[摘要]目的探究胰高血糖素樣肽-1(GLP-1)受體激動(dòng)劑Exendin-4及內(nèi)源性GLP-1對(duì)大鼠蒼白球神經(jīng)元自發(fā)放電活動(dòng)的調(diào)控。方法利用在體細(xì)胞外電生理記錄法,在分別微壓力注射濃度均為10 μmol/L的Exendin-4和GLP-1受體阻斷劑Exendin-9-39后,觀察二者對(duì)正常大鼠蒼白球神經(jīng)元自發(fā)放電活動(dòng)的影響。結(jié)果在記錄到的16個(gè)正常大鼠蒼白球神經(jīng)元中,微壓力注射Exendin-4可以顯著增加其中11個(gè)神經(jīng)元的自發(fā)放電頻率(t=-4.729,P=0.001),與生理鹽水對(duì)照組相比差異有顯著性(Z=2.776,Plt;0.01),且可以顯著改變其放電模式(t=-3.136,Plt;0.05),放電規(guī)律性降低。在記錄到的9個(gè)正常大鼠蒼白球神經(jīng)元中,微壓力注射Exendin-9-39可顯著降低其中6個(gè)神經(jīng)元的自發(fā)放電頻率(t=6.374,P=0.001),與生理鹽水對(duì)照組相比差異有顯著性(Z=-2.739,Plt;0.01),但不改變其放電模式。結(jié)論Exendin-4可增加蒼白球神經(jīng)元自發(fā)放電頻率并改變其放電模式,內(nèi)源性GLP-1參與了蒼白球神經(jīng)元自發(fā)放電活動(dòng)的調(diào)節(jié)。
[關(guān)鍵詞]蒼白球;胰高血糖素樣肽-1受體;艾塞那肽;微電極;電生理學(xué);大鼠,Wistar
[中圖分類(lèi)號(hào)]R322.81;R977.15[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2024)03-0327-06
doi:10.11712/jms.2096-5532.2024.60.081[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.r.20240625.1103.004;2024-06-2614:15:27
Role of Exendin-4 and endogenous glucagon-like peptide-1 in regulating the spontaneous discharge activity of globus pallidus neurons in rats LI Xiaoxue, SHEN Fangshuai, CHEN Xinyi, XUE Yan, CHEN Lei (Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[Abstract]ObjectiveTo investigate the role of Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, and endo-genous GLP-1 in regulating the spontaneous discharge activity of globus pallidus neurons inrats. MethodsIn vivo extracellular electrophysiological recordings were performed to observe the effect of micro-pressure injection of 10 μmol/L Exendin-4 or 10 μmol/L Exendin-9-39, a GLP-1 receptor antagonist, on the spontaneous discharge activity of globus pallidus neurons in normal rats. ResultsAs for the 16 globus pallidusneurons of normal rats recorded, micro-pressure injection of Exendin-4 significantly increased the spontaneous discharge frequency of 11 neurons (t=-4.729,P=0.001), showing a significant difference compared with the normal saline control group (Z=2.776,Plt;0.01), and it significantly changed the discharge pattern(t=-3.136,Plt;0.05), with a reduction in the regularity of discharge. As for the 9 globus pallidusneurons of normal rats recorded, micro-pressure injection of Exendin-9-39 significantly reduced the spontaneous discharge frequency of 6 neurons (t=6.374,P=0.001), showing a significant difference compared with the normal saline control group (Z=-2.739,Plt;0.01), but it didnot change the discharge pattern.ConclusionExendin-4 increases the spontaneous discharge frequency of globus pallidus neurons and changes their discharge pattern, and endogenous GLP-1 is involved in the modulation of the spontaneous discharge activity of globus pallidus neurons.
