[摘要]目的探究慢性1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導(dǎo)帕金森?。≒D)模型小鼠黑質(zhì)(SN)和外側(cè)蒼白球(GPe)腦區(qū)星形膠質(zhì)細胞、小膠質(zhì)細胞數(shù)目及鐵沉積的變化。方法將健康雄性8周齡C57BL/6小鼠隨機分成對照組和MPTP組,MPTP組小鼠腹腔注射MPTP(18 mg/kg體質(zhì)量),對照組給予等體積生理鹽水,每周2次,持續(xù)5周。通過爬桿實驗檢測小鼠運動功能,組織免疫熒光染色檢測酪氨酸羥化酶(TH)神經(jīng)元、星形膠質(zhì)細胞和小膠質(zhì)細胞數(shù)目,普魯士藍鐵染色(Perl’s-DAB)檢測鐵沉積。結(jié)果與對照組相比,MPTP組小鼠爬桿轉(zhuǎn)頭時間明顯增加,差異有統(tǒng)計學(xué)意義(t=2.42,P<0.05);SN中TH神經(jīng)元數(shù)目減少,星形膠質(zhì)細胞和小膠質(zhì)細胞數(shù)目增加,鐵陽性細胞數(shù)增加,差異均有統(tǒng)計學(xué)意義(t=3.82~4.83,P<0.05);GPe中小膠質(zhì)細胞數(shù)目顯著增多(t=2.54,P<0.05),星形膠質(zhì)細胞和鐵陽性細胞數(shù)目無變化。結(jié)論MPTP誘導(dǎo)的PD小鼠模型建模成功。模型鼠SN膠質(zhì)細胞激活和鐵沉積均增多,而GPe中僅有小膠質(zhì)細胞激活增多。
[關(guān)鍵詞]帕金森??;鐵;1-甲基-4-苯基-1,2,3,6-四氫吡啶;蒼白球;黑質(zhì);小神經(jīng)膠質(zhì)細胞;星形細胞;小鼠,近交C57BL
[中圖分類號]R742.5;R591.1[文獻標志碼]A[文章編號]2096-5532(2024)03-0350-05
doi:10.11712/jms.2096-5532.2024.60.097[開放科學(xué)(資源服務(wù))標識碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240729.1543.001;2024-07-3014:35:18
Changes in glial cell activation and iron deposition in the externalglobus pallidus of mice with Parkinson’s diseaseLI Mengyu, MA Xizhen, XIE Junxia, SONG Ning(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[Abstract]ObjectiveTo investigate the changes inastrocytes, microglial cells, and iron deposition in the substantia nigra (SN) and the externalglobus pallidus (GPe) in a mouse model of Parkinson’s disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MethodsHealthy male C57BL/6 mice, aged 8 weeks, were randomly divided into control group and MPTP group. The mice in the MPTP group were intraperitoneally injected with MPTP at a dose of 18 mg/kg body weight, while those in the control group were given an equal volume of normal saline, twice a week for 5 weeks. The pole test was used to measure the motor function of mice; immunofluorescent staining was used to measure the numbers of tyrosine hydroxylase (TH) neurons, astrocytes, and microglial cells; Prussian blue iron staining was used to observe iron deposition. ResultsCompared with the control group, the MPTP group had a significant increase in the time to turn around (t=2.42,Plt;0.05), a significant reduction in the number of TH neurons and significant increases in the numbers of astrocytes, microglial cells, and iron-positive cells in the SN (t=3.82-4.83,Plt;0.05), and a significant increase in the number of microglial cells in the GPe (t=2.54,Plt;0.05), but there were no significant changes in the numbers of astrocytes and iron-positive cells in the GPe. ConclusionThe mouse model of PD induced by MPTP is successfully established. There are increases in glial cell activation and iron deposition in the SN of model mice, while there is only an increase in microglial cell activation in the GPe.
