的記憶轉(zhuǎn)變?yōu)楦€(wěn)定、持久的記憶狀態(tài)的過程(Dudai, 2012; Squire et al., 2015), 它包含“突觸/細(xì)胞鞏固”和“系統(tǒng)鞏固”兩個(gè)層面的含義。“突觸/細(xì)胞鞏固”是指編碼后短時(shí)間內(nèi)發(fā)生的細(xì)胞激活和突觸變化(Gisquet-Verrier & Riccio, 2019; Hardt et al., 2010)?!跋到y(tǒng)鞏固”則是指在更長的時(shí)間尺度上, 記憶表征在大腦網(wǎng)絡(luò)中的重組(Dudai et al., 2015; Winocur & Moscovitch, 2011)。通常這也意味著情景記憶的語義化與圖式化(Renoult etal., 2019; Sekeres et al., 2018)。本文探討記憶的快速鞏固, 但這里主要是指快速的“系統(tǒng)鞏固”。

早期對記憶鞏固的觀察主要來自海馬損傷的失憶癥病人, 根據(jù)內(nèi)側(cè)顳葉不同的損傷程度, 受損的記憶能追溯到幾年(Manns et al., 2003; Squire et al., 1975)甚至幾十年前(Bayley et al., 2006; Bright et al., 2006)。因此, 傳統(tǒng)上, 記憶鞏固被認(rèn)為是一個(gè)十分緩慢的過程(Frankland & Bontempi, 2005; Squire et al., 2004)。然而新的研究表明, 在某些情況下記憶能夠迅速鞏固。例如, 一項(xiàng)開創(chuàng)性的研究發(fā)現(xiàn), 先前類似的學(xué)習(xí)經(jīng)驗(yàn)?zāi)茏屝碌挠洃浽?8小時(shí)之內(nèi)就不再依賴海馬(Tse et al., 2007); 而某些特殊編碼方式也被發(fā)現(xiàn)能促進(jìn)快速的皮層學(xué)習(xí)(D’Angelo et al., 2015; Sharon et al., 2011); 此外, 睡眠(Klinzing et al., 2019)和提?。ˋntony etal., 2017)對記憶的促進(jìn)也被認(rèn)為與記憶快速鞏固有關(guān)。這些發(fā)現(xiàn)涵蓋了不同的研究領(lǐng)域, 相互之間存在怎樣的關(guān)聯(lián)?而記憶又是如何實(shí)現(xiàn)快速鞏固的呢?本文先回顧了記憶鞏固的主要理論, 然后梳理了記憶快速鞏固的相關(guān)證據(jù), 并分析總結(jié)了兩種快速鞏固的途徑, 最后對未來研究方向進(jìn)行了展望。

2 記憶鞏固主要理論

2.1 標(biāo)準(zhǔn)鞏固理論

標(biāo)準(zhǔn)鞏固理論(Standard Consolidation Theory, SCT)提出了記憶鞏固的概念, 半個(gè)多世紀(jì)以來對記憶各領(lǐng)域的研究影響深遠(yuǎn)。SCT的提出最初是為了解釋H.M. (Scoville & Milner, 1957)和其他內(nèi)側(cè)顳葉損傷病人出現(xiàn)的回溯性記憶受損(綜述見Squire et al., 2015)。SCT認(rèn)為記憶痕跡起源于大腦皮層對事件的反應(yīng)性激活, 海馬記錄并存儲了這種激活模式, 因此提取這些記憶高度依賴于海馬(Teyler & DiScenna, 1986)。而隨著時(shí)間的推移, 皮層上直接的相互聯(lián)結(jié)增強(qiáng), 于是記憶的存儲和檢索就不再需要海馬的參與(McClelland et al., 1995; Squire & Zola-Morgan, 1991)。這就導(dǎo)致越久遠(yuǎn)的記憶受海馬損傷的影響越小, 出現(xiàn)回溯記憶受損的時(shí)間梯度效應(yīng)(Squire et al., 2015)。這一效應(yīng)在失憶癥病人(Penfield & Milner, 1958; Scoville & Milner, 1957)和動(dòng)物研究(Anagnostaras et al., 1999; Zola-Morgan & Squire, 1990)中得到大量證實(shí), 進(jìn)而支持了SCT的基本觀點(diǎn)。

SCT認(rèn)為, 海馬的功能是對記憶的索引(Indexing; Teyler & DiScenna, 1986)。根據(jù)這一觀點(diǎn), 記憶是皮層在經(jīng)歷事件時(shí)的激活模式, 包含了各腦區(qū)的激活信息。這些激活模式被一一記錄在海馬當(dāng)中, 即海馬存儲的并不是記憶本身, 而是記憶的索引或指針。通過這些索引在皮層上復(fù)現(xiàn)先前的皮層激活模式就能重新體驗(yàn)先前的經(jīng)歷。因此, SCT默認(rèn)海馬只是臨時(shí)存儲記憶的地方, 當(dāng)皮層上的激活模式逐漸增強(qiáng)后, 記憶就不再依賴海馬。

2.2 多痕跡理論

SCT確定了記憶鞏固的基本框架, 但隨著研究的不斷深入, 越來越多證據(jù)表明, 海馬受損導(dǎo)致的回溯性記憶損傷并不是總與時(shí)間有關(guān)(Clark et al., 2005; Miller et al., 2020)。Winocur等人(2010)回顧以往內(nèi)側(cè)顳葉損傷病人的研究發(fā)現(xiàn), 回溯性記憶受損出現(xiàn)與沒出現(xiàn)時(shí)間梯度的案例在數(shù)量上相差無幾。在嚴(yán)格控制損傷位置和面積的動(dòng)物實(shí)驗(yàn)中, 也有研究發(fā)現(xiàn)記憶損傷程度并不受獲得這些記憶的時(shí)間影響(Clark et al., 2005; Sutherland et al., 2001)。

為了解釋回溯性記憶損傷的不同模式, Nadel和Moscovitch (1997)提出了多痕跡理論(Multiple Trace Theory, MTT)。MTT在記憶鞏固中區(qū)分了情景記憶與語義記憶, 提出情景記憶每一次再激活都會在海馬中生成新的痕跡。久遠(yuǎn)的記憶有更多的再激活機(jī)會, 形成更多痕跡, 因此更可能在海馬損傷時(shí)保留記憶信息。而且, 足夠多的記憶痕跡能夠在皮層上形成脫離情境的語義知識。這些表征一旦形成, 記憶就可以完全不依賴海馬。與SCT不同的是, MTT認(rèn)為那些保留了細(xì)節(jié)的情景記憶始終依賴海馬而與獲得該記憶的時(shí)間無關(guān), 這一預(yù)測隨后得到了大量研究的證實(shí)(Audrain etal., 2022; Bonnici & Maguire, 2018)。

盡管MTT所預(yù)測的海馬中多個(gè)相似記憶痕跡并未得到實(shí)驗(yàn)支持(Karlsson & Frank, 2008; Mankin et al., 2012), 但其對記憶鞏固中情景記憶和語義記憶的區(qū)分以及記憶轉(zhuǎn)變的觀點(diǎn)對該領(lǐng)域產(chǎn)生了深遠(yuǎn)影響。當(dāng)前主流的轉(zhuǎn)變觀點(diǎn)認(rèn)為記憶鞏固是一個(gè)連續(xù)的動(dòng)態(tài)過程, 這個(gè)過程中記憶的心理和神經(jīng)基礎(chǔ)逐漸發(fā)生轉(zhuǎn)變(Dudai et al., 2015; Winocur et al., 2007)。且各種理論越來越強(qiáng)調(diào)心理?神經(jīng)表征一致性(Neural-Psychological Representation Correspondence), 即鞏固過程中神經(jīng)基礎(chǔ)的變化會伴隨記憶性質(zhì)的轉(zhuǎn)變(Gilboa & Moscovitch, 2021; Sekeres et al., 2018)。由MTT演變而來的痕跡轉(zhuǎn)變理論(Trace Transformation Theory, TTT; Winocur & Moscovitch, 2011)更是將這一過程細(xì)化, 提出記憶痕跡的形成和轉(zhuǎn)變會經(jīng)歷知覺表征、細(xì)節(jié)、概要以及圖式等4個(gè)連續(xù)過程, 其神經(jīng)基礎(chǔ)分別對應(yīng)皮層后部、海馬后部、海馬前部、腹內(nèi)側(cè)前額葉(Robin & Moscovitch, 2017; Sekeres et al., 2018)。

2.3 互補(bǔ)學(xué)習(xí)系統(tǒng)理論

互補(bǔ)學(xué)習(xí)系統(tǒng)理論(Complementary Learning Systems, CLS)基于SCT和MTT的基本觀念, 根據(jù)機(jī)器學(xué)習(xí)的原理描述了一套關(guān)于人腦記憶鞏固的計(jì)算理論(Kumaran et al., 2016; McClelland etal., 1995)。CLS認(rèn)為大腦中有兩套學(xué)習(xí)系統(tǒng), 一個(gè)是基于海馬的學(xué)習(xí)系統(tǒng), 對情景記憶快速編碼。另一個(gè)是基于皮層的漸進(jìn)式語義學(xué)習(xí)系統(tǒng)。人經(jīng)歷事件時(shí), 海馬接受各個(gè)腦區(qū)的輸入信息并將它們綁定(如時(shí)空信息與事件本身), 形成基于樣例的記憶表征。這種表征保留了豐富的情境細(xì)節(jié), 但存儲效率不高, 會受到記憶容量限制(Treves & Rolls, 1994)。作為補(bǔ)充, 相似的信息形成結(jié)構(gòu)化的知識, 以基于參數(shù)的表征存儲在皮層。在此過程中, 皮層接受海馬的輸入, 并將先前獲得的樣例當(dāng)作一個(gè)個(gè)數(shù)據(jù)點(diǎn), 這樣就能用一個(gè)特定函數(shù)來表征所有相似的樣例, 而該函數(shù)的各個(gè)參數(shù)則由其中所有數(shù)據(jù)點(diǎn)決定(Kumaran et al., 2016)。于是無限的樣例就能用有限的參數(shù)來進(jìn)行表征, 極大地提高了存儲效率。

在CLS中, 皮層系統(tǒng)的學(xué)習(xí)過程就是記憶從海馬向皮層轉(zhuǎn)移的過程, 即記憶鞏固。CLS認(rèn)為記憶鞏固必須十分緩慢。其原因一是準(zhǔn)確穩(wěn)定的統(tǒng)計(jì)表征需要足夠多的數(shù)據(jù)樣本, 這類似于MTT提出的多個(gè)記憶痕跡(Nadel & Moscovitch, 1997; Sutherland et al., 2020), 需要在更長的時(shí)間中逐漸獲得。二是統(tǒng)計(jì)表征的參數(shù)不是突然形成的, 而是根據(jù)每一個(gè)新的輸入來進(jìn)行調(diào)整并需要考慮之前的所有輸入, 因此指示如何調(diào)整參數(shù)的信號較為微弱并充滿噪音, 使統(tǒng)計(jì)表征的形成十分緩慢(Kumaran et al., 2016)。

3 記憶快速鞏固

上文介紹的幾種記憶鞏固理論都對回溯性記憶損傷的各種現(xiàn)象進(jìn)行了解釋, 盡管存在差異, 但都認(rèn)可鞏固過程包含記憶神經(jīng)基礎(chǔ)從海馬到皮層的轉(zhuǎn)移, 且這是一個(gè)緩慢的過程。然而, 新的研究表明, 在某些情況下記憶鞏固所需時(shí)間遠(yuǎn)小于研究者之前的預(yù)期。

3.1 先前學(xué)習(xí)經(jīng)驗(yàn)

人們早已知道先前經(jīng)驗(yàn)會影響新信息的學(xué)習(xí), 比如專長效應(yīng)(Expertise Effect)的研究發(fā)現(xiàn), 象棋大師對棋盤上棋子位置的記憶要明顯優(yōu)于新手(杜建政, 楊治良, 2002; Bilali? et al., 2009)。進(jìn)一步的研究發(fā)現(xiàn), 先前經(jīng)驗(yàn)不僅會影響記憶的編碼方式(Liu et al., 2017; Me?mer et al., 2021), 也會影響記憶的鞏固。動(dòng)物(Tse et al., 2007, 2011)和腦成像(Sommer, 2017; Sommer et al., 2022)研究都表明, 先前學(xué)習(xí)經(jīng)驗(yàn)?zāi)軌蚣涌煊洃洀暮qR向皮層的轉(zhuǎn)移。