[Key words] globus pallidu; glucagon-like peptide-1 receptor; exenatide; microelectrodes; electrophysiology; rats, Wistar
胰高血糖素樣肽-1(GLP-1)是一種主要由腸道L細(xì)胞合成并分泌的內(nèi)源性肽[1]。腦源性GLP-1主要由孤束核前胰高血糖素原PPG神經(jīng)元合成,其纖維廣泛投射到多個(gè)表達(dá)GLP-1受體的腦區(qū)并與之結(jié)合發(fā)揮作用[2-3]。GLP-1受體在人的大腦中分布廣泛,特別是在蒼白球等腦區(qū)中密度較高[4]。蒼白球是基底神經(jīng)節(jié)間接通路的重要核團(tuán),與運(yùn)動(dòng)調(diào)節(jié)密切相關(guān),并參與帕金森?。≒D)發(fā)病機(jī)制。值得注意的是,GLP-1具有許多生理功能,GLP-1及其受體激動(dòng)劑可以調(diào)節(jié)一些腦區(qū)神經(jīng)元的自發(fā)放電活動(dòng)[5-7],如Exendin-4可以增加下丘腦促性腺激素釋放激素神經(jīng)元的放電頻率。GLP-1也與PD密切相關(guān),可緩解PD病人運(yùn)動(dòng)功能障礙[8]。然而,GLP-1對(duì)蒼白球神經(jīng)元的電生理效應(yīng)尚不清楚。因此,本研究旨在通過(guò)玻璃微電極分別微壓力注射GLP-1受體激動(dòng)劑Exendin-4和受體阻斷劑Exendin-9-39,探究GLP-1對(duì)正常大鼠蒼白球神經(jīng)元自發(fā)放電活動(dòng)的影響。
1材料與方法
1.1實(shí)驗(yàn)材料
1.1.1實(shí)驗(yàn)動(dòng)物SPF級(jí)雄性Wistar大鼠購(gòu)自濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司,體質(zhì)量為220~250 g,實(shí)驗(yàn)動(dòng)物許可證號(hào):SCXK(魯)20190003。大鼠分籠飼養(yǎng)于室溫(23±1)℃、相對(duì)濕度(55±5)%、晝夜(12 h-12 h)交替光照的環(huán)境中,飼養(yǎng)期間可自由飲水進(jìn)食。實(shí)驗(yàn)前將大鼠移至實(shí)驗(yàn)室適應(yīng)1周,并嚴(yán)格按照實(shí)驗(yàn)動(dòng)物福利倫理要求進(jìn)行操作。
1.1.2主要實(shí)驗(yàn)試劑及其配制Exendin-4購(gòu)于英國(guó)Tocris公司(貨號(hào):1933),Exendin-9-39購(gòu)于中國(guó)Med Chem Express公司(貨號(hào):HY-P0264),使用去離子水溶解,無(wú)菌生理鹽水稀釋至10 μmol/L。氨基甲酸乙酯(又名烏拉坦)購(gòu)于上海麥克林生化科技有限公司,用無(wú)菌生理鹽水配制為200 g/L的溶液。滂胺天藍(lán)和乙酸鈉溶液購(gòu)于美國(guó)Sigma公司,用雙蒸水配制成含20 g/L滂胺天藍(lán)和0.5 mol/L乙酸鈉的混合溶液。
1.2實(shí)驗(yàn)方法
1.2.1動(dòng)物麻醉及分組使用200 g/L的烏拉坦(1 g/kg體質(zhì)量)腹腔注射麻醉健康大鼠,為維持大鼠的穩(wěn)定麻醉狀態(tài),實(shí)驗(yàn)過(guò)程中可酌情補(bǔ)充烏拉坦(每次不超過(guò)0.2 mL)。實(shí)驗(yàn)過(guò)程中使用恒溫加熱板維持大鼠體溫穩(wěn)定在36~38 ℃。將40只正常健康大鼠隨機(jī)分為2組進(jìn)行在體細(xì)胞外電生理記錄實(shí)驗(yàn)。在記錄到蒼白球神經(jīng)元穩(wěn)定放電后,一組分別微壓力注射生理鹽水和Exendin-4;另一組分別微壓力注射生理鹽水和Exendin-9-39。
1.2.2玻璃微電極的制備首先將3根外徑為1.7 mm、長(zhǎng)度為100.0 mm的玻璃微管兩端用銅絲固定在一起,置于垂直微電極拉制儀上,調(diào)節(jié)合適的溫度(90 ℃)和拉力(92 N)等拉制參數(shù),拉制出尖端直徑為3~10 μm、阻抗為10~20 MΩ的三管玻璃微電極。向其中一個(gè)玻璃微管注入含20 g/L 滂胺天藍(lán)的0.5 mol/L乙酸鈉溶液作為記錄電極,另外兩管分別注入生理鹽水和10 μmol/L的Exendin-4(10 μL)以及生理鹽水和10 μmol/L的Exendin-9-39(10 μL)。