[Key words]Parkinson disease; iron; 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine; globus pallidus; substantia nigra; microglia; astrocytes; mice, inbred" C57BL
帕金森病(PD)是一種主要包括運動遲緩和靜止性震顫等臨床表現(xiàn)的神經(jīng)退行性疾病,其發(fā)病率隨年齡增長而升高[1-3]。PD的神經(jīng)病理學(xué)標志是黑質(zhì)(SN)致密部(SNc)表現(xiàn)出多巴胺能神經(jīng)元丟失,以及路易小體形成[3]。慢性神經(jīng)炎癥是PD的主要特征[4]。PD病人SN區(qū)存在著小膠質(zhì)細胞和星形膠質(zhì)細胞激活,且存在著鐵沉積[5-6]。除了SN,蒼白球(GP)也是鐵代謝的關(guān)鍵腦區(qū)[7]。PD病人GP鐵含量顯著高于健康對照[6,8]。蒼白球外側(cè)部(GPe)是中央基底神經(jīng)節(jié)核團。GPe神經(jīng)元具有調(diào)節(jié)或維持正在進行的動作的能力。此外,GPe神經(jīng)元參與了非運動功能,包括學(xué)習(xí)、睡眠以及對感覺和獎勵線索的處理等[9-13]。GPe神經(jīng)元種類復(fù)雜[14-15]。在1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)制備的PD小鼠模型中,對SN膠質(zhì)細胞的激活與鐵沉積研究較多,但GPe是否存在膠質(zhì)細胞的激活和鐵沉積并沒有報道。本研究采用慢性MPTP模型來模擬PD的發(fā)病進程,探究PD狀態(tài)下GPe的炎癥反應(yīng)與鐵沉積變化。
1材料與方法
1.1實驗材料
1.1.1動物來源及飼養(yǎng)SPF級8周齡C57BL/6小鼠,由江蘇集萃藥康公司提供。小鼠飼養(yǎng)在自由飲水取食、晝夜光照循環(huán)(12 h/12 h)、室溫(20±2)℃、濕度(50±5)%的動物室,1周后開始實驗。實驗動物使用符合青島大學(xué)醫(yī)學(xué)部倫理委員會動物倫理學(xué)要求。
1.1.2主要試劑及來源MPTP購自美國Sigma公司,神經(jīng)膠質(zhì)酸性蛋白(GFAP)抗體、離子鈣結(jié)合銜接分子-1(IBA-1)抗體均購于美國Cell Signaling Technology公司,酪氨酸羥化酶(TH)抗體、山羊抗兔熒光二抗均購于美國Thermo Fisher Scientific公司。
1.2實驗方法
1.2.1動物分組及處理將27只小鼠隨機分為對照組(13只)和MPTP組(14只)。 MPTP組小鼠腹腔注射質(zhì)量濃度為1.8 g/L的 MPTP(18 mg/kg體質(zhì)量),對照組腹腔注射等體積生理鹽水,每周2次,持續(xù)5周。
1.2.2小鼠爬桿實驗采用瑞沃德(RWD)公司提供的小鼠爬桿裝置進行實驗。爬桿為直徑 0.8 cm、長 50.0 cm、頂端帶有直徑 3.0 cm 的圓球的木桿,表面以醫(yī)用膠帶纏繞防滑。整個裝置置于塑料盒中,實驗開始前用新墊料鋪于底部,并沒過底座。實驗前1 d,對小鼠進行適應(yīng)性訓(xùn)練,正式實驗時將小鼠放置于桿頂端,頭部朝上,記錄小鼠掉頭時間,取3次實驗平均值進行統(tǒng)計分析。
1.2.3腦組織免疫熒光染色取小鼠腦組織使用冷凍切片機(Leica,CM1950))進行切片。切片之前將機器預(yù)冷至-20 ℃,將腦組織用包埋劑 OCT(SakuraFinetek)包埋并固定,切成厚度為20 μm 的腦片。將腦片置于40 g/L甲醛溶液中固定10 min;PBS(0.01 mol/L)漂洗3次,每次10 min;用PBST稀釋的體積分數(shù)0.05驢血清溶液封閉腦片1 h,隨后將腦片置于使用封閉液配制的一抗(TH(1∶1 000),IBA-1(1∶200),GFAP(1∶300))中,并置于4 ℃搖床上孵育過夜;PBS(0.01 mol/L)漂洗3次,每次10 min;加入二抗室溫避光搖床孵育2 h,隨后在每孔中加入DAPI染色液50 μL繼續(xù)孵育5 min;PBS(0.01 mol/L)漂洗3次,每次10 min。將腦片平鋪至潔凈的病理防脫載玻片上,適當(dāng)干燥后用體積分數(shù)0.70甘油封片,用Olympus 數(shù)字病理切片掃描系統(tǒng)觀察并掃描。分別計數(shù)每個高倍視野(400倍)內(nèi)SN區(qū)和GPe區(qū)TH、IBA-1和GFAP陽性細胞總數(shù)并取平均值。