Tse等人(2007)在一個(gè)邊長1.6米的方形實(shí)驗(yàn)場景中訓(xùn)練大鼠學(xué)習(xí)氣味與位置的聯(lián)結(jié)配對。前6個(gè)氣味?位置的配對學(xué)習(xí)需要在數(shù)周時(shí)間內(nèi)多次重復(fù)訓(xùn)練才能得以保留, 但這之后, 2個(gè)新的配對卻僅需一次訓(xùn)練就可以讓大鼠在24小時(shí)之后的測試中表現(xiàn)出明顯的偏好。為了更直接地考察記憶鞏固, 在學(xué)習(xí)新配對48小時(shí)之后, 研究者切除了大鼠的海馬, 結(jié)果在隨后的記憶測試中大鼠不僅保留了之前反復(fù)訓(xùn)練的6對氣味?位置聯(lián)結(jié)記憶, 同樣也保留了2對新學(xué)習(xí)的聯(lián)結(jié)記憶。這表明新的聯(lián)結(jié)記憶已經(jīng)從海馬轉(zhuǎn)移到皮層, 且這一過程發(fā)生在短短48小時(shí)之內(nèi), 遠(yuǎn)小于之前所認(rèn)為的鞏固所需時(shí)間尺度, 說明先前的學(xué)習(xí)經(jīng)驗(yàn)加速了新記憶的鞏固。

研究者普遍認(rèn)為先前學(xué)習(xí)經(jīng)驗(yàn)對記憶鞏固的影響源于圖式的作用。在這類研究中, 圖式被操作定義為多次訓(xùn)練中形成的一種記憶結(jié)構(gòu), 反映了多次情景記憶中的共同模式(Ghosh & Gilboa, 2014)。有研究者對Tse等人(2007)研究大鼠的范式進(jìn)行修改, 使其適用于人類被試(Sommer, 2017)。在該項(xiàng)長達(dá)302天的研究中, 研究者在一個(gè)頁面上隨機(jī)選擇20個(gè)位置用于放置不同形狀的圖案, 然后讓被試記憶其中12個(gè)位置?圖案配對, 并通過反復(fù)學(xué)習(xí)來形成圖式。而在控制條件下, 圖形與位置的配對關(guān)系在不同的訓(xùn)練試次中隨機(jī)變化, 因而難以形成穩(wěn)定圖式。結(jié)果發(fā)現(xiàn), 經(jīng)過3個(gè)月反復(fù)的編碼與提取, 實(shí)驗(yàn)組被試對固定形狀?位置配對的記憶逐漸去情景化(Decontextualization), 被試更多反應(yīng)為“知道”某一形狀對應(yīng)某一位置, 而不是“記得”特定的編碼細(xì)節(jié)。這一變化與強(qiáng)調(diào)記憶轉(zhuǎn)變的鞏固理論(Dudai et al., 2015; Sekeres etal., 2018)相一致。同時(shí), fMRI研究結(jié)果也表明, 提取過程中激活的腦區(qū)隨著時(shí)間推移逐漸從海馬轉(zhuǎn)移到皮層。這些結(jié)果說明實(shí)驗(yàn)有效模擬了圖式的形成。之后, 研究者讓被試學(xué)習(xí)4對新的形狀?位置配對以考察圖式對新學(xué)習(xí)的影響。結(jié)果發(fā)現(xiàn), 相對于控制條件, 圖式條件下不僅學(xué)習(xí)效率更高, 且間隔一段時(shí)間之后再提取時(shí), 海馬激活出現(xiàn)了更明顯的減弱, 而皮層激活明顯增強(qiáng)(Sommer, 2017)。整個(gè)研究表明, 情景記憶在多次重復(fù)激活中逐漸鞏固到皮層形成圖式, 而圖式則能加速新記憶的鞏固。使用相似的范式, 其他研究訓(xùn)練被試在實(shí)驗(yàn)中習(xí)得不同的人工圖式, 也得到了類似的結(jié)果(Liu et al., 2017; Sommer et al., 2022)。

計(jì)算機(jī)模擬的學(xué)習(xí)模型也表明與先前訓(xùn)練的圖式相一致能夠加快新信息的吸收(Kumaran etal., 2016; McClelland, 2013)。研究者首先用不同的例子訓(xùn)練模型形成關(guān)于動(dòng)物的圖式, 如喜鵲是一種鳥, 會飛翔; 鯉魚是一種魚, 會游泳。隨后考察模型對新信息的學(xué)習(xí)能力, 一種條件下新信息與已有圖式一致(如, X是一種鳥, 會飛翔), 另一種條件下則不一致(如, X是一種鳥, 會游泳)。結(jié)果發(fā)現(xiàn), 模型能夠快速學(xué)習(xí)一致的信息, 且不會對已有知識產(chǎn)生干擾(McClelland, 2013)。這一結(jié)果也促使作者對其先前提出的CLS理論(McClelland et al., 1995)做出修正。指出當(dāng)新的信息與先前圖式相一致時(shí), 皮層能夠快速整合新的信息(Kumaran et al., 2016; McClelland, 2013)。

3.2 特殊編碼方式

編碼方式對學(xué)習(xí)效果的影響通常被認(rèn)為與加工深度有關(guān)(Craik, 2002), 主要作用于編碼階段(Bernstein et al., 2002)。然而, 有研究發(fā)現(xiàn)一些特殊的編碼方式能夠促進(jìn)記憶的快速鞏固。其中有代表性的兩種方式是快速映射(Fast Mapping)和一體化(Unitization)編碼。

3.2.1 快速映射

與直接的外顯編碼不同, 快速映射需要被試通過推測來進(jìn)行學(xué)習(xí)。如給被試呈現(xiàn)一張圖片, 圖中有兩只昆蟲, 一只是被試熟悉的蛐蛐, 另一只則是被試不認(rèn)識的昆蟲, 兩只昆蟲的一個(gè)共同特點(diǎn)是都有觸須。相應(yīng)地, 圖片下方則是需要回答的問題:XX的觸須是向上的嗎?其中XX是作者設(shè)計(jì)的假詞, 由于蛐蛐是熟悉的, 因而被試能夠通過排除法習(xí)得另一種昆蟲的名字XX。有研究者認(rèn)為這種編碼模擬了嬰兒快速學(xué)習(xí)大量詞匯的方式(Bloom & Markson, 1998; Halberda, 2006)。由于嬰兒時(shí)期個(gè)體的情景記憶及海馬系統(tǒng)發(fā)育尚未完善, 因此這種學(xué)習(xí)方式可能并不依賴海馬, 而是一種快速的皮層學(xué)習(xí)(Sharon et al., 2011), 或者是一種不依賴海馬的快速記憶鞏固(Coutanche & Thompson-Schill, 2014; Merhav et al., 2015)。

Sharon等人(2011)讓4名失憶癥病人使用快速映射或外顯編碼的方式學(xué)習(xí)罕見物體的圖片名稱, 之后進(jìn)行迫選再認(rèn)。雖然失憶癥病人外顯編碼的記憶成績顯著低于對照組, 但是快速映射編碼條件下, 兩組被試記憶成績卻無顯著差異。由于這些病人海馬嚴(yán)重受損, 作者認(rèn)為快速映射是一種不依賴海馬的快速皮層學(xué)習(xí)。實(shí)驗(yàn)中, 有2名顳葉前部受損的病人無法通過快速映射獲得記憶改善, 作者進(jìn)一步推測這種皮層學(xué)習(xí)需要顳葉前部的參與, 而該區(qū)域通常與語義記憶的提取有關(guān)(Alam et al., 2021; Lambon Ralph et al., 2012)。腦成像研究也表明, 提取外顯編碼獲得的記憶主要依賴海馬網(wǎng)絡(luò), 而提取快速映射獲得的記憶時(shí)則會激活顳葉前部(Merhav et al., 2015)。這說明, 與一般的外顯情景編碼不同, 通過快速映射獲得的記憶在神經(jīng)基礎(chǔ)上更加類似已經(jīng)鞏固的語義知識。行為研究也表明, 通過快速映射獲得的記憶具有語義網(wǎng)絡(luò)的特點(diǎn)。相對于外顯學(xué)習(xí), 通過快速映射習(xí)得的聯(lián)結(jié)記憶會受到更嚴(yán)重的語義干擾(Merhav et al., 2014), 而習(xí)得的新詞也對其他語義相似詞匯具有啟動(dòng)效應(yīng)(Coutanche & Thompson- Schill, 2014)。另外, Coutanche和Thompson-Schill (2014)發(fā)現(xiàn)在快速映射學(xué)習(xí)中取消原來呈現(xiàn)的熟悉同類, 只給被試呈現(xiàn)不熟悉的動(dòng)物, 這并不影響被試對編碼問題的回答和對詞圖關(guān)聯(lián)的推測, 但快速映射的學(xué)習(xí)優(yōu)勢消失了, 說明快速映射可能依賴熟悉的同類來激活類屬概念等結(jié)構(gòu)化的知識。

值得注意的是, 目前學(xué)界對快速映射能否促進(jìn)皮層學(xué)習(xí)仍存有爭議(Cooper et al., 2019; O’Connor & Riggs, 2019)。一些后續(xù)研究在失憶癥病人(Elward et al., 2019; Smith et al., 2014; Warren et al., 2014)和海馬功能衰退的老人被試中(Greve et al., 2014)并未發(fā)現(xiàn)快速映射的編碼優(yōu)勢。

3.2.2 一體化

另一種特殊的編碼方式是一體化。一體化是指將多個(gè)項(xiàng)目整合為單一整體(Graf & Schacter, 1989)。根據(jù)整合方式的不同可以分為自下而上和自上而下兩種一體化(Tibon et al., 2014)。自下而上的一體化指利用材料本身的關(guān)聯(lián)形成整體表征(Delhaye et al., 2018; Greve et al., 2007)。典型的操作方式是利用復(fù)合詞(如, 交通?堵塞)和語義關(guān)聯(lián)詞對(如, 動(dòng)物?老鼠)。在這種情況下, 一體化利用的是已有知識結(jié)構(gòu), 更多反映了記憶鞏固的結(jié)果。相反, 自上而下的一體化則是利用特殊的編碼指導(dǎo)語, 指導(dǎo)被試將多個(gè)項(xiàng)目編碼為單一整體(Lu et al., 2020; Quamme et al., 2007)。一種典型的方式是概念定義法, 即通過給出定義(如, “一個(gè)觀看天空的園子”)來指導(dǎo)被試將兩個(gè)無關(guān)詞匯(如, “云彩?草地”)組成新的復(fù)合詞。一體化最主要的影響是改變了情景記憶的再認(rèn)過程(Tibon et al., 2018)。而新的研究表明, 以這種方式進(jìn)行編碼可能促進(jìn)了記憶的快速鞏固。

情景記憶再認(rèn)的雙過程模型(Dual-Process Model; Yonelinas, 2002)提出再認(rèn)依賴兩個(gè)獨(dú)立的過程, 即熟悉(Familiarity)和回想(Recollection)。其中, 熟悉是一種知道的感覺, 反映整體記憶痕跡的強(qiáng)度而不包含具體內(nèi)容和細(xì)節(jié), 回想則是對記憶內(nèi)容和細(xì)節(jié)的有意提?。≧ugg & Curran, 2007; Yonelinas, 2002)。熟悉與嗅周皮層的激活有關(guān)(Diana et al., 2007), 而回想主要依賴海馬(Weis etal., 2004)。一體化增加了再認(rèn)過程中熟悉的貢獻(xiàn)(Greve et al., 2007; Parks, 2013), 減小了再認(rèn)對海馬的依賴(Quamme et al., 2007)。因此, 與快速映射類似, 一體化編碼也能有效改善失憶癥病人(D’Angelo et al., 2015; Ryan et al., 2013)和老人(Ahmad et al., 2015; Zheng et al., 2016) 的記憶成績。有研究者認(rèn)為回想和熟悉在功能和結(jié)構(gòu)上分別對應(yīng)了情景記憶和語義記憶(Souza et al., 2022; Wang et al., 2018), 那么一體化對再認(rèn)過程的影響就是促進(jìn)了情景記憶到語義記憶的轉(zhuǎn)變。另外, 腦成像研究表明, 一體化編碼增強(qiáng)了圖式相關(guān)的內(nèi)側(cè)前額葉的激活(Bader et al., 2014)。因此, 有研究者提出一體化可能將原來的情景聯(lián)結(jié)轉(zhuǎn)變成了語義聯(lián)結(jié)(Tibon et al., 2018), 與鞏固過程中記憶性質(zhì)所發(fā)生的變化一致(Renoult et al., 2019; Sekeres etal., 2018)。

一體化與已有知識密切相關(guān)。自下而上的一體化直接利用了已有知識提供的關(guān)聯(lián), 而自上而下的一體化也需要與已有知識一致才能形成合理的組合概念, 否則并不能形成一體化表征, 進(jìn)而影響再認(rèn)過程(Me?mer et al., 2021, 2023)。

