国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

缺氧對虹鱒肌肉氧化損傷及葡萄糖代謝的影響

2024-10-09 00:00:00胡澳郭兵兵宋鄉(xiāng)月趙曼曼熊光權(quán)汪蘭陳勝吳文錦石柳喬宇陳朗郭曉嘉李瑋
肉類研究 2024年9期

摘 要:研究缺氧引起的虹鱒肌肉氧化損傷,并從葡萄糖代謝角度探討其導(dǎo)致抗氧化系統(tǒng)改變的可能機(jī)制。隨機(jī)將虹鱒分為6 組,每組9 條,其中,對照組(CG,溶解氧(dissolved oxygen,DO)質(zhì)量濃度(7.5±0.5)mg/L)、中度缺氧組(MHG,DO質(zhì)量濃度(5.5±0.5)mg/L)、重度缺氧組(SHG,DO質(zhì)量濃度(3.0±0.5)mg/L)及3 個(gè)復(fù)氧組(DO質(zhì)量濃度(3.0±0.5)mg/L)在各自DO水平下轉(zhuǎn)運(yùn)3 h后,復(fù)氧組在DO質(zhì)量濃度(7.5±0.5)mg/L條件下恢復(fù)12、24、48 h,檢測肌肉中的活性氧水平、抗氧化酶活性、脂代謝相關(guān)酶活性、葡萄糖代謝指標(biāo)和相關(guān)基因表達(dá)。結(jié)果表明:SHG虹鱒肌肉活性氧、丙二醛含量較其他組顯著升高(P<0.05),復(fù)氧24 h后顯著降低(P<0.05),MHG虹鱒肌肉過氧化氫酶活性顯著高于CG(P<0.05),MHG和SHG總超氧化物歧化酶和谷胱甘肽過氧化物酶活性顯著低于CG(P<0.05);與CG相比,MHG和SHG虹鱒肌肉肌糖原含量、磷酸果糖激酶和丙酮酸激酶活性顯著降低(P<0.05),皮質(zhì)醇含量和己糖激酶活性顯著升高(P<0.05);SHG虹鱒肌肉脂肪酶活性與其他組相比顯著升高(P<0.05),乳酸含量與CG相比顯著升高(P<0.05),MHG虹鱒肌肉脂蛋白脂肪酶活性顯著低于CG(P<0.05);缺氧處理后低氧誘導(dǎo)因子1α(hypoxia-inducible factor 1α,HIF-1α)通路的HIF-1α、AMPK、SIRT1和PFK基因mRNA相對表達(dá)量顯著升高(P<0.05),復(fù)氧24 h顯著降低(P<0.05)。缺氧可引起虹鱒肌肉氧化損傷,并通過激活HIF-1α通路基因轉(zhuǎn)錄調(diào)節(jié)葡萄糖代謝,抵抗氧化損傷。

關(guān)鍵詞:缺氧;虹鱒;葡萄糖代謝;氧化損傷;低氧誘導(dǎo)因子1α信號通路

Effects of Hypoxia on Oxidative Damage and Glucose Metabolism in Rainbow Trout Muscle

HU Ao1,2, GUOB9Fh5mWZNOLv0VeTDtqrb7EqeYPXKAcJRudapem3xbI= Bingbing1,2, SONG Xiangyue1,2, ZHAO Manman1,3, XIONG Guangquan2, WANG Lan2,

CHEN Sheng2, WU Wenjin2, SHI Liu2, QIAO Yu2, CHEN Lang2, GUO Xiaojia2, LI Wei1,*

(1. School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China;

2. Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;

3. College of Life Sciences, Yangtze University, Jingzhou 434025, China)

Abstract: This study aims to investigate hypoxia-induced oxidative damage in rainbow trout muscle and to explore the mechanism underlying the resulting alterations in the antioxidant defense system from the perspective of glucose metabolism. Rainbow trout were randomly assigned into six groups with nine fish each: the control group (CG) was transported for 3 h

at a dissolved oxygen (DO) level of (7.5 ± 0.5) mg/L; the moderate hypoxia group (MHG) was transported for 3 h at a DO level of (5.5 ± 0.5) mg/L; the severe hypoxia group (SHG) was transported for 3 h at a DO level of (3.0 ± 0.5) mg/L; the three reoxygenated groups were transported for 3 h at a DO level of (3.0 ± 0.5) mg/L and then revived at a DO level of

(7.5 ± 0.5) mg/L for 12 (R12), 24 (R24) and 48 h (R48), respectively. We measured reactive oxygen species (ROS) level, antioxidant enzyme activities, lipid metabolism related enzyme activities, glucose metabolism indexes, and related gene expressions in muscle tissues. The results showed that the levels of ROS and malondialdehyde (MDA) in the muscle of rainbow trout significantly increased in the SHG compared to the other groups (P < 0.05), and significantly decreased after 24 h of reoxygenation (P < 0.05). Catalase (CAT) activity was significantly higher in the MHG than in the CG