1.2.4普魯士藍鐵染色(Perl’s-DAB)實驗將小鼠腦片置于40 g/L甲醛溶液中固定5 min,去離子水漂洗 30 s;置于以等體積混合的20 g/L亞鐵氰化鉀溶液與20 g/L的HCl溶液室溫搖床孵育30 min;PBS(0.01 mol/L)漂洗2次,每次5 min;體積分數(shù)0.03的 H2O2-甲醇溶液室溫搖床孵育20 min,以封閉內(nèi)源性過氧化氫酶;用PBS(0.01 mol/L)漂洗腦片2次,每次5 min;然后將小鼠腦片置于DAB顯色液中避光顯色10 min,用雙蒸水終止顯色;將腦片平鋪至潔凈的病理防脫載玻片上,完全干燥后用中性樹膠封片。用Olympus數(shù)字病理切片掃描系統(tǒng)在明場顯微鏡下進行觀察并掃描。分別計數(shù)每個高倍視野(400倍)內(nèi)SN區(qū)和GPe區(qū)的鐵染色陽性細胞數(shù)目并取平均值。
1.3統(tǒng)計學(xué)處理
采用Prism 9軟件進行統(tǒng)計學(xué)分析。計量資料數(shù)據(jù)以±s表示,兩組均數(shù)比較采用獨立樣本t檢驗。以P<0.05為差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1兩組小鼠運動功能和SN區(qū)TH陽性神經(jīng)元計數(shù)比較
爬桿實驗結(jié)果顯示,與對照組小鼠的掉頭時間(1.66±0.51)s比較,MPTP組的(2.12±0.48)s明顯增加,差異有統(tǒng)計學(xué)意義(t=2.42,P<0.05)。運動行為學(xué)實驗結(jié)果表明,MPTP組小鼠出現(xiàn)運動功能障礙。免疫熒光染色檢測結(jié)果表明,與對照組小鼠SN區(qū)TH陽性神經(jīng)元總數(shù)(8 383.00±865.16)相比,MPTP組的(6 443.00±470.71)顯著減少,差異有統(tǒng)計學(xué)意義(t=4.83,P<0.05)。提示PD小鼠模型造模成功。
2.2兩組小鼠SN區(qū)星形膠質(zhì)細胞、小膠質(zhì)細胞和鐵沉積比較免疫熒光染色結(jié)果表明,與對照組小鼠SN區(qū)GFAP(200.00±67.94)和IBA-1(243.10±16.32)陽性細胞總數(shù)相比,MPTP組小鼠的GFAP(329.00±47.30)和IBA-1(293.10±25.31)顯著升高,差異有統(tǒng)計學(xué)意義(t=3.82、4.07,P<0.05)。提示MPTP誘導(dǎo)的PD小鼠模型SN區(qū)星形膠質(zhì)細胞和小膠質(zhì)細胞被激活。Perl’s-DAB染色表明,與對照組小鼠SN區(qū)鐵陽性細胞數(shù)目(2 087.00±277.12)相比,MPTP組的(2 743.00±238.18)顯著增多,差異有統(tǒng)計學(xué)意義(t=4.40,P<0.05)。提示MPTP誘導(dǎo)的PD模型小鼠SN區(qū)出現(xiàn)鐵沉積。見圖1。
2.3兩組小鼠GPe區(qū)星形膠質(zhì)細胞、小膠質(zhì)細胞和鐵沉積比較
免疫熒光染色結(jié)果表明,與對照組小鼠GPe區(qū)IBA-1陽性細胞平均數(shù)(16.15±2.48)相比,MPTP組的(19.63±2.27)明顯升高,差異有統(tǒng)計學(xué)意義(t=2.54,P<0.05)。提示GPe區(qū)小膠質(zhì)細胞被激活。MPTP組小鼠GPe區(qū)GFAP陽性細胞數(shù)目與對照組比較,差異無顯著性(t=1.35,P>0.05)。提示GPe區(qū)星形膠質(zhì)細胞未被激活。Perl’s-DAB染色表明,MPTP組小鼠GPe區(qū)鐵陽性細胞數(shù)目與對照組相比,差異無顯著性(t=0.03,P>0.05)。提示MPTP誘導(dǎo)的PD模型小鼠GPe區(qū)并未出現(xiàn)鐵沉積。見圖2。
3討論
在PD病人的SN中小膠質(zhì)細胞激活先于神經(jīng)元丟失,小膠質(zhì)細胞激活可以加重神經(jīng)炎癥,進一步加劇神經(jīng)元丟失,小膠質(zhì)細胞激活可促進PD神經(jīng)變性的進展[16-18]。有研究證明,GPe中的小清蛋白陽性神經(jīng)元向黑質(zhì)網(wǎng)狀部具有直接投射,這種投射與小鼠的運動能力直接相關(guān),并可以激活基底神經(jīng)節(jié)中的核團[11]。同時,SN的多巴胺能神經(jīng)元可以投射到GPe[19]。本文研究結(jié)果表明,SN多巴胺能神經(jīng)元損傷時,該腦區(qū)的小膠質(zhì)細胞和星形膠質(zhì)細胞被激活,同時GPe小膠質(zhì)細胞也被激活。已有文獻報道,細胞內(nèi)鐵過載可加重內(nèi)毒素或神經(jīng)毒素對小膠質(zhì)細胞的激活[20-21],且特別容易受到鐵過載誘導(dǎo)的鐵死亡的影響[22]。正常人腦組織中,GP鐵含量較高[23-25]。我們推測,可能是由于GPe鐵含量較高,所以當(dāng)SN神經(jīng)元損傷時,其投射至GPe的末梢受損,致小膠質(zhì)細胞容易被激活。星形膠質(zhì)細胞現(xiàn)在被認為是神經(jīng)退行性疾病中的關(guān)鍵參與者[26-28]。相對于小膠質(zhì)細胞,星形膠質(zhì)細胞對鐵的敏感性更低[22]。這可能是GPe未出現(xiàn)星形膠質(zhì)細胞激活的原因之一。