1.2.3在體細(xì)胞外電生理記錄剃除大鼠頭部毛發(fā),通過(guò)耳桿將大鼠呈俯臥位固定于腦立體定位儀上。去除兩耳到后眼角連線(xiàn)之間皮膚以暴露顱骨,根據(jù)大鼠腦圖譜確定蒼白球的相對(duì)位置(前囟后0.8~1.2 mm,旁開(kāi)2.5~3.5 mm)[9]。使用牙科鉆去除相應(yīng)位置顱骨,暴露腦組織并滴加生理鹽水保持濕潤(rùn)。
將三管玻璃微電極于大鼠蒼白球上方位置固定到腦立體定位儀垂直操作臂上,并將電極下降至尖端接觸腦組織表面后,使用液壓推進(jìn)器將電極尖端下移至蒼白球區(qū)域(顱骨表面下5.0~7.0 mm),記錄到的生物電信號(hào)經(jīng)放大器和數(shù)模轉(zhuǎn)化器轉(zhuǎn)為數(shù)字信號(hào),傳輸至計(jì)算機(jī)Spike2 10.08軟件(Cambridge Electronic Design Limited)。待記錄到的神經(jīng)元至少穩(wěn)定放電300 s后,通過(guò)微壓力注射給藥系統(tǒng)分別將玻璃微管中藥物以68.95~103.42 kPa的壓力注射至神經(jīng)元表面,觀察藥物對(duì)該神經(jīng)元自發(fā)放電活動(dòng)的影響。
實(shí)驗(yàn)結(jié)束后,使用Spike2軟件選擇信噪比大于3∶1的電信號(hào)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,輸出平均放電頻率和放電模式。神經(jīng)元的基礎(chǔ)放電頻率和藥物反應(yīng)頻率分別為加藥前穩(wěn)定放電120 s和加藥后反應(yīng)高峰50 s的平均放電頻率。如果給藥后神經(jīng)元放電頻率的變化超過(guò)基礎(chǔ)放電頻率均數(shù)±2個(gè)標(biāo)準(zhǔn)差,則認(rèn)為該神經(jīng)元對(duì)該藥物有反應(yīng),否則認(rèn)為該神經(jīng)元為無(wú)反應(yīng)神經(jīng)元[10-12]。加藥前后神經(jīng)元自發(fā)放電間隔(ISI)的變異系數(shù)(CV)反映神經(jīng)元放電規(guī)律性,若加藥前后CV值發(fā)生顯著變化(Plt;0.05),則認(rèn)為該藥物改變神經(jīng)元放電模式。
1.3統(tǒng)計(jì)學(xué)處理
采用SPSS軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料數(shù)據(jù)以±s形式表示。同一個(gè)神經(jīng)元加藥前后平均放電頻率和CV值差異的比較采用配對(duì)t檢驗(yàn);加藥組和生理鹽水對(duì)照組神經(jīng)元放電頻率平均反應(yīng)百分?jǐn)?shù)差異的比較采用曼-惠特尼秩和檢驗(yàn);藥物誘導(dǎo)神經(jīng)元產(chǎn)生的不同反應(yīng)與不同放電模式的相關(guān)性比較采用Fisher精確檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1大鼠蒼白球神經(jīng)元自發(fā)放電活動(dòng)觀察
在體細(xì)胞外電生理記錄實(shí)驗(yàn)總共記錄到37個(gè)大鼠蒼白球神經(jīng)元,根據(jù)其原始放電活動(dòng)圖、放電間隔直方圖和自相關(guān)圖可以分為3種放電模式,其中25個(gè)神經(jīng)元為規(guī)則放電(67.57%),1個(gè)為不規(guī)則放電(2.70%),11個(gè)為簇狀放電(29.73%)。見(jiàn)圖1。
2.2Exendin-4對(duì)大鼠蒼白球神經(jīng)元自發(fā)放電活動(dòng)影響
蒼白球微壓力注射生理鹽水后使所記錄到的6個(gè)神經(jīng)元的放電頻率由(13.71±5.15)Hz變化為(14.53±6.07)Hz,加藥前后放電頻率比較差異無(wú)顯著性(t=-1.137,Pgt;0.05);平均反應(yīng)百分?jǐn)?shù)為(5.75±9.04)%。而蒼白球神經(jīng)元表面微壓力注射10 μmol/L的Exendin-4(48.47~1 795.20 nL),使所記錄到16個(gè)蒼白球神經(jīng)元中的11個(gè)放電頻率由(10.46±6.93)Hz顯著增加為(18.17±9.19)Hz,差異有統(tǒng)計(jì)學(xué)意義(t=-4.729,P=0.001);平均反應(yīng)百分?jǐn)?shù)為(107.57±98.03)%,與生理鹽水組相比差異有統(tǒng)計(jì)學(xué)意義(Z=3.015,P=0.001)。Exendin-4注射后沒(méi)有顯著改變另外5個(gè)蒼白球神經(jīng)元的放電頻率,由(10.12±6.36)Hz變化至(10.10±5.96)Hz,平均反應(yīng)百分?jǐn)?shù)為(2.00±6.53)%。見(jiàn)圖2。另外,Exendin-4誘導(dǎo)的11個(gè)蒼白球神經(jīng)元放電頻率增加的百分?jǐn)?shù)與基礎(chǔ)放電頻率之間沒(méi)有相關(guān)性(r=-0.5586,Pgt;0.05)。