3.3 睡眠過程

人們早就意識到睡眠對記憶具有積極作用(Jenkins & Dallenbach, 1924)。在學(xué)習(xí)和測試之間有睡眠的情況下記憶成績明顯更好(Barrett & Ekstrand, 1972; Wagner et al., 2001)。先前有研究者認(rèn)為這是由于睡眠被動(dòng)地減少了后續(xù)信息的干擾(Wixted, 2004; Yonelinas et al., 2019)。然而, 一系列研究表明, 在新的學(xué)習(xí)之后, 僅僅一段睡眠就能使記憶產(chǎn)生與鞏固相關(guān)的變化(Dumay & Gaskell, 2007; Ellenbogen et al., 2007), 包括神經(jīng)基礎(chǔ)(Cowan et al., 2020; Gais et al., 2007)和記憶性質(zhì)(Lewis & Durrant, 2011; Tamminen et al., 2015)的改變。這也讓研究者認(rèn)為, 睡眠過程中大腦會主動(dòng)進(jìn)行記憶鞏固(Klinzing et al., 2019; P?hlchen & Sch?nauer, 2020)。

睡眠相關(guān)的腦成像研究發(fā)現(xiàn), 睡眠能促進(jìn)神經(jīng)表征從海馬向皮層轉(zhuǎn)移。多個(gè)研究表明, 在學(xué)習(xí)并經(jīng)過睡眠后, 提取睡前學(xué)習(xí)的信息時(shí)海馬激活程度降低, 而內(nèi)側(cè)前額葉的激活增強(qiáng)(Gais etal., 2007; van den Berg et al., 2022)。在最近的一項(xiàng)fMRI研究中, 研究者讓被試反復(fù)學(xué)習(xí)和提取一個(gè)詞表, 之后讓被試睡眠或保持清醒并在12小時(shí)之后進(jìn)行測試。結(jié)果兩種條件下皮層表征均得到了加強(qiáng), 但只有睡眠組在提取時(shí)海馬的激活顯著降低(Himmer et al., 2019)。另外, 編碼后睡眠會增加海馬與皮層特別是內(nèi)側(cè)前額葉之間的功能連接(Cowan et al., 2020), 這被認(rèn)為是鞏固過程中信息傳遞的重要過程(Helfrich et al., 2019; Klinzing etal., 2019)。

使用人類被試的行為研究也發(fā)現(xiàn)睡眠會促進(jìn)記憶性質(zhì)的變化。在嬰兒時(shí)期, 睡眠會促進(jìn)類屬概念的生成(Friedrich et al., 2015)。在該研究中, 研究者訓(xùn)練1歲左右的嬰兒學(xué)習(xí)人造類屬詞匯, 每個(gè)詞匯匹配一組相似的圖形。之后的測試中, 給嬰兒呈現(xiàn)這些詞匯與新圖形的配對, 并考察他們對正確和錯(cuò)誤配對的反應(yīng)。結(jié)果只有學(xué)習(xí)之后經(jīng)過睡眠的嬰兒對錯(cuò)誤配對表現(xiàn)出了反映語義沖突的N400效應(yīng)(Kutas & Federmeier, 2011), 表明他們學(xué)會了這一類屬概念對應(yīng)的圖形特征。與此類似, 在成年人中, 睡眠也會促進(jìn)對類屬概念(Schapiro et al., 2017)和隱藏規(guī)則的學(xué)習(xí)(Lerner & Gluck, 2019, 2022)。此外, 睡眠也會促進(jìn)人腦將具體的關(guān)系記憶整合為更高級的關(guān)系結(jié)構(gòu)。如Ellenbogen等人(2007)先訓(xùn)練被試記憶一組配對關(guān)系(A>B, B>C, C>D, D>E, E>F), 12小時(shí)之后, 相對無睡眠組, 睡眠組被試能更多利用關(guān)系結(jié)構(gòu)(A>B>C>D>E>F)在任意配對中做出正確選擇。最后, 睡眠也會促進(jìn)情緒記憶的泛化(Pace-Schott etal., 2015)。反過來, 也有研究表明睡眠剝奪能阻止恐懼記憶泛化(Kuriyama et al., 2010)??傊?這些研究一致表明, 睡眠能夠促進(jìn)結(jié)構(gòu)化和抽象化表征的形成。這些表征讓人能夠根據(jù)經(jīng)驗(yàn)做出預(yù)測并促進(jìn)問題解決(Paller et al., 2021; Sanders etal., 2019), 而這被認(rèn)為是記憶鞏固的意義和目的(Sun et al., 2023)。另外, 睡眠之后抽象表征的形成也伴隨著事件時(shí)間差異(Lerner & Gluck, 2022)和細(xì)節(jié)(Witkowski et al., 2021)的損失。這些變化與記憶鞏固中記憶性質(zhì)的轉(zhuǎn)變相一致(Dudai et al., 2015; Sekeres et al., 2018)。

3.4 提取

有充分的證據(jù)表明, 相對于簡單的重復(fù)學(xué)習(xí), 對學(xué)習(xí)過的內(nèi)容進(jìn)行測試具有更好的學(xué)習(xí)效果, 這一現(xiàn)象也被稱為測試效應(yīng)(Carrier & Pashler, 1992; Roediger & Abel, 2022)。對測試效應(yīng)的一種直觀解釋是從遷移恰當(dāng)加工(Transfer-Appropriate Processing; Morris et al., 1977)的角度出發(fā), 將提取和重復(fù)學(xué)習(xí)都看作是編碼, 因?yàn)樽詈蟮臏y試與提取具有更相似的加工過程, 所以這種學(xué)習(xí)方式在測試中具有優(yōu)勢。也有研究者認(rèn)為測試效應(yīng)源于提取過程難度更高, 需要投入更多的認(rèn)知資源(Bjork, 1994; Pyc & Rawson, 2009)。然而, 這些觀點(diǎn)都各有不足, 難以全面準(zhǔn)確地解釋測試對學(xué)習(xí)效果的影響(綜述見McDermott, 2021)。受記憶快速鞏固相關(guān)研究的啟發(fā), 一種新的解釋提出, 測試效應(yīng)的出現(xiàn)是由于提取促進(jìn)了記憶快速鞏固(Antony et al., 2017; Lifanov et al., 2021)。

首先, 提取會促進(jìn)記憶表征神經(jīng)基礎(chǔ)的轉(zhuǎn)移。動(dòng)物研究表明, 提取會減少記憶對海馬的依賴(Lehmann et al., 2009)。在人類被試中也發(fā)現(xiàn), 隨著提取次數(shù)增加, 海馬激活逐漸減少, 同時(shí)腹內(nèi)側(cè)前額葉和頂葉區(qū)域的激活逐漸增強(qiáng)(Ferreira et al., 2019; Himmer et al., 2019)。其次, 伴隨著神經(jīng)基礎(chǔ)的變化, 經(jīng)過反復(fù)提取, 記憶性質(zhì)也發(fā)生了改變。Ferreira等(2019)使用基于fMRI的表征相似性分析發(fā)現(xiàn), 屬于同一類屬概念(如, 動(dòng)物)的不同項(xiàng)目在經(jīng)過重復(fù)提取后, 相互之間的表征相似性增加了, 說明這些項(xiàng)目記憶表征中類屬特征增加而特異性特征減少了, 即這一記憶變得更加抽象了。使用行為范式, 其他研究也得到了提取促進(jìn)記憶表征語義化的結(jié)論(Lifanov et al., 2021; Siler & Benjamin, 2020)。這一結(jié)論也更好地解釋了先前研究中測試效應(yīng)的泛化和遷移(Butler, 2010; Karpicke & Blunt, 2011; Pan & Rickard, 2018), 如Butler (2010)在一系列實(shí)驗(yàn)中對每一個(gè)學(xué)習(xí)內(nèi)容設(shè)置了兩種不同的提問方式, 其中一個(gè)用于重學(xué)或提取練習(xí), 而另一個(gè)用于之后的測試。結(jié)果表明, 相對于重學(xué), 提取更能促進(jìn)對第二種提問的回答。這說明測試效應(yīng)并不依賴學(xué)習(xí)與測試過程的嚴(yán)格匹配, 相反, 更可能是提取過程促進(jìn)了知識的整合。最后, 相較于重學(xué), 提取對記憶的促進(jìn)更多出現(xiàn)在延遲測試條件下, 如當(dāng)提取與最后測試之間間隔數(shù)天甚至數(shù)周時(shí)(Antony & Paller, 2018; Toppino & Cohen, 2009)。而在即刻測試中, 有時(shí)重學(xué)對記憶的促進(jìn)作用反而更大(Kornell et al., 2011; Roediger & Karpicke, 2006)。一項(xiàng)元分析研究也表明, 測試效應(yīng)隨著測試間隔時(shí)間增長而增加(Rowland, 2014)。這就說明, 提取所帶來的記憶優(yōu)勢并不在編碼階段, 而是在記憶鞏固階段, 并不能簡單用難度和認(rèn)知資源的投入(Bjork, 1994; Pyc & Rawson, 2009)來解釋。

4 記憶快速鞏固的途徑

上文描述了四種記憶快速鞏固的情形, 反映了不同認(rèn)知過程或經(jīng)驗(yàn)對記憶鞏固速度的促進(jìn)。這些促進(jìn)記憶快速鞏固的方式之間也存在關(guān)聯(lián):先前學(xué)習(xí)經(jīng)驗(yàn)對記憶鞏固的促進(jìn)依賴圖式, 兩種特殊編碼方式則需要已有知識的參與, 而圖式的一個(gè)典型定義就是能促進(jìn)新信息加工的結(jié)構(gòu)化知識(Ghosh & Gilboa, 2014); 睡眠中記憶會自發(fā)地再激活(Diekelmann & Born, 2010), 而提取則是主動(dòng)復(fù)現(xiàn)先前記憶(McDermott, 2021), 兩者都與記憶的再激活有關(guān)。因此, 記憶快速鞏固可能具有兩種不同的途徑。

4.1 基于圖式的學(xué)習(xí)

作為一個(gè)在心理學(xué)中被廣泛使用的術(shù)語, 圖式缺少明確統(tǒng)一的定義, 研究者更多是從功能上來對其進(jìn)行描述, 且其含義在不同時(shí)期、不同研究領(lǐng)域也存在差異。Head和Holmes (1911)最初提出的圖式是一種能夠幫助理解新信息的認(rèn)知結(jié)構(gòu)。之后Bartlett (1932)將圖式引入記憶領(lǐng)域, 認(rèn)為提取不只是復(fù)現(xiàn)先前經(jīng)驗(yàn), 也會根據(jù)圖式來重新建構(gòu)。當(dāng)Piaget (1952)在發(fā)展心理學(xué)研究中使用這一術(shù)語時(shí), 其提出的同化(Assimilation)和順應(yīng)(Accommodation)則更強(qiáng)調(diào)圖式的動(dòng)態(tài)性和適應(yīng)性。近年來, 在考察已有知識對新學(xué)習(xí)的影響時(shí), 特別是在認(rèn)知神經(jīng)科學(xué)領(lǐng)域的相關(guān)研究中, 研究者們通常將圖式寬泛地解釋為皮層上一組相互緊密連接而常常共同激活的神經(jīng)網(wǎng)絡(luò)(Gilboa & Marlatte, 2017; van Kesteren et al., 2012)。這種寬泛的定義將不同類型的先驗(yàn)知識都?xì)w為圖式, 表明這些知識可能以一種相似的方式影響新學(xué)習(xí)。根據(jù)這一定義, 前文中描述的先前學(xué)習(xí)經(jīng)驗(yàn)和特殊編碼方式則都可以看作是基于圖式的學(xué)習(xí)。

大量研究證實(shí)內(nèi)側(cè)前額葉在圖式相關(guān)的記憶鞏固中具有重要作用(van Kesteren et al., 2012; Zheng et al., 2021)。例如, 與圖式相關(guān)聯(lián)的刺激在編碼階段(Liu et al., 2017; Sommer et al., 2022)以及之后的休息過程中(Liu et al., 2018), 都會在海馬與內(nèi)側(cè)前額葉之間誘發(fā)更強(qiáng)的功能連接。而在提取過程中, 相對于與圖式不一致的刺激, 與圖式一致的刺激會使內(nèi)側(cè)前額葉激活增強(qiáng)而海馬激活減弱(Bonasia et al., 2018; van Kesteren et al., 2010)。

圖式如何通過內(nèi)側(cè)前額葉來加速記憶鞏固呢?有研究者認(rèn)為圖式提供了一種組織支架來整合吸收新的信息(Audrain & McAndrews, 2022; Gilboa & Marlatte, 2017)。當(dāng)新信息與已有圖式相一致時(shí), 兩者在內(nèi)側(cè)前額葉區(qū)域激活的神經(jīng)表征會出現(xiàn)部分重疊(Schlichting et al., 2015; Tompary & Davachi, 2017), 使得新信息在赫布(Hebbian; Hebscher et al., 2019)學(xué)習(xí)中具有優(yōu)勢, 加速信息的整合吸收。在一項(xiàng)fMRI研究中, Audrain和McAndrews (2022)發(fā)現(xiàn)相對于物體與背景不一致的刺激, 物體與背景相一致的刺激在3天之后變得更“粗糙”, 即損失了更多細(xì)節(jié)信息。而多體素模式分析(Multi-Voxel Pattern Analysis)結(jié)果也表明, 一致的刺激在內(nèi)側(cè)前額葉激活模式上的相似性隨著時(shí)間出現(xiàn)了更顯著的增加。進(jìn)一步分析發(fā)現(xiàn), 一致刺激的表征相似性在同類背景之間大于不同類背景, 由于一類背景代表一種圖式, 就說明對這些刺激的學(xué)習(xí)可能是按照圖式提供的支架來進(jìn)行整合吸收的。