磁共振成像技術(shù)顯示,快速眼動睡眠行為障礙病人檢測中僅SN發(fā)現(xiàn)鐵含量升高,SN中鐵沉積增加[6]。隨著疾病發(fā)展,在其他大腦區(qū)域也出現(xiàn)鐵沉積增加,包括殼核、GP等[8,29]。最新研究表明,在多巴胺能神經(jīng)元喪失之前,神經(jīng)炎癥首先發(fā)生在黑質(zhì)-紋狀體系統(tǒng)中,并同時出現(xiàn)鐵沉積[20]。無論是在PD病人中還是在動物模型中,GPe鐵沉積都要晚于SN鐵沉積。本文僅在SN中觀察到了鐵沉積,而并未在GPe中觀察到鐵沉積。我們推測,本文PD模型小鼠GPe未出現(xiàn)鐵沉積可能是由于造模時間較短,尚未引起GPe明顯的鐵沉積。小膠質(zhì)細胞在SN中比其他腦區(qū)分布更豐富,與神經(jīng)炎癥密切相關(guān),這導(dǎo)致神經(jīng)元的區(qū)域特異性易感性[30-31]。這可能也是為什么SN更容易出現(xiàn)鐵沉積,而GPe不容易出現(xiàn)鐵沉積的原因之一。我們推測,延長造模時間可能會造成GPe鐵沉積。
綜上所述,經(jīng)典慢性MPTP小鼠PD模型可以引起GPe中小膠質(zhì)細胞的激活,不能引起星形膠質(zhì)細胞的激活和鐵沉積。后續(xù)會更換PD小鼠模型或延長造模時間,進行更深入的機制研究。本實驗結(jié)果為研究模擬PD晚期時GPe膠質(zhì)細胞激活和鐵沉積提供了新的理論基礎(chǔ),為進一步探討GPe腦區(qū)在PD發(fā)病機制中的作用提供了一定的實驗依據(jù)。
[參考文獻]
[1]BLOEM B R, OKUN M S, KLEIN C. Parkinson’s disease[J]. Lancet, 2021,397(10291):2284-2303.
[2]DORSEY E R, CONSTANTINESCU R, THOMPSON J P, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030[J]. Neurology, 2007,68(5):384-386.
[3]TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson’s disease[J]. The Lancet Neuro-logy, 2021,20(5):385-397.
[4]KUSHWAHA R, SINHA A, MAKARAVA N, et al. Non-cell autonomous astrocyte-mediated neuronal toxicity in prion diseases[J]. Acta Neuropathologica Communications, 2021,9(1):22.
[5]MANDEL S, GRNBLATT E, RIEDERER P, et al. Neuro-
354青島大學(xué)學(xué)報(醫(yī)學(xué)版)60卷
protective strategies in Parkinson’s disease: an update on progress[J]. CNS Drugs, 2003,17(10):729-762.
[6]SUN J Y, LAI Z Y, MA J H, et al. Quantitative evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2020,35(3):478-485.
[7]LI W, WU B, BATRACHENKO A, et al. Differential deve-lopmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan[J]. Human Brain Mapping, 2014,35(6):2698-2713.
[8]GUAN X J, XUAN M, GU Q Q, et al. Regionally progressive accumulation of iron in Parkinson’s disease as measured by quantitative susceptibility mapping[J]. NMR in Biomedicine, 2017,30(4).doi:10.1002/nbm.3489.