(P < 0.05). Total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities were significantly lower in both MHG and SHG compared to the CG (P < 0.05). The MHG and SHG showed a significant decrease in muscle glycogen content as well as phosphofructokinase (PFK) and pyruvate kinase (PK) activities, and a significant increase in cortisol content and hexokinase (HK) activity compared to the CG (P < 0.05). The SHG had significantly higher lipase activity than the other groups and significantly higher lactic acid levels than the CG (P < 0.05). lipoprteinlipase activity was significantly lower in the MHG than in the CG (P < 0.05). The mRNA relative expression of the HIF-1α,

AMPK, SIRT1 and PFK genes in the hypoxia-inducible factor 1α (HIF-1α) signaling pathway was significantly upregulated following hypoxia treatment (P < 0.05) but significantly downregulated after reoxygenation for 24 h

(P < 0.05). Hypoxia-induced oxidative damage in rainbow trout muscle, which is mitigated by the activation of glucose metabolism-related gene transcription in the HIF-1α signaling pathway.

Keywords: hypoxia; rainbow trout; glucose metabolism; oxidative damage; hypoxia-inducible factor 1α signaling pathway

DOI:10.7506/rlyj1001-8123-20240618-145

中圖分類號:TS254.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-8123(2024)09-0001-07

引文格式:

胡澳, 郭兵兵, 宋鄉(xiāng)月, 等. 缺氧對虹鱒肌肉氧化損傷及葡萄糖代謝的影響[J]. 肉類研究, 2024, 38(9): 1-7. DOI:10.7506/rlyj1001-8123-20240618-145. http://www.rlyj.net.cn

HU Ao, GUO Bingbing, SONG Xiangyue, et al. Effects of hypoxia on oxidative damage and glucose metabolism in rainbow trout muscle[J]. Meat Research, 2024, 38(9): 1-7. (in Chinese with English abstract) DOI:10.7506/rlyj1001-8123-20240618-145.

http://www.rlyj.net.cn

虹鱒(Oncorhynchus mykiss)是一種具有高營養(yǎng)價(jià)值的特種經(jīng)濟(jì)魚類,含有豐富的氨基酸,不飽和脂肪酸及被稱為腦黃金的二十二碳六烯酸和二十碳五烯酸含量是其他魚類的數(shù)倍[1],是聯(lián)合國糧食及農(nóng)業(yè)組織向世界推廣的產(chǎn)量高且品質(zhì)優(yōu)良的四大淡水養(yǎng)殖魚類品種之一[2]。

溶解氧(dissolved oxygen,DO)是水產(chǎn)養(yǎng)殖和運(yùn)輸過程中的關(guān)鍵因素之一。運(yùn)輸過程中缺氧極易引起魚類產(chǎn)生應(yīng)激損傷,導(dǎo)致魚類死亡,造成經(jīng)濟(jì)損失。特別是急性缺氧,可能由運(yùn)輸密度、水溫和氧氣注入

量等引起[3]。大量文獻(xiàn)報(bào)道顯示,急性缺氧可能導(dǎo)致新鮮魚生理紊亂、組織損傷、肌肉質(zhì)量下降,如團(tuán)頭魴(Megalobrama amblycephala)[4]、斑點(diǎn)叉尾鮰(Ictalurus punctatus)[5]、中國花鱸(Lateolabrax maculates)[6]。研究發(fā)現(xiàn),虹鱒對缺氧敏感,缺氧極易造成其肝臟氧化損傷和轉(zhuǎn)錄水平變化[7-8]。本團(tuán)隊(duì)前期研究也報(bào)道了缺氧可能導(dǎo)致虹鱒在短期運(yùn)輸過程中肌肉品質(zhì)劣化和代謝紊亂[9]。然而,缺氧是否會對虹鱒肌肉造成氧化損傷及其抗氧化系統(tǒng)如何抵抗氧化損傷等尚不清楚。

缺氧條件下,生物體會發(fā)生能量代謝轉(zhuǎn)變,葡萄糖代謝和脂代謝是影響魚體能量代謝的關(guān)鍵[10]。其中葡萄糖代謝與氧化還原信號傳導(dǎo)密切相關(guān),氧化還原代謝降低是細(xì)胞過氧化物增加的結(jié)果[11]。為抵抗氧化損傷,糖酵解途徑被激活,為機(jī)體產(chǎn)生更多的能量,以糖原分解和乳酸積累為代表[12]。丙酮酸激酶(pyruvate kinase,PK)、磷酸果糖激酶(phosphofructokinase,PFK)和己糖激酶(hexokinase,HK)是糖酵解限速酶,其活性水平表征導(dǎo)致乳酸水平增加的厭氧糖酵解程度[13]。有研究發(fā)現(xiàn),靶向糖酵解限速酶可以緩解缺氧引起的氧化應(yīng)激和線粒體損傷[14]。然而,由缺氧引起的虹鱒肌肉葡萄糖代謝紊亂研究少見報(bào)道。魚類在長期或急性缺氧情況下,脂質(zhì)代謝會成為主要的能量代謝方式,且以脂質(zhì)分解代謝為主[10]。脂解的酶類如脂肪酶(lipase,LPS)和脂蛋白脂肪酶(lipoprteinlipase,LPL)會將甘油三酯(triglyceride,TG)水解,為魚體提供能量[15]。因此,可通過脂解酶活性探討脂質(zhì)代謝程度。