Exendin-4對(duì)蒼白球神經(jīng)元放電模式影響的結(jié)果顯示,微壓力注射Exendin-4記錄到的16個(gè)蒼白球神經(jīng)元可分為規(guī)則放電和簇狀放電兩種放電模式,其中產(chǎn)生興奮效應(yīng)的11個(gè)蒼白球神經(jīng)元中,有3個(gè)表現(xiàn)為規(guī)則放電(27.3%),另有8個(gè)為簇狀放電(72.7%);在另外對(duì)Exendin-4無(wú)反應(yīng)的5個(gè)神經(jīng)元中,有3個(gè)為規(guī)則放電(60.0%),有2個(gè)為簇狀放電(40.0%)。經(jīng)Fisher精確檢驗(yàn),Exendin-4誘導(dǎo)蒼白球神經(jīng)元產(chǎn)生的不同反應(yīng)與兩種放電模式之間無(wú)明顯相關(guān)性(Pgt;0.05)。另外,Exendin-4使產(chǎn)生興奮效應(yīng)的11個(gè)蒼白球神經(jīng)元的CV值由1.33±1.14增加至1.64±1.26,差異具有顯著意義(t=-3.136,Plt;0.05),提示改變了神經(jīng)元放電模式,表現(xiàn)為放電規(guī)律性減低。
2.3內(nèi)源性GLP-1對(duì)大鼠蒼白球神經(jīng)元自發(fā)放電活動(dòng)影響
微壓力注射生理鹽水記錄到6個(gè)神經(jīng)元的放電頻率由(21.93±7.43)Hz變化為(21.92±7.52)Hz,加藥前后的放電頻率相比較差異無(wú)統(tǒng)計(jì)學(xué)意義(t=-0.019,Pgt;0.05);平均反應(yīng)百分?jǐn)?shù)為(-0.23±4.99)%。而微壓力注射10 μmol/L的Exendin-9-39(48.47~1 795.20 nL),使所記錄到的9個(gè)蒼白球神經(jīng)元中有6個(gè)的放電頻率由(24.80±10.05)Hz
330青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)60卷
降低至(20.19±9.12)Hz,二者比較差異有顯著意義(t=6.374,P=0.001);平均反應(yīng)百分?jǐn)?shù)為(19.40±6.83)%,與生理鹽水組相比較差異有統(tǒng)計(jì)學(xué)意義(Z=-2.882,Plt;0.01)。Exendin-9-39沒(méi)有顯著改變另外3個(gè)蒼白球神經(jīng)元的放電頻率,由(9.95±7.11)Hz變化為(9.09±7.46)Hz,平均反應(yīng)百分?jǐn)?shù)為(14.41±13.18)%。見(jiàn)圖3。Exendin-9-39誘導(dǎo)的6個(gè)蒼白球神經(jīng)元放電頻率降低百分?jǐn)?shù)同樣與基礎(chǔ)放電頻率沒(méi)有相關(guān)性(r=0.355,Pgt;0.05)。
Exendin-9-39對(duì)蒼白球神經(jīng)元放電模式影響的結(jié)果顯示,微壓力注射Exendin-9-39記錄到的9個(gè)蒼白球神經(jīng)元可分為規(guī)則放電和不規(guī)則放電兩種放電模式,其中產(chǎn)生抑制效應(yīng)的6個(gè)蒼白球神經(jīng)元全部為規(guī)則放電;在另外對(duì)Exendin-9-39無(wú)反應(yīng)的3個(gè)蒼白球神經(jīng)元中,有2個(gè)為規(guī)則放電(66.7%),有1個(gè)為不規(guī)則放電(33.3%)。Exendin-9-39誘導(dǎo)蒼白球神經(jīng)元產(chǎn)生的不同反應(yīng)與以上兩種放電模式之間亦無(wú)明顯相關(guān)性(Pgt;0.05)。另外,Exendin-9-39也沒(méi)有顯著改變神經(jīng)元的放電模式(t=0.809,Pgt;0.05),其產(chǎn)生抑制效應(yīng)的6個(gè)蒼白球神經(jīng)元的CV值由0.26±0.12變化為0.25±0.08。