根據(jù)圖式提供的組織結(jié)構(gòu)來整合新的信息還能減少信息之間的干擾。在一項(xiàng)研究中, Wing等人(2022)考察本地鳥類愛好者與控制組被試對本地和外地鳥類圖片的記憶, 并分析這些圖片項(xiàng)目之間多個(gè)維度的相似性對再認(rèn)的影響。結(jié)果鳥類愛好者不僅對熟悉的鳥類圖片再認(rèn)成績更好, 對不熟悉的鳥類同樣也表現(xiàn)出更好的再認(rèn)成績(Wing et al., 2022)。項(xiàng)目相似性的分析則表明, 鳥類愛好者的再認(rèn)主要受分類學(xué)特征相似性的影響, 而控制組的再認(rèn)則主要受外表顏色相似性的影響。這說明圖式的存在使人能夠?qū)⒋碳ぐ凑崭嗑S度進(jìn)行組織, 減少了每個(gè)子分類中相互干擾競爭的項(xiàng)目數(shù)量。新獲得的情景記憶能夠依靠海馬的模式分離(Pattern Separation; Rolls & Kesner, 2006)來區(qū)分相似輸入。但記憶在快速鞏固過程中迅速減少了對海馬的依賴, 此時(shí)圖式可能起到了一定的替代作用。

CLS認(rèn)為記憶鞏固緩慢的一個(gè)重要原因是需要防止快速吸收不一致信息而對已有知識結(jié)構(gòu)造成嚴(yán)重破壞(Kumaran et al., 2016; McClelland etal., 1995)。而圖式的存在讓大腦能夠提前對新信息進(jìn)行檢測, 然后根據(jù)其與已有圖式的匹配程度采取不同的加工方式。van Kesteren等人(2012)提出的SLIMM (Schema-Linked Interactions between Medial Prefrontal and Medial Temporal Regions) 模型指出, 腹內(nèi)側(cè)前額葉能夠同時(shí)接收來自皮層和內(nèi)側(cè)顳葉的信息, 因此能夠檢測新的輸入與已有圖式之間的一致程度。當(dāng)信息與已有圖式不一致時(shí), 腹內(nèi)側(cè)前額葉會激活包括海馬在內(nèi)的內(nèi)側(cè)顳葉編碼系統(tǒng), 對事件的細(xì)節(jié)進(jìn)行編碼; 當(dāng)信息與已有圖式一致時(shí), 則會抑制內(nèi)側(cè)顳葉的激活并進(jìn)行直接的皮層學(xué)習(xí)(van Kesteren et al., 2010)。通過對新信息的分類加工, 大腦既能高效吸收新的信息, 又不會破壞已有知識結(jié)構(gòu)。

特殊編碼方式對記憶鞏固的促進(jìn)可能也與圖式對干擾的抑制有關(guān)。前文中提到的兩種編碼方式促進(jìn)記憶快速鞏固的證據(jù)主要來自對失憶癥病人學(xué)習(xí)的改善(Coutanche & Thompson-Schill, 2014; D’Angelo et al., 2015; Quamme et al., 2007)。而有研究者指出這類病人的學(xué)習(xí)障礙是由于海馬的缺失使他們無法處理信息之間的干擾, 從而阻礙了記憶的鞏固(Cowan et al., 2004; Dewar et al., 2009)。研究也表明, 抑制干擾是一種緩解病人學(xué)習(xí)障礙的有效途徑(Duff et al., 2020)。例如, 讓被試在學(xué)習(xí)之后獨(dú)自待在安靜黑暗的房間當(dāng)中能夠顯著縮小病人與健康被試記憶成績之間的差異(Cowan et al., 2005; Dewar et al., 2009)。快速映射和一體化編碼并沒有直接減少干擾, 但都在一定程度上利用了圖式或先前知識, 快速映射依賴同類刺激的呈現(xiàn)(Coutanche & Thompson-Schill, 2014), 而一體化編碼則利用先前知識來最大GpKzLsYIWe3q1eEvzvyLJ2TRgFMJj6yS8fIFzXk9/Mw=程度上合理化新的概念(Me?mer et al., 2023)。因此這兩種特殊編碼方式可能都利用圖式處理了信息之間的干擾, 進(jìn)而促進(jìn)了皮層學(xué)習(xí)。

4.2 重復(fù)再激活

MTT認(rèn)為記憶每一次再激活都會形成新的痕跡, 足夠多的記憶痕跡才能支持統(tǒng)計(jì)學(xué)習(xí)(Statistical Learning), 從而在皮層上形成穩(wěn)定的抽象表征(Nadel & Moscovitch, 1997)。類似地, CLS認(rèn)為皮層上參數(shù)表征的形成需要海馬提供足夠多的記憶樣本(Kumaran et al., 2016; McClelland et al., 1995)。對先前研究者來說, 這解釋了為何記憶鞏固需要大量時(shí)間, 但從記憶快速鞏固的視角來看, 這也意味著重復(fù)再激活能加速記憶鞏固。例如, 痕跡競爭理論(Competitive Trace Theory; Reagh & Yassa, 2014)認(rèn)為, 再激活是影響記憶鞏固進(jìn)程的重要因素, 每一次再激活都會形成相似的記憶痕跡, 這些痕跡的相互競爭使得重疊的部分增強(qiáng)而不同的部分削弱, 從而驅(qū)動(dòng)記憶的神經(jīng)基礎(chǔ)和性質(zhì)發(fā)生轉(zhuǎn)變。

睡眠促進(jìn)記憶快速鞏固的機(jī)制很可能是睡眠過程中記憶的重復(fù)再激活。首先, 白天的經(jīng)歷在睡眠過程中會自發(fā)地再激活。大鼠海馬中存在對特定空間位置放電的位置細(xì)胞(Place Cells; Alme et al., 2014), 而研究發(fā)現(xiàn)睡眠過程中這些位置細(xì)胞會按照白天激活的順序反復(fù)放電(Skaggs & McNaughton, 1996; Wang et al., 2020), 說明白天的經(jīng)歷會在睡眠過程中多次回放。且這種記憶回放并不是按照原來的速度進(jìn)行, 而是以20倍左右(Michelmann et al., 2019; O’Neill et al., 2010)甚至60倍(Wimmer et al., 2020)以上的速度“快進(jìn)”, 使得記憶能夠在短時(shí)間內(nèi)多次激活。海馬中記憶回放時(shí)會伴隨著尖波漣漪(Sharp-Wave Ripples)的出現(xiàn), 并通過這一信號向皮層區(qū)域傳遞信息(Nitzan et al., 2022; Skelin et al., 2021), 使海馬中的記憶回放能夠傳遞到皮層, 增強(qiáng)相關(guān)皮層神經(jīng)元之間的聯(lián)結(jié)強(qiáng)度, 進(jìn)而促進(jìn)記憶鞏固(Xue, 2022)。

其次, 睡眠過程中記憶的再激活與記憶鞏固效果直接相關(guān)。研究表明, 在睡眠過程中通過呈現(xiàn)與先前特定記憶相關(guān)聯(lián)的聲音或氣味來激活這一記憶, 即目標(biāo)記憶再激活技術(shù)(Targeted Memory Reactivation; Rasch et al., 2007), 能夠有效促進(jìn)記憶鞏固(Ngo & Staresina, 2022; Rakowska et al., 2021)。近期一項(xiàng)元分析也證實(shí)了這一結(jié)論(Hu etal., 2020)。在動(dòng)物研究中, 研究者使用侵入式手段干擾或阻礙海馬記憶回放相關(guān)的放電會損害大鼠的記憶鞏固, 顯著降低它們在記憶任務(wù)中的表現(xiàn)(Girardeau et al., 2009; Nakashiba et al., 2009)。相反, 在海馬回放階段檢測到尖波漣漪時(shí)使用相似頻率的刺激延長這種放電模式則能顯著提升大鼠在記憶任務(wù)中的表現(xiàn)(Fernández-Ruiz et al., 2019)?;谙嗨频乃悸罚?de Sousa等人(2019)讓大鼠進(jìn)行條件恐懼學(xué)習(xí)并使用光遺傳學(xué)方法標(biāo)記皮層上與之相關(guān)的神經(jīng)元, 之后在大鼠睡眠或清醒狀態(tài)下使用高頻刺激激活這些神經(jīng)元。結(jié)果只有在睡眠狀態(tài)下的刺激使新習(xí)得的恐懼記憶出現(xiàn)了鞏固相關(guān)的變化, 即海馬激活減少、皮層激活增加, 并在恐懼行為上出現(xiàn)情景泛化。

與睡眠過程中記憶回放階段類似, 研究者在記憶提取過程中也發(fā)現(xiàn)了尖波漣漪(Vaz et al., 2019)。使用顱內(nèi)腦電技術(shù), 該研究發(fā)現(xiàn)在正確回憶的試次中, 內(nèi)側(cè)顳葉區(qū)域出現(xiàn)了更強(qiáng)的短暫高頻震蕩信號, 其頻率與此前在睡眠過程中出現(xiàn)的信號高度一致(Axmacher et al., 2008; Staresina etal., 2015)。并且, 這種震蕩信號的出現(xiàn)在時(shí)間上與刺激編碼階段皮層激活模式的復(fù)現(xiàn)相耦合(Vaz et al., 2019)。這一結(jié)果說明, 提取過程包含了與睡眠階段類似的記憶再激活。由于尖波漣漪與記憶的再激活和鞏固密切相關(guān)(Fernández-Ruiz et al., 2019; Girardeau et al., 2009), 有研究者提出睡眠和提取可能具有共同的記憶鞏固機(jī)制(Staresina & Wimber, 2019)。睡眠過程中, 記憶能夠多次再激活(Brodt et al., 2023), 提取過程中也存在類似的機(jī)制來促進(jìn)記憶快速鞏固。Antony等人(2017)提出, 由于記憶提取包括檢索過程, 大量關(guān)聯(lián)的信息也被激活(Carpenter, 2011; Pyc & Rawson, 2010)。如Carpenter (2011)讓被試通過提取或重學(xué)方式學(xué)習(xí)一系列關(guān)聯(lián)詞對(如, “母親?孩子”), 在之后的再認(rèn)測試中混入未出現(xiàn)過的誘餌詞(如, “父親”), 結(jié)果相對于重學(xué)組, 提取組出現(xiàn)了更高的虛報(bào)率。這說明與目標(biāo)相關(guān)聯(lián)的信息在提取過程中也得到了一定的激活。反過來, 這些信息的激活也會擴(kuò)散到目標(biāo)記憶, 使其反復(fù)激活, 產(chǎn)生與睡眠中重復(fù)的記憶回放相似的效果, 驅(qū)動(dòng)記憶從海馬向皮層轉(zhuǎn)移(Antony et al., 2017)。后續(xù)研究也證實(shí), 測試效應(yīng)依賴目標(biāo)相關(guān)的語義網(wǎng)絡(luò)(Ferreira et al., 2019; Ferreira & Wimber, 2023), 例如, 當(dāng)記憶材料是無意義的抽象圖形時(shí), 提取并不能促進(jìn)記憶的保持(Ferreira & Wimber, 2023)。

4.3 兩種途徑之間的關(guān)系

在個(gè)體與環(huán)境的交互中, 大腦并不是被動(dòng)地接受和記錄信息。圖式和重復(fù)再激活對記憶鞏固速度的影響就為鞏固提供了自上而下的調(diào)節(jié)機(jī)制, 使其不只是從海馬到皮層的單一方向加工(Gilboa & Moscovitch, 2021)。圖式調(diào)節(jié)機(jī)制讓個(gè)體更容易學(xué)習(xí)與已有圖式相一致或關(guān)聯(lián)的信息, 使得記憶鞏固受到個(gè)體已有知識結(jié)構(gòu)的影響。類似地, 睡眠中大腦自發(fā)激活的記憶也并非隨機(jī), 而是更偏向于情緒性(Denis et al., 2022; Jones et al., 2019)以及獎(jiǎng)賞性(Asfestani et al., 2020; Sterpenich et al., 2021)的記憶, 這使得記憶鞏固速度受到個(gè)體目標(biāo)和動(dòng)機(jī)的調(diào)節(jié)因而更具有適應(yīng)價(jià)值。

雖然兩條途徑都能促進(jìn)記憶的快速鞏固, 但也存在顯著差異:圖式途徑依賴已有知識結(jié)構(gòu), 記憶鞏固的結(jié)果是對已有知識結(jié)構(gòu)的調(diào)整, 使其能夠整合吸納新的輸入; 而重復(fù)再激活則無需這一前置條件, 記憶鞏固的結(jié)果是形成一個(gè)專門容納新輸入的抽象表征。