在缺氧環(huán)境中,魚類的氧傳感器和能量傳感器被激活,調(diào)節(jié)能量代謝從有氧糖酵解向厭氧糖酵解轉(zhuǎn)變[16-17]。

在缺氧條件下,低氧誘導(dǎo)因子1α(hypoxia-inducible factor 1α,HIF-1α)的穩(wěn)定性被破壞,通過與啟動子區(qū)域的缺氧響應(yīng)元件結(jié)合,激活基因轉(zhuǎn)錄,從而調(diào)節(jié)缺氧誘導(dǎo)的代謝和損傷[18]。本研究基于前期缺氧導(dǎo)致虹鱒肌肉質(zhì)地軟化、色澤下降、營養(yǎng)成分減少等品質(zhì)劣變結(jié)果[8],進(jìn)一步分析缺氧對虹鱒魚肌肉氧化損傷、脂代謝酶活性和葡萄糖代謝的影響,并通過測定HIF-1α通路的相關(guān)基因轉(zhuǎn)錄水平,初步探討缺氧對虹鱒肌肉糖代謝不良影響的潛在機(jī)制及復(fù)氧對虹鱒運(yùn)輸過程中缺氧不良影響的改善作用,確定最佳復(fù)氧時(shí)間,為虹鱒活體運(yùn)輸復(fù)氧時(shí)間提供一定參考。

1 材料與方法

1.1 材料與試劑

鮮活虹鱒(平均體質(zhì)量(2.0±0.2)kg)購于湖北咸寧青山水庫虹鱒養(yǎng)殖基地。

超氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶(catalase,CAT)、谷胱甘肽過氧化物酶(glutathione peroxidase,GSH-Px)、丙二醛(malondialdehyde,MDA)、總蛋白(total protein,TP)、LPL、LPS、肌糖原、皮質(zhì)醇、乳酸含量、PK、PFK、HK檢測試劑盒 南京建成生物工程研究所;二氫乙啶(dihydroethidium,DHE) 美國Sigma公司;總RNA提取商用試劑盒(R701)、SYBR Green PCR Master Mix試劑盒 南京碧云天生物技術(shù)有限公司;間氨基苯甲酸乙酯甲磺酸鹽(tricaine methane-sulfonate,MS-222)(純度98%) 上海麥克林生化科技有限公司。

1.2 儀器與設(shè)備

L5S紫外分光光度計(jì) 上海儀電分析儀器有限

公司;NanoDrop 2000分光光度計(jì) 美國Thermo Fisher Scientific公司;G90B便攜式氨氮檢測儀 山東格林凱瑞精密儀器有限公司;HQ40D哈希水質(zhì)儀 上海哈希水質(zhì)分析儀器有限公司;EclipseTi-SR倒置熒光顯微鏡 日本尼康株式會社;HH-6數(shù)顯式恒溫水浴鍋 常州國華電器有限公司;AD500S-H均質(zhì)機(jī) 上海昂尼儀器儀表有限公司。

1.3 方法

1.3.1 樣品采集和缺氧設(shè)計(jì)

運(yùn)輸前,虹鱒禁食24 h。將54 條魚隨機(jī)分為6 組,每組9 條。對照組(CG):培養(yǎng)池DO質(zhì)量濃度(7.5±0.5)mg/L;中等缺氧組(MHG):培養(yǎng)池DO質(zhì)量濃度(5.5±0.5)mg/L;重度缺氧組(SHG):培養(yǎng)池DO質(zhì)量濃度(3.0±0.5)mg/L。在培養(yǎng)池運(yùn)輸過程中,魚水比為1∶9(kg/L),加入冰袋以保持水溫在(18.5±0.7)℃范圍內(nèi)。每0.5 h監(jiān)測水質(zhì)(溫度、DO和pH值)。運(yùn)輸卡車配備3 個(gè)儲罐(240 cm×55 cm×60 cm)和氧氣泵,每個(gè)氧氣泵以不同功率運(yùn)行,確保各組DO水平。以上3 個(gè)組分別在各自DO水平下轉(zhuǎn)運(yùn)3 h。復(fù)氧組虹鱒魚在DO質(zhì)量濃度為(3.0±0.5)mg/L條件下轉(zhuǎn)運(yùn)3 h后,隨即在DO質(zhì)量濃度為(7.5±0.5)mg/L的養(yǎng)殖池復(fù)氧12、24、48 h(分別記為R12、R24、R48)。

魚運(yùn)輸至實(shí)驗(yàn)室后,在屠宰前迅速用50 mg/L MS-222麻醉。在冷室中進(jìn)行背最長肌取樣。將肌肉用鋁箔紙包裝并用液氮快速冷凍,立即保存于-80 ℃,以供活性氧(reactive oxygen species,ROS)、抗氧化酶活性、糖脂代謝指標(biāo)及逆轉(zhuǎn)錄實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(reverse transcription-quantitative polymerase chain reaction,RT-qPCR)分析。所有的采樣工作在1 h內(nèi)完成。