3討論
基底神經(jīng)節(jié)是位于大腦皮質(zhì)下一群核團(tuán)的總稱(chēng),有重要的運(yùn)動(dòng)調(diào)節(jié)功能,其輸出結(jié)構(gòu)和輸入結(jié)構(gòu)之間構(gòu)成了經(jīng)典運(yùn)動(dòng)通路,其中直接通路是指紋狀體直接向蒼白球內(nèi)側(cè)部(GPi)投射的路徑,可提高皮質(zhì)的興奮性,從而易化運(yùn)動(dòng);間接通路是指紋狀體先后經(jīng)過(guò)蒼白球外側(cè)部(GPe)和丘腦底核兩次中繼后到達(dá)GPi的多突觸路徑,可抑制皮質(zhì)的興奮性,最終抑制運(yùn)動(dòng)[13]。
蒼白球是基底神經(jīng)節(jié)的重要組成部分,由GPe和GPi兩部分構(gòu)成,嚙齒動(dòng)物的蒼白球相當(dāng)于靈長(zhǎng)類(lèi)動(dòng)物的GPe[14]。GPe由于其廣泛投射到所有基底神經(jīng)節(jié)核團(tuán),在運(yùn)動(dòng)信息加工方面處于獨(dú)特而強(qiáng)大的地位[15]。研究發(fā)現(xiàn),蒼白球神經(jīng)元的自發(fā)放電頻率范圍很大(1~70 Hz)[16],主要由約95%的γ-氨基丁酸(GABA)能神經(jīng)元和約5%膽堿能神經(jīng)元組成[17]。GABA能神經(jīng)元又可以分為prototypic神經(jīng)元和arkypallidal神經(jīng)元。prototypic神經(jīng)元表現(xiàn)為快速且規(guī)則的放電模式;arkypallidal神經(jīng)元表現(xiàn)為較慢、較不規(guī)則或簇狀的放電模式[11,15]。研究表明,GPe與PD運(yùn)動(dòng)癥狀密切相關(guān)[18-19]。在慢性6-羥基多巴胺PD模型中,蒼白球至紋狀體的輸入增強(qiáng),使用化學(xué)遺傳技術(shù)激活Npas1+GPe神經(jīng)元可以抑制運(yùn)動(dòng)[18]。PD狀態(tài)下,GPe神經(jīng)元的放電頻率降低,且簇狀放電的比例增加。這些變化與PD表現(xiàn)出的肌僵直、運(yùn)動(dòng)減少、肢體震顫等運(yùn)動(dòng)障礙相關(guān)[19]。
GLP-1在中樞神經(jīng)系統(tǒng)中主要由孤束核PPG神經(jīng)元合成,再?gòu)V泛投射到各個(gè)表達(dá)GLP-1受體的腦區(qū)發(fā)揮作用。GLP-1具有許多生理學(xué)功能,GLP-1及其受體激動(dòng)劑可調(diào)節(jié)多個(gè)腦區(qū)神經(jīng)元的自發(fā)放電活動(dòng)。THIEBAUD等[7]研究結(jié)果顯示,GLP-1和Exendin-4可以增加嗅球僧帽細(xì)胞神經(jīng)元放電頻率。還有研究報(bào)道,利用松散膜片鉗技術(shù)記錄到Exendin-4可通過(guò)激活GLP-1受體增加雄性小鼠下丘腦促性腺激素釋放激素神經(jīng)元的放電頻率[5]。Exendin-4也使臂旁核神經(jīng)元的自發(fā)放電頻率顯著增加[20-21]。此外,對(duì)GLP-1受體激動(dòng)劑治療PD潛在臨床應(yīng)用的研究表明,依據(jù)其在PD動(dòng)物模型中的應(yīng)用情況,特別是1-甲基-4-苯基1,2,3,6-四氫吡啶(MPTP)小鼠等模型,側(cè)腦室給予Exendin-4可以激活GLP-1受體,對(duì)小鼠模型中MPTP誘導(dǎo)的多巴胺能神經(jīng)元損失發(fā)揮保護(hù)作用,從而使注射Exendin-4的MPTP小鼠在運(yùn)動(dòng)功能方面與對(duì)照組沒(méi)有顯著差異[22]。在大鼠基底神經(jīng)節(jié)蒼白球中檢測(cè)到中等密度的GLP-1受體免疫陽(yáng)性反應(yīng)[23],而Exendin-4對(duì)蒼白球神經(jīng)元的電生理效應(yīng)尚不清楚。利用在體細(xì)胞外電生理記錄技術(shù),本研究觀察到于正常大鼠蒼白球表面微量注射Exendin-4可以增加其自發(fā)放電頻率,這為Exendin-4通過(guò)調(diào)控蒼白球神經(jīng)元自發(fā)放電活動(dòng)參與PD運(yùn)動(dòng)行為的調(diào)節(jié)提供了潛在可能性。