在實(shí)際學(xué)習(xí)場景中, 兩種快速鞏固途徑并不互斥, 也能并列進(jìn)行、協(xié)同作用。首先, 在基于圖式的快速鞏固當(dāng)中, 可能也需要睡眠的配合。在Tse等人(2007)開創(chuàng)性的研究當(dāng)中, 經(jīng)過反復(fù)訓(xùn)練獲得圖式之后, 新的記憶只需要一次練習(xí)就能穩(wěn)定地存儲在皮層而不再依賴海馬。但該研究也發(fā)現(xiàn), 要快速習(xí)得新的記憶, 學(xué)習(xí)后的睡眠可能是必不可少的。當(dāng)研究者在學(xué)習(xí)之后3小時(shí)就切除大鼠海馬時(shí), 手術(shù)前只經(jīng)過一次學(xué)習(xí)的記憶就完全丟失了。由于海馬?皮層神經(jīng)元同步活動(dòng)通常出現(xiàn)在編碼后的睡眠階段(Navarrete et al., 2020; Pedrosa et al., 2022), 因此作者認(rèn)為記憶快速從海馬轉(zhuǎn)移到皮層可能也依賴睡眠過程(Tse et al., 2007)。后續(xù)研究也證實(shí), 睡眠過程中的腦活動(dòng)能夠預(yù)測圖式相關(guān)記憶的保持, 以及這些記憶對海馬的依賴程度(Hennies et al., 2016; Tamminen etal., 2010)。其次, 提取對記憶快速鞏固的促進(jìn)也與圖式有關(guān)。雖然提取過程中包含了記憶的再激活(Staresina & Wimber, 2019; Vaz et al., 2019), 但一次再激活并不足以使記憶快速鞏固, 基于圖式網(wǎng)絡(luò)的激活擴(kuò)散使得目標(biāo)記憶被重復(fù)激活, 是提取能夠促進(jìn)記憶快速鞏固的重要條件(Antony etal., 2017; Ferreira & Wimber, 2023)。

另外, 記憶鞏固的前提是先得到編碼, 更好的編碼通常伴隨著更快更好的鞏固(Herbert & Burt, 2004; Fitzroy et al., 2021)。因此, 影響記憶編碼的因素, 如注意、加工深度等可以通過影響編碼階段來間接影響記憶鞏固速度。而本文介紹的幾種情形則是直接影響記憶鞏固, 圖式和睡眠都會影響編碼后鞏固相關(guān)的腦活動(dòng)(Cowan et al., 2020; Sommer, 2017), 兩種特殊編碼方式以及提取雖然主要涉及在線加工, 但其神經(jīng)過程被認(rèn)為與離線鞏固相一致 (Antony et al., 2017; Merhav et al., 2015)。

5 未來展望

傳統(tǒng)上記憶鞏固被認(rèn)為是一個(gè)十分緩慢的過程, 不同的記憶鞏固理論均對此做出了解釋。然而新的研究發(fā)現(xiàn), 在某些情況下記憶能夠迅速鞏固。對相關(guān)證據(jù)進(jìn)行梳理并分析其內(nèi)部關(guān)聯(lián)之后, 本文總結(jié)了記憶快速鞏固的兩種, 即基于圖式的學(xué)習(xí)和重復(fù)再激活。這是對原有記憶鞏固框架的一次完善, 而要進(jìn)一步構(gòu)建一個(gè)涵蓋不同速度記憶鞏固的統(tǒng)一理論, 未來研究可以從以下方面繼續(xù)探索。

5.1 海馬在皮層學(xué)習(xí)中的作用

記憶鞏固之后就不再依賴海馬, 但經(jīng)典的記憶鞏固理論都認(rèn)為海馬在記憶鞏固過程中具有重要作用(McClelland et al., 1995; Nadel & Moscovitch, 1997)。在記憶快速鞏固的情況下, 特別是基于圖式的學(xué)習(xí)中, 研究者更強(qiáng)調(diào)直接的皮層學(xué)習(xí)(Sharon et al., 2011; van Kesteren et al., 2012)。這個(gè)過程中腹內(nèi)側(cè)前額葉受到了更多的重視(Giuliano et al., 2021;van Kesteren et al., 2010, 2012), 而海馬在其中的作用卻并不明確。在一項(xiàng)研究中, 研究者使用正常順序和順序被打亂的電影片段來操作圖式, 結(jié)果發(fā)現(xiàn)以正常順序觀看前半部分電影的被試在編碼后續(xù)情節(jié)時(shí)腹內(nèi)側(cè)前額葉與皮層區(qū)域的功能連接更強(qiáng), 而與海馬功能連接更弱(van Kesteren et al., 2010), 且這種差異在編碼后的靜息狀態(tài)持續(xù)存在。這似乎說明圖式減少了學(xué)習(xí)對海馬的依賴, 甚至SLIMM模型認(rèn)為, 當(dāng)新的學(xué)習(xí)與已有圖式相一致時(shí), 能夠越過海馬進(jìn)行直接的皮層學(xué)習(xí)(van Kesteren et al., 2012)。

SLIMM模型獲得了一些研究的支持, 如有研究證實(shí)與圖式一致和沖突都會促進(jìn)記憶, 且基于不同的機(jī)制, 分別對應(yīng)皮層語義學(xué)習(xí)與海馬情景學(xué)習(xí)(Greve et al., 2019)。但基于圖式的學(xué)習(xí)是否依賴海馬, 后續(xù)研究則得出了不同結(jié)果。為了避免van Kesteren等(2010)所使用的自然圖式可能存在的個(gè)體差異, 后續(xù)研究者在實(shí)驗(yàn)中訓(xùn)練被試形成新的人工圖式, 然后再考察這些圖式對后續(xù)學(xué)習(xí)的影響。結(jié)果發(fā)現(xiàn)圖式會促進(jìn)腹內(nèi)側(cè)前額葉與海馬的協(xié)同激活(Liu et al., 2017; Sommer, 2017; Sommer et al., 2022)。因此另一種觀點(diǎn)認(rèn)為, 皮層學(xué)習(xí)也需要海馬的參與, 腹內(nèi)側(cè)前額葉的作用則是處理信息沖突, 通過提取皮層相關(guān)信息來整合新的海馬輸入(Eichenbaum, 2017; Preston & Eichenbaum, 2013)。除此之外, 一種折中的觀點(diǎn)認(rèn)為海馬不同部位在基于圖式的學(xué)習(xí)中具有不同作用(Guo et al., 2023; Guo & Yang, 2020)。在兩項(xiàng)最近的研究中, 提取階段(Guo et al., 2023)的激活以及編碼后的腦功能連接(Guo & Yang, 2020)都顯示出海馬前部與后部的功能差異, 海馬前部更多參與圖式一致信息的學(xué)習(xí), 而海馬后部則與圖式不一致信息的學(xué)習(xí)關(guān)系更加密切。

關(guān)于海馬的爭議也體現(xiàn)在對失憶癥病人的研究當(dāng)中。一方面, 病人在某些情況下也能習(xí)得新的語義記憶, 說明大腦中存在不依賴海馬的學(xué)習(xí)機(jī)制(Merhav et al., 2014)。但另一方面, 即使在有利的編碼和測試條件下, 他們的學(xué)習(xí)效率也難以達(dá)到健康被試的水平(綜述見Duff et al., 2020), 或者達(dá)到了這一水平(Sharon et al., 2011)卻難以重復(fù)(Cooper et al., 2019)。鞏固是記憶對海馬依賴程度逐漸降低的過程, 而鞏固速度也許就取決于記憶獲得過程中海馬的參與程度。

5.2 記憶快速鞏固中的干擾抑制

在分析圖式和特殊編碼方式促進(jìn)記憶快速鞏固的過程中, 我們描述了圖式對干擾的抑制, 即過濾信息以及提供組織架構(gòu)來對信息進(jìn)行分類。而在睡眠和提取過程中, 也同樣包含對干擾的抑制。睡眠在促進(jìn)記憶保持的同時(shí), 還具有另一個(gè)重要功能, 即遺忘瑣碎信息(Poe, 2017)。根據(jù)突觸穩(wěn)態(tài)假說(Synaptic Homeostasis Hypothesis; Tononi & Cirelli, 2014), 清醒狀態(tài)時(shí)隨著信息不斷輸入, 大腦整體突觸聯(lián)結(jié)強(qiáng)度逐漸增加, 而在睡眠過程中, 突觸聯(lián)結(jié)強(qiáng)度逐漸降低并恢復(fù)至基線水平, 以避免聯(lián)結(jié)飽和, 同時(shí)節(jié)省資源。于是, 睡眠過程中的記憶回放是在整體突觸聯(lián)結(jié)強(qiáng)度降低的情況下對局部突觸聯(lián)結(jié)的增強(qiáng)(De Vivo et al., 2017; Li et al., 2017)。這有效提高了目標(biāo)記憶表征的信噪比(González-Rueda et al., 2018; Tononi & Cirelli, 2014)。

類似的機(jī)制也存在于提取過程當(dāng)中(Antony et al., 2017)。提取不僅能促進(jìn)記憶保持, 同時(shí)也會誘發(fā)遺忘, 即提取目標(biāo)記憶會抑制與其具有競爭關(guān)系的其他記憶痕跡(Anderson et al., 1994; Wimber et al., 2015)。由于記憶提取通常并不精準(zhǔn), 檢索過程中會同時(shí)激活大量相關(guān)聯(lián)的信息(Carpenter, 2011; Pyc & Rawson, 2010)。而在這樣一個(gè)激活擴(kuò)散模型(Norman et al., 2007)中, 不同激活強(qiáng)度的信息會導(dǎo)致截然相反的結(jié)果。高度激活的信息得到進(jìn)一步強(qiáng)化而被整合進(jìn)以線索為中心的激活網(wǎng)絡(luò); 而中等強(qiáng)度激活的信息則被削弱, 從而遠(yuǎn)離網(wǎng)絡(luò)中心(Norman et al., 2007; Ritvo et al., 2019)。這就導(dǎo)致在提取過程中原本具有更高激活強(qiáng)度的目標(biāo)記憶得到進(jìn)一步增強(qiáng), 而激活較弱的干擾信息被進(jìn)一步削弱。

不同的記憶快速鞏固情形中都包含了對干擾的處理, 說明抑制干擾可能是記憶快速鞏固的必要條件。而這也許是提取與重復(fù)學(xué)習(xí)對記憶影響存在差異的另一重要原因。對于遺忘, 一直存在消退和干擾兩種解釋(Altmann & Gray, 2002)。各種鞏固理論更多描述的是記憶如何對抗消退, 但也有新的觀點(diǎn)認(rèn)為記憶能夠保留的關(guān)鍵是處理干擾(Yonelinas et al., 2019)。未來的鞏固研究中, 應(yīng)該更加重視干擾抑制與記憶鞏固速度之間的關(guān)系。

5.3 記憶快速鞏固的兩面性

目前, 研究者普遍認(rèn)同鞏固過程中包含了記憶性質(zhì)從情景記憶到語義記憶的連續(xù)變化(Dudai et al., 2015; Sekeres et al., 2018), 即細(xì)節(jié)特征逐漸丟失, 而圖式則從共同特征中抽象出來。但在情景?語義連續(xù)維度上, 處于不同位置的記憶在人適應(yīng)外界復(fù)雜多樣的環(huán)境時(shí)都具有各自獨(dú)特的作用。因此, 促進(jìn)記憶快速鞏固的學(xué)習(xí)方式一方面促進(jìn)了記憶的存儲, 另一方面也存在著一些“副作用”。

首先, 已有知識或圖式能夠促進(jìn)記憶快速鞏固的同時(shí)也容易導(dǎo)致錯(cuò)誤記憶的形成(van Kesteren & Meeter, 2020)。如在Deese-Roediger- McDermott (DRM)范式中, 研究者讓被試學(xué)習(xí)多個(gè)與未呈現(xiàn)的目標(biāo)詞(如“寒冷”)相關(guān)聯(lián)的項(xiàng)目(如“冬天”、“冰雪”、“北極”等)。結(jié)果在之后的記憶測試中, 被試將目標(biāo)詞再認(rèn)為舊詞的概率接近那些實(shí)際呈現(xiàn)過的項(xiàng)目(Roediger & McDermott, 1995)。這種錯(cuò)誤記憶的發(fā)生與圖式密切相關(guān), 腹內(nèi)側(cè)前額葉受損(Warren et al., 2014)或者使用經(jīng)顱磁刺激干擾該部位(Berkers et al., 2017)都會顯著減少錯(cuò)誤記憶的發(fā)生。其次, 提取對記憶的影響具有兩面性(Roediger & Abel, 2022)。除了前文提到的提取誘發(fā)遺忘(Anderson et al., 1994; Wimber et al., 2015), 提取已經(jīng)鞏固的記憶還會使該記憶變得不穩(wěn)定而需要再次鞏固, 即記憶再鞏固(Reconsolidation; Kim et al., 2021; McKenzie & Eichenbaum, 2011)。此時(shí)若遭遇錯(cuò)誤信息, 先前記憶就容易被更改, 例如提取使目擊者記憶更容易受到錯(cuò)誤信息的影響(Chan et al., 2009; Gordon etal., 2020)。

對記憶快速鞏固兩面性更清晰的認(rèn)識, 讓我們能夠從適應(yīng)環(huán)境的視角來看待記憶鞏固的快與慢, 更好地理解記憶鞏固的意義和目的(Sun et al., 2023)。而在實(shí)踐中, 也有助于避免甚至利用某些副作用來實(shí)現(xiàn)更好的目的。例如記憶再鞏固的特點(diǎn)已被研究者用來干擾已經(jīng)鞏固的痛苦記憶(Galarza Vallejo et al., 2019)和治療成癮行為(Milton & Everitt, 2010)。

參考文獻(xiàn)

杜建政, 楊治良. (2002). 隨機(jī)棋局存在專家記憶優(yōu)勢效應(yīng)嗎? 心理學(xué)報(bào), 34(3), 34?38.