1.3.2 ROS含量和抗氧化酶活性測定

ROS含量測定參考Baker等[19]方法并略有修改。首先加入DHE至覆蓋樣品,37 ℃暗箱孵育30 min,用磷酸鹽緩沖液(pH 7.4)洗滌,然后加入4,6-二氨基-2-苯基吲哚染色液至覆蓋樣品,室溫暗箱孵育10 min。使用顯微鏡相機(jī)控制器采集圖像,采用ImageJ Pro Plus 6.0軟件分析相對熒光強(qiáng)度(光密度總和與面積總和的比值),以此表示ROS含量。虹鱒魚背肌在0.9 g/100 mL氯化鈉緩沖溶液中按料液比1∶9(g/mL)均質(zhì),3 000×g、4 ℃離心10 min。收集上清液,采用試劑盒測定MDA水平和總超氧化物歧化酶(total superoxide dismutase,T-SOD)、CAT和GSH-Px活性。

1.3.3 葡萄糖代謝指標(biāo)測定

采用試劑盒測定肌糖原、皮質(zhì)醇、乳酸含量及PK、PFK、HK活性。

1.3.4 脂代謝相關(guān)酶活性測定

采用試劑盒測定LPL、LPS活性。

1.3.5 RNA分離和qRT-PCR分析

從虹鱒肌肉中分離總RNA,用分光光度計(jì)檢測RNA的完整性和濃度,然后采用逆轉(zhuǎn)錄方法合成cDNA。在NCBI Nucleotide BLAST進(jìn)行同源性比對,確定同源性較高的基因序列,使用Primer Premier 5.0軟件設(shè)計(jì)引物(表1)。采用SYBR Green PCR Master Mix試劑盒進(jìn)行RT-qPCR分析。PCR程序設(shè)置為95 ℃、10 min,40 個(gè)循環(huán)(95 ℃、15 s,60 ℃、30 s)。每個(gè)反應(yīng)包括3 個(gè)技術(shù)重復(fù)。采用2?ΔΔCt法和歸一化法計(jì)算靶基因的相對表達(dá)量。

1.4 數(shù)據(jù)處理

采用Excel 2020軟件進(jìn)行數(shù)據(jù)處理,所有數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)差表示。采用SPSS 25軟件進(jìn)行方差分析,以

P<0.05表示差異顯著,采用Pad Prism 5.0軟件進(jìn)行繪圖。

2 結(jié)果與分析

2.1 缺氧對虹鱒肌肉氧化應(yīng)激的影響

由圖1A、B可知,SHG虹鱒肌肉ROS含量較CG顯著升高(P<0.05),復(fù)氧24 h后ROS含量顯著降低(P<0.05);MHG和R24組與CG均無顯著差異(P>0.05)。由圖1C~F可知,缺氧組(MHG和SHG)T-SOD和GSH-Px活性顯著低于CG(P<0.05),復(fù)氧后,T-SOD可恢復(fù)到對照組水平;MHG虹鱒魚肌肉CAT活性較CG顯著升高(P<0.05),SHG虹鱒肌肉CAT活性較CG無顯著差異(P>0.05)。SHG虹鱒肌肉MDA含量顯著高于其他組(P<0.05),復(fù)氧24 h后恢復(fù)到CG水平。

2.2 缺氧對虹鱒肌肉中葡萄糖代謝的影響

由圖2可知,缺氧組(MHG和SHG)皮質(zhì)醇含量相較于CG顯著增加(P<0.05),并隨著復(fù)氧時(shí)間延長而逐漸恢復(fù)。缺氧組(MHG和SHG)肌糖原含量相較于CG顯著降低(P<0.05),乳酸含量隨著DO水平降低呈現(xiàn)上升趨勢,而復(fù)氧后顯著下降(P<0.05)。缺氧組(MHG和SHG)HK活性相較于CG顯著升高(P<0.05),而PFK和PK活性顯著降低(P<0.05)。

2.3 缺氧對虹鱒肌肉中脂代謝的影響

如圖3A所示,與CG相比,缺氧組(MHG和SHG)隨著DO水平降低,LPS活性呈現(xiàn)上升趨勢,SHG肌肉LPS活性顯著高于CG和MHG(P<0.05),而復(fù)氧24 h后顯著下降至CG水平(P<0.05)。由圖3B可知,與CG相比,缺氧組(MHG和SHG)隨著DO水平降低,LPL活性呈現(xiàn)先下降后上升趨勢,MHG肌肉LPL活性顯著低于其他組(P<0.05),3 個(gè)復(fù)氧組間無顯著差異(P>0.05),均顯著高于缺氧組和CG(P<0.05)。