目前為止,還沒(méi)有研究明確表明蒼白球中有GLP-1免疫陽(yáng)性反應(yīng)或來(lái)自于孤束核的GLP-1投射纖維[24],但本研究通過(guò)微壓力注射GLP-1受體阻斷劑Exendin-9-39,觀察到蒼白球神經(jīng)元自發(fā)放電頻率顯著降低,提示內(nèi)源性GLP-1可能以非突觸性化學(xué)傳遞的方式參與蒼白球神經(jīng)元自發(fā)放電活動(dòng)的調(diào)節(jié)。大量研究表明,內(nèi)源性GLP-1與攝食行為、癲癇發(fā)作等密切相關(guān)[25-26]。WANG等[25]研究發(fā)現(xiàn),于中腦腹側(cè)被蓋區(qū)內(nèi)給予Exendin-4可以抑制高脂肪食物的攝入,這與化學(xué)激活中腦腹側(cè)被蓋區(qū)釋放內(nèi)源性GLP-1的神經(jīng)末梢的結(jié)果一致。另外,GLP-1受體阻斷劑Exendin-9-39可以通過(guò)增加TRPV1通道活性,降低放電頻率,增加簇狀放電,從而增加大鼠高溫誘導(dǎo)的癲癇發(fā)作嚴(yán)重程度[26]??傊?,SOARES等[19]研究發(fā)現(xiàn)的PD狀態(tài)下GPe神經(jīng)元的放電頻率降低、簇狀放電的比例增加,與ZHANG等[26]報(bào)道的給予Exendin-9-39后癲癇發(fā)作的電生理變化一致,且TRPV1通道也在蒼白球中有表達(dá)[27]。這為探究GLP-1對(duì)蒼白球神經(jīng)元電生理效應(yīng)的離子通道機(jī)制,以及改善PD運(yùn)動(dòng)障礙提供了理論依據(jù)。
由于蒼白球神經(jīng)元本身具有自發(fā)放電頻率范圍大的特性,而且在體細(xì)胞外電生理記錄實(shí)驗(yàn)有隨機(jī)性,因此本實(shí)驗(yàn)中所記錄到的不同實(shí)驗(yàn)組神經(jīng)元的平均基礎(chǔ)放電頻率有所差異。而目前已有的實(shí)驗(yàn)結(jié)果顯示,Exendin-4可以增加較低頻蒼白球神經(jīng)元(<10 Hz)的放電頻率;Exendin-9-39可以降低較高頻蒼白球神經(jīng)元(10~20 Hz)的放電頻率,而對(duì)較低頻神經(jīng)元無(wú)顯著影響[5-7]。這可能與蒼白球神經(jīng)元GLP-1受體表達(dá)量和飽和程度有關(guān),當(dāng)內(nèi)源性GLP-1大量與其受體結(jié)合時(shí),其自發(fā)放電頻率較高,GLP-1受體阻斷劑Exendin-9-39可以發(fā)揮更大作用;當(dāng)內(nèi)源性GLP-1與其受體結(jié)合較少時(shí),其自發(fā)放電頻率較低,Exendin-4可與空缺GLP-1受體結(jié)合而增加放電頻率。同時(shí),由于蒼白球GABA能神經(jīng)元可以分為中高頻prototypic神經(jīng)元和低頻arkypallidal神經(jīng)元,上述差異或許亦與兩種神經(jīng)元GLP-1受體表達(dá)差異有關(guān),這兩種神經(jīng)元接受興奮性和抑制性輸入后,會(huì)以不同的多相模式對(duì)刺激作出反應(yīng)[28]。此外,在運(yùn)動(dòng)過(guò)程中prototypic神經(jīng)元的放電活動(dòng)減少,而arkypallidal神經(jīng)元的放電活動(dòng)增加[29-30],且蒼白球神經(jīng)元過(guò)度興奮及其對(duì)靶點(diǎn)的過(guò)度抑制是早期亨廷頓病病理生理學(xué)的關(guān)鍵特征[31],這使研究蒼白球神經(jīng)元與運(yùn)動(dòng)調(diào)控之間的關(guān)系更具復(fù)雜性。
綜上所述,本研究結(jié)果顯示,GLP-1受體激動(dòng)劑Exendin-4可以增加蒼白球神經(jīng)元自發(fā)放電頻率并改變其放電模式,內(nèi)源性GLP-1亦參與了蒼白球神經(jīng)元自發(fā)放電活動(dòng)的調(diào)節(jié)。本實(shí)驗(yàn)結(jié)果為進(jìn)一步探究GLP-1及其受體系統(tǒng)可能作為治療PD運(yùn)動(dòng)障礙的潛在靶點(diǎn),提供了一定的理論和實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1]MOJSOV S, HEINRICH G, WILSON I B, et al. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing[J]." The Journal of Biological Chemistry, 1986,261(25):11880-11889.