Ahmad, F. N., Fernandes, M., & Hockley, W. E. (2015). Improving associative memory in older adults with unitization. Aging, Neuropsychology, and Cognition, 22(4), 452?472.

Alam, T. R. G., Krieger-Redwood, K., Evans, M., Rice, G. E., Smallwood, J., & Jefferies, E. (2021). Intrinsic connectivity of anterior temporal lobe relates to individual differences in semantic retrieval for landmarks. Cortex, 134, 76?91.

Alme, C. B., Miao, C., Jezek, K., Treves, A., Moser, E. I., & Moser, M. B. (2014). Place cells in the hippocampus: Eleven maps for eleven rooms. Proceedings of the National Academy of Sciences, 111(52), 18428?18435.

Altmann, E. M., & Gray, W. D. (2002). Forgetting to remember: The functional relationship of decay and interference. Psychological Science, 13(1), 27?33.

Anagnostaras, S. G., Maren, S., & Fanselow, M. S. (1999). Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: Within-subjects examination. Journal of Neuroscience, 19(3), 1106?1114.

Anderson, M. C., Bjork, R. A., & Bjork, E. L. (1994). Remembering can cause forgetting: Retrieval dynamics in long-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(5), 1063?1087.

Antony, J. W., Ferreira, C. S., Norman, K. A., & Wimber, M. (2017). Retrieval as a fast route to memory consolidation. Trends in Cognitive Sciences, 21(8), 573?576.

Antony, J. W., & Paller, K. A. (2018). Retrieval and sleep both counteract the forgetting of spatial information. Learning & Memory, 25(6), 258?263.

Asfestani, M. A., Brechtmann, V., Santiago, J., Peter, A., Born, J., & Feld, G. B. (2020). Consolidation of reward memory during sleep does not require dopaminergic activation. Journal of Cognitive Neuroscience, 32(9), 1688? 1703.

Audrain, S., Gilmore, A. W., Wilson, J. M., Schacter, D. L., & Martin, A. (2022). A role for the anterior hippocampus in autobiographical memory construction regardless of temporal distance. Journal of Neuroscience, 42(33), 6445? 6452.

Audrain, S., & McAndrews, M. P. (2022). Schemas provide a scaffold for neocortical integration of new memories over time. Nature Communications, 13(1), 5795.

Axmacher, N., Elger, C. E., & Fell, J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain, 131(7), 1806?1817.

Bader, R., Opitz, B., Reith, W., & Mecklinger, A. (2014). Is a novel conceptual unit more than the sum of its parts?: FMRI evidence from an associative recognition memory study. Neuropsychologia, 61(1), 123?134.

Barrett, T. R., & Ekstrand, B. R. (1972). Effect of sleep on memory: III. Controlling for time-of-day effects. Journal of Experimental Psychology, 96(2), 321?327.

Bartlett, F. C. (1932). Remembering: A study in Experimental and Social Psychology. Cambridge: Cambridge University Press.

Bayley, P. J., Hopkins, R. O., & Squire, L. R. (2006). The fate of old memories after medial temporal lobe damage. Journal of Neuroscience, 26(51), 13311?13317.

Berkers, R. M., van Der Linden, M., De Almeida, R. F., Müller, N. C., Bovy, L., Dresler, M., ... Fernández, G. (2017). Transient medial prefrontal perturbation reduces false memory formation. Cortex, 88, 42?52.

Bernstein, L. J., Beig, S., Siegenthaler, A. L., & Grady, C. L. (2002). The effect of encoding strategy on the neural correlates of memory for faces. Neuropsychologia, 40(1), 86?98.

Bilali?, M., McLeod, P., & Gobet, F. (2009). Specialization effect and its influence on memory and problem solving in expert chess players. Cognitive Science, 33(6), 1117?1143.

Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 185?205). MIT Press.

Bloom, P., & Markson, L. (1998). Capacities underlying word learning. Trends in Cognitive Sciences, 2(2), 67?73.

Bonasia, K., Sekeres, M. J., Gilboa, A., Grady, C. L., Winocur, G., & Moscovitch, M. (2018). Prior knowledge modulates the neural substrates of encoding and retrieving naturalistic events at short and long delays. Neurobiology of Learning and Memory, 153, 26?39.

Bonnici, H. M., & Maguire, E. A. (2018). Two years later-Revisiting autobiographical memory representations in vmPFC and hippocampus. Neuropsychologia, 110, 159?169.

Bright, P., Buckman, J., Fradera, A., Yoshimasu, H., Colchester, A. C., & Kopelman, M. D. (2006). Retrograde amnesia in patients with hippocampal, medial temporal, temporal lobe, or frontal pathology. Learning & Memory, 13(5), 545?557.

Brodt, S., Inostroza, M., Niethard, N., & Born, J. (2023). Sleep—A brain-state serving systems memory consolidation. Neuron, 111(7), 1050?1075.

Butler, A. C. (2010). Repeated testing produces superior transfer of learning relative to repeated studying. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(5), 1118?1133.

Carpenter, S. K. (2011). Semantic information activated during retrieval contributes to later retention: Support for the mediator effectiveness hypothesis of the testing effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(6), 1547?1552.

Carrier, M., & Pashler, H. (1992). The influence of retrieval on retention. Memory & Cognition, 20(6), 633?642.

Chan, J. C. K., Thomas, A. K., & Bulevich, J. B. (2009). Recalling a witnessed event increases eyewitness suggestibility: The reversed testing effect. Psychological Science, 20(1), 66?73.

Clark, R. E., Broadbent, N. J., & Squire, L. R. (2005). Impaired remote spatial memory after hippocampal lesions despite extensive training beginning early in life. Hippocampus, 15(3), 340?346.

Cooper, E., Greve, A., & Henson, R. N. (2019). Little evidence for Fast Mapping (FM) in adults: A review and discussion. Cognitive Neuroscience, 10(4), 196?209.

Coutanche, M. N., & Thompson-Schill, S. L. (2014). Fast mapping rapidly integrates information into existing memory networks. Journal of Experimental Psychology: General, 143(6), 2296?2303.

Cowan, E., Liu, A., Henin, S., Kothare, S., Devinsky, O., & Davachi, L. (2020). Sleep spindles promote the restructuring of memory representations in ventromedial prefrontal cortex through enhanced hippocampal-cortical functional connectivity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(9), 1909?1919.

Cowan, N., Beschin, N., & Della Sala, S. (2004). Verbal recall in amnesiacs under conditions of diminished retroactive interference. Brain, 127(4), 825?834.

Cowan, N., Beschin, N., Perini, M., & Della Sala, S. (2005). Just lying there, remembering: Improving recall of prose in amnesic patients with mild cognitive impairment by minimising interference. Memory, 13(3?4), 435?440.

Craik, F. I. M. (2002). Levels of processing: Past, present ... and future? Memory, 10(5?6), 305?318.

D’Angelo, M. C., Kacollja, A., Rabin, J. S., Rosenbaum, R. S., & Ryan, J. D. (2015). Unitization supports lasting performance and generalization on a relational memory task: Evidence from a previously undocumented developmental amnesic case. Neuropsychologia, 77, 185? 200.

de Sousa, A. F., Cowansage, K. K., Zutshi, I., Cardozo, L. M., Yoo, E. J., Leutgeb, S., & Mayford, M. (2019). Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proceedings of the National Academy of Sciences, 116(17), 8576?8581.

De Vivo, L., Bellesi, M., Marshall, W., Bushong, E. A., Ellisman, M. H., Tononi, G., & Cirelli, C. (2017). Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science, 355(6324), 507?510.

Delhaye, E., Tibon, R., Gronau, N., Levy, D. A., & Bastin, C. (2018). Misrecollection prevents older adults from benefitting from semantic relatedness of the memoranda in associative memory. Aging, Neuropsychology, and Cognition, 25(5), 634?654.

Denis, D., Kim, S. Y., Kark, S. M., Daley, R. T., Kensinger, E. A., & Payne, J. D. (2022). Slow oscillation‐spindle coupling is negatively associated with emotional memory formation following stress. European Journal of Neuroscience, 55(9?10), 2632?2650.

Dewar, M., Garcia, Y. F., Cowan, N., & Sala, S. D. (2009). Delaying interference enhances memory consolidation in amnesic patients. Neuropsychology, 23(5), 627?634.

Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11(9), 379?386.

Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114?126.

Dudai, Y. (2012). The restless engram: Consolidations never end. Annual Review of Neuroscience, 35, 227?247.

Dudai, Y., Karni, A., & Born, J. (2015). The consolidation and transformation of memory. Neuron, 88(1), 20?32.

Duff, M. C., Covington, N. V., Hilverman, C., & Cohen, N. J. (2020). Semantic memory and the hippocampus: Revisiting, reaffirming, and extending the reach of their critical relationship. Frontiers in Human Neuroscience, 13, 471.

Dumay, N., & Gaskell, M. G. (2007). Sleep-associated changes in the mental representation of spoken words. Psychological Science, 18(1), 35?39.

Eichenbaum, H. (2017). On the integration of space, time, and memory. Neuron, 95(5), 1007?1018.

Ellenbogen, J. M., Hu, P. T., Payne, J. D., Titone, D., & Walker, M. P. (2007). Human relational memory requires time and sleep. Proceedings of the National Academy of Sciences, 104(18), 7723?7728.

Elward, R. L., Dzieciol, A. M., & Vargha-Khadem, F. (2019). Little evidence for fast mapping in adults with developmental amnesia. Cognitive Neuroscience, 10(4), 215?217.

Fernández-Ruiz, A., Oliva, A., Fermino de Oliveira, E., Rocha-Almeida, F., Tingley, D., & Buzsáki, G. (2019). Long-duration hippocampal sharp wave ripples improve memory. Science, 364(6445), 1082?1086.

Ferreira, C. S., Charest, I., & Wimber, M. (2019). Retrieval aids the creation of a generalised memory trace and strengthens episode-unique information. NeuroImage, 201, 115996.

Ferreira, C. S., & Wimber, M. (2023). The testing effect for visual materials depends on preexisting knowledge. Journal of ExperimentaVPzAYkh01PjJXyeRxGTmSQ==l Psychology: Learning, Memory, and Cognition, 49(10), 1557?1571.

Fitzroy, A. B., Kainec, K. A., Seo, J., & Spencer, R. M. C. (2021). Encoding and consolidation of motor sequence learning in young and older adults. Neurobiology of Learning and Memory, 185, 107508.

Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nature Reviews Neuroscience, 6(2), 119?130.

Friedrich, M., Wilhelm, I., Born, J., & Friederici, A. D. (2015). Generalization of word meanings during infant sleep. Nature Communications, 6(1), 6004.

Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M., ... Peigneux, P. (2007). Sleep transforms the cerebral trace of declarative memories. Proceedings of the National Academy of Sciences, 104(47), 18778?18783.

Galarza Vallejo, A., Kroes, M. C., Rey, E., Acedo, M. V., Moratti, S., Fernández, G., & Strange, B. A. (2019). Propofol-induced deep sedation reduces emotional episodic memory reconsolidation in humans. Science Advances, 5(3), eaav3801.

Ghosh, V. E., & Gilboa, A. (2014). What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia, 53, 104?114.

Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618?631.

Gilboa, A., & Moscovitch, M. (2021). No consolidation without representation: Correspondence between neural and psychological representations in recent and remote memory. Neuron, 109(14), 2239?2255.

Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G., & Zugaro, M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12(10), 1222?1223.

Gisquet-Verrier, P., & Riccio, D. C. (2019). Memory integration as a challenge to the consolidation/ reconsolidation hypothesis: Similarities, differences and perspectives. Frontiers in Systems Neuroscience, 12, 71.

Giuliano, A. E., Bonasia, K., Ghosh, V. E., Moscovitch, M., & Gilboa, A. (2021). Differential influence of ventromedial prefrontal cortex lesions on neural representations of schema and semantic category knowledge. Journal of Cognitive Neuroscience, 33(9), 1928?1955.