2.4 缺氧對虹鱒肌肉中葡萄糖代謝相關(guān)基因表達(dá)量的影響

如圖4所示,在缺氧條件下,虹鱒魚肌肉HIF-1α、AMPK和SIRT1 mRNA相對表達(dá)量顯著升高(P<0.05),但均在復(fù)氧24 h后顯著下降(P<0.05);PFK mRNA相對表達(dá)量顯著下降(P<0.05),而在復(fù)氧24 h后,mRNA相對表達(dá)量又顯著升高至CG水平(P<0.05)。

3 討 論

3.1 缺氧誘導(dǎo)虹鱒肌肉氧化應(yīng)激

研究顯示,缺氧可以通過調(diào)節(jié)細(xì)胞內(nèi)ROS水平誘導(dǎo)氧化應(yīng)激[19]。本團(tuán)隊(duì)前期研究結(jié)果顯示,24 h為最佳復(fù)氧時(shí)間,可有效緩解氧化應(yīng)激[20],故本研究只觀測了復(fù)氧24 h時(shí)的虹鱒肌肉ROS水平,其中,SHG虹鱒肌肉ROS含量較CG顯著升高,隨后在復(fù)氧24 h后顯著降低。類似的結(jié)果在小黃魚(Larimichthys polyactis)中也有報(bào)道,缺氧導(dǎo)致其細(xì)胞ROS產(chǎn)生和氧化還原穩(wěn)態(tài)失調(diào)[21]。

T-SOD、CAT和GSH-Px作為抗氧化防御系統(tǒng)的關(guān)鍵酶,可有效清除ROS,保護(hù)細(xì)胞和組織[22-23]。缺氧轉(zhuǎn)運(yùn)3 h后,缺氧組(MHG和SHG)T-SOD和GSH-Px活性顯著低于CG,復(fù)氧后T-SOD恢復(fù)到CG水平。缺氧組T-SOD和GSH-Px活性降低的部分原因是其被消耗以清除ROS,這與缺氧對大口黑鱸(Micropterus salmoides)肌肉影響的研究結(jié)果[24]一致。一般情況下,SOD催化超氧陰離子自由基分解為過氧化氫,CAT與GSH-Px可以清除過氧化氫,平衡細(xì)胞氧化還原代謝[25]。當(dāng)虹鱒肌肉輕度缺氧時(shí),CAT活性顯著升高,表明輕度缺氧可激活CAT活性,而嚴(yán)重缺氧將大量消耗CAT,甚至損害抗氧化系統(tǒng)。這一結(jié)果與Zhao Liulan等[24]的報(bào)道相一致。虹鱒肌肉中MDA含量被認(rèn)為是氧化損傷的生物標(biāo)志物[26],與CG相比,缺氧組(MHG和SHG)MDA含量顯著增加,復(fù)氧24 h后恢復(fù)到CG水平。因此,急性缺氧應(yīng)激可導(dǎo)致虹鱒肌肉氧化損傷,24 h復(fù)氧可有效緩解缺氧應(yīng)激引起的肌肉損傷。

3.2 缺氧干擾虹鱒肌肉葡萄糖代謝

研究證實(shí),環(huán)境壓力可激活魚體肌肉的糖酵解途徑,以滿足其抵抗氧化應(yīng)激的能量需求[7]。皮質(zhì)醇可調(diào)節(jié)糖原、蛋白質(zhì)和脂肪代謝,加速糖異生以緩解環(huán)境壓力[27],缺氧組(MHG和SHG)皮質(zhì)醇含量顯著增加,并隨著復(fù)氧時(shí)間延長而逐漸恢復(fù)。由此可知,復(fù)氧處理可有效緩解缺氧導(dǎo)致的肌糖原含量降低與乳酸積累。此現(xiàn)象在大口黑鱸和鯽鯉(Carassius auratus)[28-29]中也有報(bào)道,表明缺氧可能加速魚體肌肉糖酵解,為抵抗環(huán)境壓力提供能量。為證實(shí)這一假設(shè),本研究對HK、PFK和PK等糖酵解酶活性進(jìn)行評價(jià),結(jié)果顯示,在缺氧脅迫下,HK活性顯著升高,而PFK和PK活性顯著降低。此外,經(jīng)復(fù)氧處理后,這些酶的活性也可得到不同程度地恢復(fù),表明糖酵解過程加速產(chǎn)生能量,緩解急性缺氧壓力,但隨著乳酸不斷積累,PK活性降低,糖異生過程被激活,糖酵解過程被抑制[24,30]。

3.3 缺氧加速虹鱒肌肉脂肪分解

脂肪是魚類重要的營養(yǎng)物質(zhì),對魚類生長、發(fā)育和營養(yǎng)代謝均具有重要作用[31]。長期缺氧時(shí),魚類主要依靠脂肪分解代謝獲得能量,LPS和LPL是將TG降解為非酯化脂肪酸的關(guān)鍵酶[32]。本研究以低氧脅迫下虹鱒肌肉中的酶(LPL和LPS)活性表征能量產(chǎn)生能力。與CG相比,缺氧組(MHG和SHG)LPL活性降低,LPS活性升高。大口黑鱸肝臟的LPL和LPS活性也有類似的變化[32]。這可能是由急性低氧應(yīng)激時(shí)脂肪分解加速所致。復(fù)氧24 h后,LPL和LPS活性逐漸恢復(fù),說明復(fù)氧對抑制脂肪分解有一定作用。SHG虹鱒肌肉LPL活性與CG無顯著差異,可能是缺氧暫養(yǎng)時(shí)間不充足導(dǎo)致魚體仍以葡萄糖代謝供能為主[9]。