[9]HEGEMAN D J, HONG E S, HERNNDEZ V M, et al. The external globus pallidus: progress and perspectives[J]. The European Journal of Neuroscience, 2016,43(10):1239-1265.
[10]COURTNEY C D, PAMUKCU A, CHAN C S. Cell and circuit complexity of the external globus pallidus[J]. Nature Neuroscience, 2023, 26(7):1147-1159.
[11]LILASCHAROEN V, WANG E H, DO N, et al. Divergent pallidal pathways underlying distinct Parkinsonian behavioral deficits[J]. Nature Neuroscience, 2021,24(4):504-515.
[12]ARISTIETA A, BARRESI M, AZIZPOUR LINDI S, et al. A disynaptic circuit in the globus pallidus controls locomotion inhibition[J]. Current Biology, 2021,31(4):707-721.e7.
[13]THOMAS G E C, LEYLAND L A, SCHRAG A E, et al. Brain iron deposition is linked with cognitive severity in Parkinson’s disease[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2020,91(4):418-425.
[14]GITTIS A H, BERKE J D, BEVAN M D, et al. New roles for the external globus pallidus in basal Ganglia circuits and behavior[J]. The Journal of Neuroscience, 2014,34(46):15178-15183.
[15]HERNNDEZ V M, HEGEMAN D J, CUI Q L, et al. Parvalbumin+ neurons and Npas1+ neurons are distinct neuron classes in the mouse external globus pallidus[J]. The Journal of Neuroscience, 2015,35(34):11830-11847.
[16]SANCHEZ-GUAJARDO V, BARNUM C J, TANSEY M G, et al. Neuroimmunological processes in Parkinson’s disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity[J]. ASN Neuro, 2013,5(2):113-139.
[17]GELDERS G, BAEKELANDT V, VAN DER PERREN A. Linking neuroinflammation and neurodegeneration in Parkinson’s disease[J]. Journal of Immunology Research, 2018,2018:4784268.
[18]JOHNSON M E, STECHER B, LABRIE V, et al. Triggers, facilitators, and aggravators: redefining Parkinson’s disease pathogenesis[J]. Trends in Neurosciences, 2019,42(1):4-13.
[19]BEUKEMA P, YEH F C, VERSTYNEN T. In vivo characterization of the connectivity and subcomponents of the human globus pallidus[J]. NeuroImage, 2015,120:382-393.
[20]MA X Z, CHEN L L, QU L, et al. Gut microbiota-induced CXCL1 elevation triggers early neuroinflammation in the substantia nigra of Parkinsonian mice[J]. Acta Pharmacologica Sinica, 2024,45(1):52-65.
[21]WANG J, SONG N, JIANG H, et al. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons[J]. Biochimica et Biophysica Acta, 2013,1832(5):618-625.
[22]KENKHUIS B, BUSH A I, AYTON S. How iron can drive neurodegeneration[J]. Trends in Neurosciences, 2023,46(5):333-335.
[23]MOCHIZUKI H, CHOONG C J, BABA K. Parkinson’s di-sease and iron[J]. Journal of Neural Transmission, 2020,127(2):181-187.
[24]AQUINO D, BIZZI A, GRISOLI M, et al. Age-related iron deposition in the basal Ganglia: quantitative analysis in healthy subjects[J]. Radiology, 2009, 252(1):165-172.
[25]HALLGREN B, SOURANDER P. The effect of age on the non-haemin iron in the human brain[J]. Journal of Neurochemistry, 1958,3(1):41-51.
[26]BRANDEBURA A N, PAUMIER A, ONUR T S, et al. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders[J]. Nature Reviews Neuroscience, 2023, 24(1):23-39.
[27]LEITNER D F, CONNOR J R. Functional roles of transferrin in the brain[J]. Biochimica et Biophysica Acta, 2012,1820(3):393-402.
[28]SONG N, WANG J, JIANG H, et al. Astroglial and micro-glial contributions to iron metabolism disturbance in Parkinson’s disease[J]. Biochimica et Biophysica Acta Molecular Basis of Disease, 2018,1864(3):967-973.
[29]LI K R, AVECILLAS-CHASIN J, NGUYEN T D, et al. Quantitative evaluation of brain iron accumulation in different stages of Parkinson’s disease[J]. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 2022,32(2):363-371.
[30]QIAN Z M, KE Y. Brain iron transport[J]. Biological Reviews of the Cambridge Philosophical Society, 2019,94(5):1672-1684.
[31]KIM W G, MOHNEY R P, WILSON B, et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia[J]. The Journal of Neuroscience, 2000,20(16):6309-6316.
(本文編輯于國藝)