González-Rueda, A., Pedrosa, V., Feord, R. C., Clopath, C., & Paulsen, O. (2018). Activity-dependent downscaling of subthreshold synaptic inputs during slow-wave-sleep-like activity in vivo. Neuron, 97(6), 1244?1252.

Gordon, L. T., Bilolikar, V. K., Hodhod, T., & Thomas, A. K. (2020). How prior testing impacts misinformation processing: A dual-task approach. Memory & Cognition, 48(2), 314? 324.

Graf, P., & Schacter, D. L. (1989). Unitization and grouping mediate dissociations in memory for new associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(5), 930?940.

Greve, A., Cooper, E., & Henson, R. N. (2014). No evidence that ‘fast-mapping’ benefits novel learning in healthy older adults. Neuropsychologia, 60, 52?59.

Greve, A., Cooper, E., Tibon, R., & Henson, R. N. (2019). Knowledge is power: Prior knowledge aids memory for both congruent and incongruent events, but in different ways. Journal of Experimental Psychology: General, 148(2), 325?341.

Greve, A., van Rossum, M. C., & Donaldson, D. I. (2007). Investigating the functional interaction between semantic and episodic memory: Convergent behavioral and electrophysiological evidence for the role of familiarity. Neuroimage, 34(2), 801?814.

Guo, D., Chen, G., & Yang, J. (2023). Effects of schema on the relationship between post-encoding brain connectivity and subsequent durable memory. Scientific Reports, 13(1), 8736.

Guo, D., & Yang, J. (2020). Interplay of the long axis of the hippocampus and ventromedial prefrontal cortex in schema‐related memory retrieval. Hippocampus, 30(3), 263?277.

Halberda, J. (2006). Is this a dax which I see before me? Use of the logical argument disjunctive syllogism supports word-learning in children and adults. Cognitive Psychology, 53(4), 310?344.

Hardt, O., Einarsson, E. ?., & Nader, K. (2010). A bridge over troubled water: Reconsolidation as a link between cognitive and neuroscientific memory research traditions. Annual Review of Psychology, 61, 141?167.

Head, B. Y. H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34(2), 103?254.

Hebscher, M., Wing, E., Ryan, J., & Gilboa, A. (2019). Rapid cortical plasticity supports long-term memory formation. Trends in Cognitive Sciences, 23(12), 989?1002.

Helfrich, R. F., Lendner, J. D., Mander, B. A., Guillen, H., Paff, M., Mnatsakanyan, L., ... Knight, R. T. (2019). Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nature Communications, 10(1), 3572.

Hennies, N., Ralph, M. A. L., Kempkes, M., Cousins, J. N., & Lewis, P. A. (2016). Sleep spindle density predicts the effect of prior knowledge on memory consolidation. Journal of Neuroscience, 36(13), 3799?3810.

Herbert, D. M., & Burt, J. S. (2004). What do students remember? Episodic memory and the development of schematization. Applied Cognitive Psychology, 18(1), 77?88.

Himmer, L., Sch?nauer, M., Heib, D. P. J., Schabus, M., & Gais, S. (2019). Rehearsal initiates systems memory consolidation, sleep makes it last. Science Advances, 5(4), eaav1695.

Hu, X., Cheng, L. Y., Chiu, M. H., & Paller, K. A. (2020). Promoting memory consolidation during sleep: A meta-analysis of targeted memory reactivation. Psychological Bulletin, 146(3), 218?244.

Jenkins, J. G., & Dallenbach, K. M. (1924). Obliviscence during sleep and waking. The American Journal of Psychology, 35(4), 605?612.

Jones, B. J., Fitzroy, A. B., & Spencer, R. M. (2019). Emotional memory moderates the relationship between sigma activity and sleep-related improvement in affect. Frontiers in Psychology, 10, 500.

Karlsson, M. P., & Frank, L. M. (2008). Network dynamics underlying the formation of sparse, informative representations in the hippocampus. Journal of Neuroscience, 28(52), 14271?14281.

Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331(6018), 772?775.

Kim, G., Kwon, M., Kang, W., & Lee, S. H. (2021). Is reconsolidation a general property of memory? Frontiers in Human Neuroscience, 15, 643106.

Klinzing, J. G., Niethard, N., & Born, J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22(10), 1598?1610.

Kornell, N., Bjork, R. A., & Garcia, M. A. (2011). Why tests appear to prevent forgetting: A distribution-based bifurcation model. Journal of Memory and Language, 65(2), 85?97.

Kumaran, D., Hassabis, D., & McClelland, J. L. (2016). What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends in Cognitive Sciences, 20(7), 512?534.

Kuriyama, K., Soshi, T., & Kim, Y. (2010). Sleep deprivation facilitates extinction of implicit fear generalization and physiological response to fear. Biological Psychiatry, 68(11), 991?998.

Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62(1), 621?647.

Lambon Ralph, M. A., Ehsan, S., Baker, G. A., & Rogers, T. T. (2012). Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. Brain, 135(1), 242?258.

Lehmann, H., Sparks, F. T., Spanswick, S. C., Hadikin, C., McDonald, R. J., & Sutherland, R. J. (2009). Making context memories independent of the hippocampus. Learning & Memory, 16(7), 417?420.

Lerner, I., & Gluck, M. A. (2019). Sleep and the extraction of hidden regularities: A systematic review and the importance of temporal rules. Sleep Medicine Reviews, 47, 39?50.

Lerner, I., & Gluck, M. A. (2022). Sleep facilitates extraction of temporal regularities with varying timescales. Frontiers in Behavioral Neuroscience, 16, 847083.

Lewis, P. A., & Durrant, S. J. (2011). Overlapping memory replay during sleep builds cognitive schemata. Trends in Cognitive Sciences, 15(8), 343?351.

Li, W., Ma, L., Yang, G., & Gan, W.-B. (2017). REM sleep selectively prunes and maintains new synapses in development and learning. Nature Neuroscience, 20(3), 427?437.

Lifanov, J., Linde-Domingo, J., & Wimber, M. (2021). Feature-specific reaction times reveal a semanticisation of memories over time and with repeated remembering. Nature Communications, 12(1), 3177.

Liu, Z.-X., Grady, C., & Moscovitch, M. (2017). Effects of prior-knowledge on brain activation and connectivity during associative memory encoding. Cerebral Cortex, 27(3), 1991?2009.

Liu, Z.-X., Grady, C., & Moscovitch, M. (2018). The effect of prior knowledge on post-encoding brain connectivity and its relation to subsequent memory. NeuroImage, 167, 211?223.

Lu, B., Liu, Z., Wang, Y., & Guo, C. (2020). The different effects of concept definition and interactive imagery encoding on associative recognition for word and picture stimuli. International Journal of Psychophysiology, 158, 178?189.

Mankin, E. A., Sparks, F. T., Slayyeh, B., Sutherland, R. J., Leutgeb, S., & Leutgeb, J. K. (2012). Neuronal code for extended time in the hippocampus. Proceedings of the National Academy of Sciences, 109(47), 19462?19467.

Manns, J. R., Hopkins, R. O., & Squire, L. R. (2003). Semantic memory and the human hippocampus. Neuron, 38(1), 127?133.

McClelland, J. L. (2013). Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory. Journal of Experimental Psychology: General, 142(4), 1190?1210.

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419?457.

McDermott, K. B. (2021). Practicing retrieval facilitates learning. Annual Review of Psychology, 72(1), 609?633.

McKenzie, S., & Eichenbaum, H. (2011). Consolidation and reconsolidation: Two lives of memories? Neuron, 71(2), 224?233.

Me?mer, J. A., Bader, R., & Mecklinger, A. (2021). The more you know: Schema-congruency supports associative encoding of novel compound words. Evidence from event- related potentials. Brain and Cognition, 155, 105813.

Me?mer, J. A., Bader, R., & Mecklinger, A. (2023). Schema-congruency supports the formation of unitized representations: Evidence from event-related potentials. Neuropsychologia, 194, 108782.

Merhav, M., Karni, A., & Gilboa, A. (2014). Neocortical catastrophic interference in healthy and amnesic adults: A paradoxical matter of time. Hippocampus, 24(12), 1653? 1662.

Merhav, M., Karni, A., & Gilboa, A. (2015). Not all declarative memories are created equal: Fast Mapping as a direct route to cortical declarative representations. NeuroImage, 117, 80?92.

Michelmann, S., Staresina, B. P., Bowman, H., & Hanslmayr, S. (2019). Speed of time-compressed forward replay flexibly changes in human episodic memory. Nature Human Behaviour, 3(2), 143?154.

Miller, T. D., Chong, T. T., Aimola Davies, A. M., Johnson, M. R., Irani, S. R., Husain, M., ... Rosenthal, C. R. (2020). Human hippocampal CA3 damage disrupts both recent and remote episodic memories. elife, 9, e41836.

Milton, A. L., & Everitt, B. J. (2010). The psychological and neurochemical mechanisms of drug memory reconsolidation: Implications for the treatment of addiction. European Journal of Neuroscience, 31(12), 2308?2319.

Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate processing. Journal of Verbal Learning and Verbal Behavior, 16(5), 519?533.

Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7(2), 217?227.

Nakashiba, T., Buhl, D. L., McHugh, T. J., & Tonegawa, S. (2009). Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron, 62(6), 781?787.

Navarrete, M., Valderrama, M., & Lewis, P. A. (2020). The role of slow-wave sleep rhythms in the cortical-hippocampal loop for memory consolidation. Current Opinion in Behavioral Sciences, 32, 102?110.

Ngo, H.-V. V., & Staresina, B. P. (2022). Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proceedings of the National Academy of Sciences, 119(44), e2123428119.

Nitzan, N., Swanson, R., Schmitz, D., & Buzsáki, G. (2022). Brain-wide interactions during hippocampal sharp wave ripples. Proceedings of the National Academy of Sciences, 119(20), e2200931119.

Norman, K. A., Newman, E. L., & Detre, G. (2007). A neural network model of retrieval-induced forgetting. Psychological Review, 114(4), 887?953.

O’Connor, R. J., & Riggs, K. J. (2019). Adult fast-mapping memory research is based on a misinterpretation of developmental-word-learning data. Current Directions in Psychological Science, 28(6), 528?533.

O’Neill, J., Pleydell-Bouverie, B., Dupret, D., & Csicsvari, J. (2010). Play it again: Reactivation of waking experience and memory. Trends in Neurosciences, 33(5), 220?229.

Pace-Schott, E. F., Germain, A., & Milad, M. R. (2015). Effects of sleep on memory for conditioned fear and fear extinction. Psychological Bulletin, 141(4), 835?857.

Paller, K. A., Creery, J. D., & Schechtman, E. (2021). Memory and sleep: How sleep cognition can change the waking mind for the better. Annual Review of Psychology, 72, 123?150.

Pan, S. C., & Rickard, T. C. (2018). Transfer of test- enhanced learning: Meta-analytic review and synthesis. Psychological Bulletin, 144(7), 710?756.

Parks, C. M. (2013). Transfer-appropriate processing in recognition memory: Perceptual and conceptual effects on recognition memory depend on task demands. Journal of Experimental Psychology: Learning Memory and Cognition, 39(4), 1280?1286.

Pedrosa, R., Nazari, M., Mohajerani, M. H., Kn?pfel, T., Stella, F., & Battaglia, F. P. (2022). Hippocampal gamma and sharp wave/ripples mediate bidirectional interactions with cortical networks during sleep. Proceedings of the National Academy of Sciences, 119(44), e2204959119.

Penfield, W., & Milner, B. (1958). Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Archives of Neurology & Psychiatry, 79(5), 475?497.

Piaget, J. (1952). The origins of intelligence in children. New York: International Universities Press.

Poe, G. R. (2017). Sleep is for forgetting. Journal of Neuroscience, 37(3), 464?473.

P?hlchen, D., & Sch?nauer, M. (2020). Sleep-dependent memory consolidation in the light of rapid neocortical plasticity. Current Opinion in Behavioral Sciences, 33, 118?125.

Preston, A. R., & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23(17), R764?R773.

Pyc, M. A., & Rawson, K. A. (2009). Testing the retrieval effort hypothesis: Does greater difficulty correctly recalling information lead to higher levels of memory? Journal of Memory and Language, 60(4), 437?447.

Pyc, M. A., & Rawson, K. A. (2010). Why testing improves memory: Mediator effectiveness hypothesis. Science, 330(6002), 335?335.

Quamme, J. R., Yonelinas, A. P., & Norman, K. A. (2007). Effect of unitization on associative recognition in amnesia. Hippocampus, 17(3), 192?200.

Rakowska, M., Abdellahi, M. E. A., Bagrowska, P., Navarrete, M., & Lewis, P. A. (2021). Long term effects of cueing procedural memory reactivation during NREM sleep. NeuroImage, 244, 118573.

Rasch, B., Büchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 1426?1429.