3.4 HIF-1α信號通路調(diào)控揭示缺氧及復(fù)氧虹鱒肌肉的葡萄糖代謝機(jī)制為探討缺氧對虹鱒魚肌肉葡萄糖代謝影響的可能機(jī)制,本研究檢測了HIF-1α信號通路相關(guān)基因表達(dá)量。魚體可以通過主動氧傳感器和能量傳感器,在缺氧環(huán)境中調(diào)節(jié)葡萄糖代謝從有氧糖酵解轉(zhuǎn)變?yōu)闊o氧糖酵解[16]。HIF-1α作為缺氧時(shí)基因表達(dá)的重要調(diào)控因子,已被認(rèn)為是可靠的缺氧應(yīng)激生物標(biāo)志物[33-34]。5’-腺苷酸活化蛋白激酶(5’-adenosine monophosphate-activated protein kinase,AMPK)也在系統(tǒng)能量平衡中發(fā)揮關(guān)鍵作用[35]。

在本研究中,缺氧條件下,虹鱒肌肉HIF-1α和AMPK mRNA相對表達(dá)量顯著升高,但在復(fù)氧24 h后顯著下降。類似的結(jié)果在斑馬魚(Danio rerio)[36]和鯽魚(Carassius carassiu)[35]中也有報(bào)道,表明缺氧可以誘導(dǎo)AMPK表達(dá),刺激HIF-1α活性,調(diào)節(jié)機(jī)體產(chǎn)生一系列抗應(yīng)激反應(yīng)。SIRT1可以調(diào)節(jié)應(yīng)激反應(yīng),激活A(yù)MPK,刺激機(jī)體代謝[37],在缺氧條件下,虹鱒肌肉SIRT1 mRNA相對表達(dá)量也顯著增加,24 h復(fù)氧后也顯著降低。結(jié)果表明,嚴(yán)重缺氧后糖酵解功能增強(qiáng),復(fù)氧24 h后糖酵解功能被抑制。此外,在缺氧條件下,PFK mRNA相對表達(dá)量顯著降低,而在復(fù)氧24 h后顯著增加,這與PFK活性結(jié)果相一致,表明缺氧促進(jìn)了厭氧代謝,與乳酸積累結(jié)果相一致[16]。

4 結(jié) 論

在運(yùn)輸過程中,缺氧可通過增加虹鱒肌肉ROS水平誘導(dǎo)氧化應(yīng)激,此時(shí),肌肉抗氧化系統(tǒng)被激活,以保護(hù)魚體免受ROS損害。抵抗氧化應(yīng)激的過程需要更多的能量,這可能由糖酵解途徑提供。糖代謝水平和脂代謝酶活性及相關(guān)基因mRNA相對表達(dá)量結(jié)果表明,缺氧可激活HIF-1α信號通路,調(diào)節(jié)虹鱒肌肉糖代謝,這可能是抗氧化應(yīng)激的有效途徑。此外,復(fù)氧24 h可能是調(diào)節(jié)虹鱒運(yùn)輸過程中缺氧引起的氧化損傷的好方法。

參考文獻(xiàn):

[1] 吳昕寧, 李鳴澤, 梁釋介, 等. 茶多酚-殼聚糖復(fù)合液對虹鱒魚肉貯藏品質(zhì)和菌群結(jié)構(gòu)的影響[J]. 肉類研究, 2023, 37(2): 20-25. DOI:10.7506/rlyj1001-8123-20221008-132.

[2] 張素珍, 勵(lì)建榮, 劉小紅, 等. 青海省養(yǎng)殖三倍體虹鱒呈味核苷酸和揮發(fā)性風(fēng)味物質(zhì)的研究[J]. 食品工業(yè)科技, 2022, 43(20): 310-318. DOI:10.13386/j.issn1002-0306.2021120293.

[3] 彭玲, 尤娟, 熊光權(quán), 等. 物流運(yùn)輸對魚類肌肉品質(zhì)影響研究進(jìn)展[J].

肉類研究, 2021, 35(12): 54-63. DOI:10.7506/rlyj1001-8123-20210531-164.

[4] XIAO K, WANG X, DAI Y J, et al. Hypoxia mediates HIF-1α to affect myofiber development and VC regulates the influence by activating Shh-Gli pathway in channel catfish (Ictalurus punctatus)[J]. Aquaculture, 2023, 562: 738849. DOI:10.1016/j.aquaculture.2022.738849.

[5] SUN Y X, DONG H B, ZHAN A J, et al. Protection of teprenone against hypoxia and reoxygenation stress in stomach and intestine of Lateolabrax maculatus[J]. Fish Physiology and Biochemistry, 2020, 46(2): 575-584. DOI:10.1007/s10695-019-00732-4.