[2]LLEWELLYN-SMITH I J, MARINA N, MANTON R N, et al. Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons[J]." Neuroscience, 2015, 284:872-887.
[3]MCLEAN B A, WONG C K, CAMPBELL J E, et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation[J]." Endocrine Reviews, 2021,42(2):101-132.
[4]ALVAREZ E, MARTNEZ M D, RONCERO I, et al. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypotha-lamus and brainstem[J]." Journal of Neurochemistry, 2005,92(4):798-806.
[5]FARKAS I, VASTAGH C, FARKAS E, et al. Glucagon-like peptide-1 excites firing and increases GABAergic miniature postsynaptic currents (mPSCs) in gonadotropin-releasing hormone (GnRH) neurons of the male mice via activation of nitric oxide (NO) and suppression of endocannabinoid signaling pathways[J]." Frontiers in Cellular Neuroscience, 2016,10:214.
[6]PTERFI Z, SZILVSY-SZAB A, FARKAS E, et al. Glucagon-like peptide-1 regulates the proopiomelanocortin neurons of the arcuate nucleus both directly and indirectly via presynaptic action[J]." Neuroendocrinology, 2021,111(10):986-997.
[7]THIEBAUD N, LLEWELLYN-SMITH I J, GRIBBLE F, et al. The incretin hormone glucagon-like peptide 1 increases mi-
332青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)60卷
tral cell excitability by decreasing conductance of a voltage-dependent potassium channel[J]." The Journal of Physiology, 2016,594(10):2607-2628.
[8]AVILES-OLMOS I, LIMOUSIN P, LEES A, et al. Parkinson’s disease, insulin resistance and novel agents of neuroprotection[J]." Brain: a Journal of Neurology, 2013,136(Pt 2):374-384.
[9]PAXINOS G, WATSON C. WITHDRAWN: dedication[M]// The Rat Brain in Stereotaxic Coordinates. Amsterdam: Elsevier, 1982: vi.
[10]王英,薛雁,陳蕾. Orexin-B對(duì)正常大鼠蒼白球神經(jīng)元自發(fā)放電及運(yùn)動(dòng)行為的影響[J]. 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2018,54(1):14-16,22.
[11]ARISTIETA A, BARRESI M, AZIZPOUR LINDI S, et al. A disynaptic circuit in the globus pallidus controls locomotion inhibition[J]." Current Biology, 2021,31(4):707-721.e7.