Reagh, Z. M., & Yassa, M. A. (2014). Repetition strengthens target recognition but impairs similar lure discrimination: Evidence for trace competition. Learning & Memory, 21(7), 342?346.

Renoult, L., Irish, M., Moscovitch, M., & Rugg, M. D. (2019). From knowing to remembering: The semantic- episodic distinction. Trends in Cognitive Sciences, 23(12), 1041?1057.

Ritvo, V. J. H., Turk-Browne, N. B., & Norman, K. A. (2019). Nonmonotonic plasticity: How memory retrieval drives learning. Trends in Cognitive Sciences, 23(9), 726?742.

Robin, J., & Moscovitch, M. (2017). Details, gist and schema: Hippocampal-neocortical interactions underlying recent and remote episodic and spatial memory. Current Opinion in Behavioral Sciences, 17, 114?123.

Roediger III, H. L., & Abel, M. (2022). The double-edged sword of memory retrieval. Nature Reviews Psychology, 1(12), 708?720.

Roediger, H. L., & Karpicke, J. D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological Science, 17(3), 249?255.

Roediger, H. L., & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4), 803?814.

Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79(1), 1?48.

Rowland, C. A. (2014). The effect of testing versus restudy on retention: A meta-analytic review of the testing effect. Psychological Bulletin, 140(6), 1432?1463.

Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11(6), 251?257.

Ryan, J. D., Moses, S. N., Barense, M., & Shayna Rosenbaum, R. (2013). Intact learning of new relations in amnesia as achieved through unitization. Journal of Neuroscience, 33(23), 9601?9613.

Sanders, K. E. G., Osburn, S., Paller, K. A., & Beeman, M. (2019). Targeted memory reactivation during sleep improves next-day problem solving. Psychological Science, 30(11), 1616?1624.

Schapiro, A. C., McDevitt, E. A., Chen, L., Norman, K. A., Mednick, S. C., & Rogers, T. T. (2017). Sleep benefits memory for semantic category structure while preserving exemplar-specific information. Scientific Reports, 7(1), 14869.

Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015). Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications, 6(1), 8151.

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11?21.

Sekeres, M. J., Winocur, G., & Moscovitch, M. (2018). The hippocampus and related neocortical structures in memory transformation. Neuroscience Letters, 680, 39?53.

Sharon, T., Moscovitch, M., & Gilboa, A. (2011). Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proceedings of the National Academy of Sciences, 108(3), 1146?1151.

Siler, J., & Benjamin, A. S. (2020). Long-term inference and memory following retrieval practice. Memory & Cognition, 48(4), 645?654.

Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271(5257), 1870?1873.

Skelin, I., Zhang, H., Zheng, J., Ma, S., Mander, B. A., Kim McManus, O., ... Lin, J. J. (2021). Coupling between slow waves and sharp-wave ripples engages distributed neural activity during sleep in humans. Proceedings of the National Academy of Sciences, 118(21), e2012075118.

Smith, C. N., Urgolites, Z. J., Hopkins, R. O., & Squire, L. R. (2014). Comparison of explicit and incidental learning strategies in memory-impaired patients. Proceedings of the National Academy of Sciences, 111(1), 475?479.

Sommer, T. (2017). The emergence of knowledge and how it supports the memory for novel related information. Cerebral Cortex, 27(3), 1906?1921.

Sommer, T., Hennies, N., Lewis, P. A., & Alink, A. (2022). The assimilation of novel information into schemata and its efficient consolidation. Journal of Neuroscience, 42(30), 5916?5929.

Souza, C., Garrido, M. V., Horchak, O. V., & Carmo, J. C. (2022). Conceptual knowledge modulates memory recognition of common items: The selective role of item-typicality. Memory & Cognition, 50(1), 77?94.

Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5(2), 169?177.

Squire, L. R., Genzel, L., Wixted, J. T., & Morris, R. G. (2015). Memory consolidation. Cold Spring Harbor Perspectives in Biology, 7(8), a021766.

Squire, L. R., Slater, P. C., & Chace, P. M. (1975). Retrograde amnesia: Temporal gradient in very long term memory following electroconvulsive therapy. Science, 187(4171), 77?79.

Squire, L. R., Stark, C. E. L., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279?306.

Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253(5026), 1380? 1386.

Staresina, B. P., Bergmann, T. O., Bonnefond, M., Van Der Meij, R., Jensen, O., Deuker, L., ... Fell, J. (2015). Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nature Neuroscience, 18(11), 1679?1686.

Staresina, B. oUsRy/PcPHI94FG938mE/Q==P., & Wimber, M. (2019). A neural chronometry of memory recall. Trends in Cognitive Sciences, 23(12), 1071?1085.

Sterpenich, V., van Schie, M. K., Catsiyannis, M., Ramyead, A., Perrig, S., Yang, H. D., ... Schwartz, S. (2021). Reward biases spontaneous neural reactivation during sleep. Nature Communications, 12(1), 4162.

Sun, W., Advani, M., Spruston, N., Saxe, A., & Fitzgerald, J. E. (2023). Organizing memories for generalization in complementary learning systems. Nature Neuroscience, 26(8), 1438?1448.

Sutherland, R. J., Lee, J. Q., McDonald, R. J., & Lehmann, H. (2020). Has multiple trace theory been refuted? Hippocampus, 30(8), 842?850.

Sutherland, R. J., Weisend, M. P., Mumby, D., Astur, R. S., Hanlon, F. M., Koerner, A., ... Hoesing, J. M. (2001). Retrograde amnesia after hippocampal damage: Recent vs. remote memories in two tasks. Hippocampus, 11(1), 27?42.

Tamminen, J., Davis, M. H., & Rastle, K. (2015). From specific examples to general knowledge in language learning. Cognitive Psychology, 79, 1?39.

Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. Journal of Neuroscience, 30(43), 14356?14360.

Teyler, T. J., & DiScenna, P. (1986). The hippocampal memory indexing theory. Behavioral Neuroscience, 100(2), 147?154.

Tibon, R., Greve, A., & Henson, R. (2018). The missing link? Testing a schema account of unitization. Memory & Cognition, 46(7), 1023?1040.

Tibon, R., Gronau, N., Scheuplein, A. L., Mecklinger, A., & Levy, D. A. (2014). Associative recognition processes are modulated by the semantic unitizability of memoranda. Brain and Cognition, 92, 19?31.

Tompary, A., & Davachi, L. (2017). Consolidation promotes the emergence of representational overlap in the hippocampus and medial prefrontal cortex. Neuron, 96(1), 228?241.

Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81(1), 12?34.

Toppino, T. C., & Cohen, M. S. (2009). The testing effect and the retention interval: Questions and answers. Experimental Psychology, 56(4), 252?257.

Treves, A., & Rolls, E. T. (1994). Computational analysis of the role of the hippocampus in memory. Hippocampus, 4(3), 374?391.

Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., ... Morris, R. G. (2007). Schemas and memory consolidation. Science, 316(5821), 76?82.

Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C., ... Morris, R. G. (2011). Schema-dependent gene activation and memory encoding in neocortex. Science, 333(6044), 891?895.

van den Berg, N. H., Pozzobon, A., Fang, Z., Al-Kuwatli, J., Toor, B., Ray, L. B., & Fogel, S. M. (2022). Sleep enhances consolidation of memory traces for complex problem-solving skills. Cerebral Cortex, 32(4), 653?667.

van Kesteren, M. T. R., & Meeter, M. (2020). How to optimize knowledge construction in the brain. Npj Science of Learning, 5(1), 5.

van Kesteren, M. T., Rijpkema, M., Ruiter, D. J., & Fernández, G. (2010). Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. Journal of Neuroscience, 30(47), 15888?15894.

van Kesteren, M. T., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends in Neurosciences, 35(4), 211?219.

Vaz, A. P., Inati, S. K., Brunel, N., & Zaghloul, K. A. (2019). Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science, 363(6430), 975?978.

Wagner, U., Gais, S., & Born, J. (2001). Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learning & Memory, 8(2), 112?119.

Wang, W. C., Brashier, N. M., Wing, E. A., Marsh, E. J., & Cabeza, R. (2018). Knowledge supports memory retrieval through familiarity, not recollection. Neuropsychologia, 113, 14?21.

Wang, X., Men, W., Gao, J., Caramazza, A., & Bi, Y. (2020). Two forms of knowledge representations in the human brain. Neuron, 107(2), 383?393.

Warren, D. E., Jones, S. H., Duff, M. C., & Tranel, D. (2014). False recall is reduced by damage to the ventromedial prefrontal cortex: Implications for understanding the neural correlates of schematic memory. Journal of Neuroscience, 34(22), 7677?7682.

Weis, S., Specht, K., Klaver, P., Tendolkar, I., Willmes, K., Ruhlmann, J., ... Fernández, G. (2004). Process dissociation between contextual retrieval and item recognition. Neuroreport, 15(18), 2729?2733.

Wimber, M., Alink, A., Charest, I., Kriegeskorte, N., & Anderson, M. C. (2015). Retrieval induces adaptive forgetting of competing memories via cortical pattern suppression. Nature Neuroscience, 18(4), 582?589.

Wimmer, G. E., Liu, Y., Vehar, N., Behrens, T. E. J., & Dolan, R. J. (2020). Episodic memory retrieval success is associated with rapid replay of episode content. Nature Neuroscience, 23(8), 1025?1033.

Wing, E. A., Burles, F., Ryan, J. D., & Gilboa, A. (2022). The structure of prior knowledge enhances memory in experts by reducing interference. Proceedings of the National Academy of Sciences, 119(26), e2204172119.

Winocur, G., & Moscovitch, M. (2011). Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17(5), 766?780.

Winocur, G., Moscovitch, M., & Bontempi, B. (2010). Memory formation and long-term retention in humans and animals: Convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia, 48(8), 2339?2356.

Winocur, G., Moscovitch, M., & Sekeres, M. (2007). Memory consolidation or transformation: Context manipulation and hippocampal representations of memory. Nature Neuroscience, 10(5), 555?557.

Witkowski, S., Noh, S. M., Lee, V., Grimaldi, D., Preston, A. R., & Paller, K. A. (2021). Does memory reactivation during sleep support generalization at the cost of memory specifics? Neurobiology of Learning and Memory, 182, 107442.

Wixted, J. T. (2004). The psychology and neuroscience of forgetting. Annual Review of Psychology, 55(1), 235?269.

Xue, G. (2022). From remembering to reconstruction: The transformative neural representation of episodic memory. Progress in Neurobiology, 219, 102351.

Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441?517.

Yonelinas, A. P., Ranganath, C., Ekstrom, A. D., & Wiltgen, B. J. (2019). A contextual binding theory of episodic memory: Systems consolidation reconsidered. Nature Reviews Neuroscience, 20(6), 364?375.

Zheng, L., Gao, Z., McAvan, A. S., Isham, E. A., & Ekstrom, A. D. (2021). Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nature Communications, 12(1), 6231.

Zheng, Z., Li, J., Xiao, F., Ren, W., & He, R. (2016). Unitization improves source memory in older adults: An event-related potential study. Neuropsychologia, 89, 232?244.

Zola-Morgan, S. M., & Squire, L. R. (1990). The primate hippocampal formation: Evidence for a time-limited role in memory storage. Science, 250(4978), 288?290.

Rapid memory consolidation: Schema-based learning

and repeated reactivation

ZHOU Fan1, TIAN Haoyue2, JIANG Yingjie2,3

(1 School of Educational Science, Shenyang Normal University, Shenyang 110034, China)

(2 School of Psychology, Northeast Normal University, Changchun 130024, China)

(3 Jilin Provincial Higher Education Key Laboratory of Cognitive and Brain Science, Changchun 130024, China)

Abstract: Memory consolidation has traditionally been perceived as a slow process, extending over years, even decades. However, new research indicates that memory can consolidate rapidly when new information is consistent with existing schemas or employs specific encoding methods. Moreover, the influence of sleep and retrieval on memory is believed to be linked to rapid consolidation. This paper reviews studies on rapid memory consolidation and summarizes two potential mechanisms driving this swift process: schema-based learning and repeated reactivation. Future investigations could delve into the role of hippocampus in cortical learning, the significance of interference suppression in memory consolidation, and, by adopting an adaptive perspective on the interplay between fast and slow memory consolidation processes, unravel the nature of rapid memory consolidation as a double-edged sword.

Keywords: memory consolidation, hippocampus, schema, reactivation

海原县| 监利县| 定兴县| 洞头县| 正蓝旗| 香格里拉县| 永德县| 曲周县| 常德市| 新疆| 社旗县| 图木舒克市| 淮阳县| 思南县| 巨鹿县| 阜康市| 青铜峡市| 河津市| 伊金霍洛旗| 武平县| 苏州市| 佛山市| 土默特左旗| 峨山| 和平县| 乌兰浩特市| 阿勒泰市| 南岸区| 丰县| 自治县| 建昌县| 获嘉县| 大关县| 鹤峰县| 中西区| 庐江县| 谷城县| 濮阳县| 灵丘县| 香港| 汪清县|