[6] 林基亮, 于朝磊, 曹學(xué)彬, 等. 不同打包運(yùn)輸方式對花鱸幼魚存活率的影響[J]. 水產(chǎn)養(yǎng)殖, 2022, 43(3): 46-48. DOI:10.3969/j.issn.1004-2091.2022.03.010.

[7] WU S J, HUANG J Q, LI Y J, et al. Dynamic and systemic regulatory mechanisms in rainbow trout (Oncorhynchus mykiss) in response to acute hypoxia and reoxygenation stress[J]. Aquaculture, 2023, 572: 739540. DOI:10.1016/j.aquaculture.2023.739540.

[8] WU Y W, ZHAO M M, XIA Y T, et al. Deterioration of muscle quality caused by ammonia exposure in rainbow trout (Oncorhynchus mykiss)[J]. Food Bioscience, 2023, 53: 102609. DOI:10.1016/j.fbio.2023.102609.

[9] 李嬌. 長期低氧應(yīng)激對三倍體虹鱒能源物質(zhì)代謝影響機(jī)制的研究[D].

西寧: 青海大學(xué), 2023.

[10] SALVEMINI F, FRANZE A, LERVOLINO A, et al. Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression[J]. Biological Chemistry, 1999, 274(5): 2750-2757. DOI:10.1074/jbc.274.5.2750.

[11] WU Y W, YOU X P, SUN W Q, et al. Insight into acute heat stress on meat qualities of rainbow trout (Oncorhynchus mykiss) during short-time transportation[J]. Aquaculture, 2021, 543: 737013. DOI:10.1016/j.aquaculture.2021.737013.

[12] GAO Y S, DONG Y X, GUANG Z Y, et al. Overexpression of metabolic markers HK1 and PKM2 contributes to lymphatic metastasis and adverse prognosis in Chinese gastric cancer[J]. International Journal of Clinical and Experimental Pathology, 2015, 8(8): 9264. DOI:10.1016/ijcep.2015.9264.

[13] WANG D H, FENG Y L, WEI J Y, et al. Meldonium ameliorates hypoxia-induced lung injury and oxidative stress by regulating platelet-type phosphofructokinase-mediated glycolysis[J]. Frontiers in Pharmacology, 2022, 13: 863451. DOI:10.3389/fphar.2022.863451.

[14] LI M, WANG X, QI C, et al. Metabolic response of Nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress[J]. Aquaculture, 2018, 495: 187-195. DOI:10.1016/j.aquaculture.2018.05.031.

[15] FU C, JIE L, SHAO T Y, et al. Integrated lung and tracheal mRNA-Seq and miRNA-Seq analysis of dogs with an avian-like H5N1 canine influenza virus infection[J]. Frontiers in Microbiology, 2018, 9: 303. DOI:10.3389/fmicb.2018.00303.

[16] OLSVIK, PAL A, VIBEKE V, et al. Transcriptional responses to temperature and low oxygen stress in Atlantic salmon studied with next-generation sequencing technology[J]. BMC Genomics, 2013, 14: 817. DOI:10.1186/1471-2164-14-817.

[17] GERALD D, EDURNE B, YVES, et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress[J]. Cell, 2004, 118(6): 781-794. DOI:10.1016/j.cell.2004.08.025.

[18] LIN W, QI X Y, GUO W J, et al. A barrier against reactive oxygen species: chitosan/acellular dermal matrix scaffold enhances stem cell retention and improves cutaneous wound healing[J]. Stem Cell Research and Therapy, 2020, 11(1): 383. DOI:10.1186/s13287-020-01901-6.

[19] BAKER A, BOKEMEYER D, KRAMER H J. Endothelin synthesis and receptors in porcine kidney[J]. Acta Physiologica Scandinavica, 2001, 171(1): 105-112. DOI:10.1046/j.1365-201X.2001.00789.x

[20] WU Y W, ZHAO M M, SHI G P, et al. Effects of hypoxia on meat qualities and muscle metabolism in rainbow trout (Oncorhynchus mykiss) during short-time transportation and its relief by reoxygenation[J]. Aquaculture, 2023, 570: 739404. DOI:10.1016/j.aquaculture.2023.739404.

[21] WANG J Q, GAO X M, WANG L, et al. Establishment of the first cell line from the small yellow croaker (Larimichthys polyactis) and its application in unraveling the mechanism of ROS-induced apoptosis under hypoxia[J]. Aquaculture, 2023, 563(Part 1): 738900. DOI:10.1016/j.aquaculture.2022.738900.

[22] JOHANNSSON E O, GIACOMIN M, SADAUSKAS H, et al. Does hypoxia or different rates of re-oxygenation after hypoxia induce an oxidative stress response in Cyphocharax abramoides (Kner 1858), a Characid fish of the Rio Negro?[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2018, 224: 53-67. DOI:10.1016/j.cbpa.2018.05.019.