[12]SUN H Z, SHEN F S, LI X X, et al. Exendin-4 increases the firing activity of hippocampal CA1 neurons through TRPC4/5 channels[J]." Neuroscience Research, 2024,199:48-56.
[13]OBESO J A, RODRGUEZ-OROZ M C, BENITEZ-TEMINO B, et al. Functional organization of the basal Ganglia: therapeutic implications for Parkinson’s disease[J]." Movement Di-sorders: Official Journal of the Movement Disorder Society, 2008, 23(Suppl 3):S548-S559.
[14]GOLDBERG J A, BERGMAN H. Computational physiology of the neural networks of the primate globus pallidus: function and dysfunction[J]." Neuroscience, 2011,198:171-192.
[15]HEGEMAN D J, HONG E S, HERNNDEZ V M, et al. The external globus pallidus: progress and perspectives[J]." The European Journal of Neuroscience, 2016,43(10):1239-1265.
[16]DEISTER C A, DODLA R, BARRAZA D, et al. Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population[J]." Journal of Neurophysiology, 2013,109(2):497-506.
[17]BENGTSON C P, OSBORNE P B. Electrophysiological pro-perties of cholinergic and noncholinergic neurons in the ventral pallidal region of the nucleus basalis in rat brain slices[J]." Journal of Neurophysiology, 2000,83(5):2649-2660.
[18]GLAJCH K E, KELVER D A, HEGEMAN D J, et al. Npas1+ pallidal neurons target striatal projection neurons[J]." The Journal of Neuroscience, 2016,36(20):5472-5488.
[19]SOARES J, KLIEM M A, BETARBET R, et al. Role of external pallidal segment in primate Parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinsonism and lesions of the external pallidal segment[J]." The Journal of Neuroscience, 2004, 24(29):6417-6426.
[20]CHEN X Y, CHEN L, YANG W, et al. GLP-1 suppresses feeding behaviors and modulates neuronal electrophysiological properties in multiple brain regions[J]." Frontiers in Molecular Neuroscience, 2021,14:793004.
[21]RICHARD J E, FARKAS I, ANESTEN F, et al. GLP-1 receptor stimulation of the lateral parabrachial nucleus reduces food intake: neuroanatomical, electrophysiological, and behavioral evidence[J]." Endocrinology, 2014,155(11):4356-4367.
[22]CRAFT S, WATSON G S. Insulin and neurodegenerative di-sease: shared and specific mechanisms[J]." The Lancet Neuro-logy, 2004,3(3):169-178.
[23]FARKAS E, SZILVSY-SZAB A, RUSKA Y, et al. Distribution and ultrastructural localization of the glucagon-like peptide-1 receptor (GLP-1R) in the rat brain[J]." Brain Structure amp; Function, 2021, 226(1):225-245.
[24]GU G B, ROLAND B, TOMASELLI K, et al. Glucagon-like peptide-1 in the rat brain: distribution of expression and functional implication[J]." The Journal of Comparative Neurology, 2013,521(10):2235-2261.
[25]WANG X F, LIU J J, XIA J L, et al. Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons[J]." Cell Reports, 2015,12(5):726-733.
[26]ZHANG Y S, FANG J, FENG W, et al. The role of the GLP-1/GLP-1R signaling pathway in regulating seizure susceptibility in rats[J]." Brain Research Bulletin, 2018,142:47-53.
[27]CRISTINO L, PETROCELLIS L D, PRYCE G, et al. Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain[J]." Neuroscience, 2006,139(4):1405-1415.
[28]KETZEF M, SILBERBERG G. Differential synaptic input to external globus pallidus neuronal subpopulations in vivo[J]." Neuron, 2021,109(3):516-529.e4.
[29]JOHANSSON Y, KETZEF M. Sensory processing in external globus pallidus neurons[J]." Cell Reports, 2023,42(1):111952.
[30]DODSON P D, LARVIN J T, DUFFELL J M, et al. Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus[J]." Neuron, 2015,86(2):501-513.
[31]CALLAHAN J W, WOKOSIN D L, BEVAN M D. Dysregulation of the basal ganglia indirect pathway in early sympto-matic Q175 Huntington’s disease mice[J]." The Journal of neuroscience, 2022,42(10):2080-2102.
(本文編輯于國(guó)藝)