[23] SHUANG L, CHEN S L, REN C, et al. Effects of hypoxia and reoxygenation on oxidative stress, histological structure, and apoptosis in a new hypoxia-tolerant variety of blunt snout bream (Megalobrama amblycephala)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2022, 278: 111358. DOI:10.1016/j.cbpa.2022.111358.

[24] ZHAO L L, WU H, SUN J L, et al. MicroRNA-124 regulates lactate transportation in the muscle of largemouth bass (Micropterus salmoides) under hypoxia by targeting MCT1[J]. Aquatic Toxicology, 2020, 218: 105359. DOI:10.1016/j.aquatox.2019.105359.

[25] BAL A, PATI S G, PANDA F, et al. Dehydration induced hypoxia and its role on mitochondrial respiratory enzymes and oxidative stress responses in liver of Asian stinging catfish Heteropneustes fossilis[J]. Comparative Biochemistry and Physiology Part C: Toxicology Pharmacology, 2022, 256: 109300. DOI:10.1016/j.cbpc.2022.109300.

[26] NAIEL M A E, ABD E, AHMED H A, et al. Gum Arabic-enriched diet modulates growth, antioxidant defenses, innate immune response, intestinal microbiota and immune related genes expression in tilapia fish[J]. Aquaculture, 2022, 556: 738249. DOI:10.1016/j.aquaculture.2022.738249.

[27] PFALZGRAFF T, LUND I, PETER V S. Prolonged cortisol elevation alters whole body and tissue metabolism in rainbow trout (Oncorhynchus mykiss)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2022, 263: 111098. DOI:10.1016/j.cbpa.2021.111098.

[28] GENZ J, JYDE M B, SVENDSEN J C, et al. Excess post-hypoxic oxygen consumption is independent from lactate accumulation in two cyprinid fishes[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, 165: 54-60. DOI:10.1016/j.cbpa.2013.02.002.

[29] YANG S, WU H, HE K, et al. Response of AMP-activated protein kinase and lactate metabolism of largemouth bass (Micropterus salmoides) under acute hypoxic stress[J]. Science of the Total Environment, 2019, 666: 1071-1079. DOI:10.1016/j.scitotenv.2019.02.236.

[30] MAHFOUZ M E, HEGAZI M M, EL-MAGD M A, et al. Metabolic and molecular responses in Nile tilapia, Oreochromis niloticus during short and prolonged hypoxia[J]. Marine and Freshwater Behaviour and Physiology, 2015, 48(5): 319-340. DOI:10.1080/10236244.2015.1055915.

[31] 石鋼鵬, 高天麒, 錢曉慶, 等. 不同速凍處理方式對大口黑鱸魚肉凍藏期間品質(zhì)變化影響[J]. 肉類研究, 2020, 34(12): 68-74. DOI:10.7506/rlyj1001-8123-20201113-264.

[32] SUN J L, ZHAO L L, WU H, et al. Acute hypoxia changes the mode of glucose and lipid utilization in the liver of the largemouth bass (Micropterus salmoides)[J]. Science of the Total Environment, 2020, 713: 135157. DOI:10.1016/j.scitotenv.2019.135157.

[33] 方玲玲, 王忠良, 陳剛, 等. 卵形鯧鲹肉堿棕櫚?;D(zhuǎn)移酶I全長cDNA序列的克隆及生物信息學(xué)分析[J]. 廣東海洋大學(xué)學(xué)報(bào), 2015, 35(3): 7-15. DOI:10.3969/j.issn.1673-9159.2015.03.002.

[34] TEROVA G, RIMOLDI S, CORA S, et al. Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax)[J]. Aquaculture, 2008, 279(1/4): 150-159. DOI:10.1016/j.aquaculture.2008.03.041.

[35] STENSLOKKEN K O, ELLEFSEN S, STECYK J A, et al. Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius)[J]. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2008, 295(6): R1803-14. DOI:10.1152/ajpregu.90590.2008.

[36] RYTKONEN K T, PROKKOLA J M, SALONEN V, et al. Transcriptional divergence of the duplicated hypoxia-inducible factor α

genes in zebrafish[J]. Gene, 2014, 541(1): 60-66. DOI:10.1016/j.gene.2014.03.007.

[37] NAGAPPAN A, KIM J H, JUNG D Y, et al. Cryptotanshinone from the Salvia miltiorrhiza Bunge attenuates ethanol-induced liver injury by activation of AMPK/SIRT1 and Nrf2 signaling pathways[J]. International Journal of Molecular Sciences, 2019, 21(1): 265. DOI:10.3390/ijms21010265.

汉中市| 西峡县| 聂荣县| 两当县| 云龙县| 安溪县| 阜平县| 石渠县| 彩票| 忻州市| 讷河市| 汝州市| 定安县| 郧西县| 瑞昌市| 仙居县| 周宁县| 宜宾市| 许昌县| 六安市| 收藏| 广汉市| 宁都县| 黄大仙区| 会同县| 镶黄旗| 永平县| 岢岚县| 钦州市| 柯坪县| 光山县| 姚安县| 民和| 无为县| 琼海市| 徐州市| 虞城县| 沅江市| 禹城市| 常山县| 德惠市|