【摘 要】 激素性股骨頭壞死發(fā)病機(jī)制涉及細(xì)胞凋亡的失控或異常激活。近年研究發(fā)現(xiàn),microRNA(miRNA)與激素性股骨頭壞死發(fā)病具有密切關(guān)系。miRNA通過對(duì)關(guān)鍵凋亡信號(hào)通路Wnt/β-catenin、MAPK、PI3K/AKT、BMP等靶向作用,刺激骨細(xì)胞增殖分化,影響激素性股骨頭壞死發(fā)病、進(jìn)展。通過綜述miRNA調(diào)控細(xì)胞凋亡在激素性股骨頭壞死中的研究進(jìn)展,旨在闡明miRNA在激素性股骨頭壞死發(fā)病機(jī)制中的關(guān)鍵作用,以期為臨床新治療策略的制定提供理論依據(jù)。
【關(guān)鍵詞】 激素性股骨頭壞死;miRNA;細(xì)胞凋亡;治療策略
激素性股骨頭壞死(steroid-induced avascular necrosis of the femoral head,SANFH)是一種以股骨頭缺血缺氧、壞死和塌陷為特征的臨床常見骨骼疾?。?-2]。疾病后期以肌肉萎縮、肢體短縮、髖關(guān)節(jié)功能喪失為主要臨床特征,降低了患者生活質(zhì)量。SANFH病理機(jī)制涉及多種信號(hào)通路和分子調(diào)控,近年來,miRNA在細(xì)胞凋亡調(diào)控過程中所發(fā)揮的作用成為研究熱點(diǎn)。miRNA是一類短鏈非編碼RNA分子,其通過與靶基因的3'非翻譯區(qū)結(jié)合,調(diào)控靶基因的轉(zhuǎn)錄、翻譯過程,作為抑制因子或促進(jìn)因子調(diào)節(jié)關(guān)鍵凋亡信號(hào)通路相關(guān)基因蛋白、轉(zhuǎn)錄因子及氧化應(yīng)激等關(guān)鍵過程,發(fā)揮雙重作用[3]。而細(xì)胞凋亡作為一種高度調(diào)控的細(xì)胞死亡方式,在SANFH發(fā)病過程中扮演著至關(guān)重要的角色。本文通過綜述SANFH中miRNA調(diào)控細(xì)胞凋亡的最新研究進(jìn)展,以期深入了解miRNA在本病發(fā)病機(jī)制中的作用,為新治療策略的制定提供理論依據(jù)。
1 細(xì)胞凋亡與SANFH
細(xì)胞凋亡是一種高度調(diào)控的程序性細(xì)胞死亡過程,在維持組織和器官的正常生理狀態(tài)中起著關(guān)鍵作用[4]。在疾病進(jìn)展中,細(xì)胞凋亡可以清除老化、受損細(xì)胞,從而為新細(xì)胞生長(zhǎng)提供再生空間,維護(hù)骨組織的穩(wěn)態(tài)。在SANFH病理過程中,細(xì)胞凋亡調(diào)控的異常發(fā)揮著重要作用。長(zhǎng)期或過量使用內(nèi)源性激素(如糖皮質(zhì)激素、雌激素等)可能干擾骨組織的代謝平衡,引發(fā)骨細(xì)胞凋亡和股骨頭局部缺血,造成股骨頭內(nèi)血供減少,進(jìn)而誘發(fā)一系列細(xì)胞凋亡的級(jí)聯(lián)反應(yīng)[5],大量凋亡細(xì)胞的積累最終導(dǎo)致股骨頭塌陷,產(chǎn)生階梯狀改變,誘發(fā)SANFH。
1.1 炎癥反應(yīng) 炎癥因子通過誘導(dǎo)細(xì)胞凋亡參與SANFH發(fā)病進(jìn)程。白細(xì)胞介素(IL)是多種細(xì)胞凋亡的趨化因子,其家族成員IL-1β、IL-18、IL-6等通過激活經(jīng)典凋亡途徑參與SANFH生死決策[6]。半胱天冬酶(Caspase)家族蛋白通過降解相關(guān)基因、自發(fā)調(diào)節(jié)細(xì)胞生命活動(dòng),影響細(xì)胞凋亡的執(zhí)行階段[7]。在地塞米松誘導(dǎo)的成骨細(xì)胞中,裂解Caspase-3和Caspase-9蛋白處于高表達(dá)狀態(tài),促進(jìn)骨細(xì)胞凋亡,增加SANFH大鼠骨缺損風(fēng)險(xiǎn)。轉(zhuǎn)錄激活因子1(STAT1)是誘導(dǎo)細(xì)胞凋亡關(guān)鍵蛋白,抑制STAT1介導(dǎo)Dex誘導(dǎo)的大鼠成骨細(xì)胞凋亡中Caspase-3表達(dá)上調(diào),可以減緩類固醇誘導(dǎo)的大鼠SANFH進(jìn)展[8]。核轉(zhuǎn)錄因子-κB(NF-κB)是重要的炎癥和免疫應(yīng)答轉(zhuǎn)錄因子,在細(xì)胞凋亡調(diào)控中起雙重作用[9],作為炎癥反應(yīng)的中樞介質(zhì),決定炎性因子消退或是進(jìn)展為級(jí)聯(lián)損傷。NF-κB過度激活后,骨壞死促炎因子IL-6、IL-10和腫瘤壞死因子-α(TNF-α)表達(dá)水平顯著升高,促進(jìn)骨細(xì)胞凋亡、破壞骨形成,明顯提高SANFH發(fā)病率[10]。
1.2 氧化應(yīng)激 氧化應(yīng)激在SANFH的骨細(xì)胞凋亡中發(fā)揮重要作用。過量糖皮質(zhì)激素增加間充質(zhì)干細(xì)胞、成骨細(xì)胞及血管內(nèi)皮細(xì)胞氧化應(yīng)激風(fēng)險(xiǎn),產(chǎn)生大量活性氧(ROS),引發(fā)線粒體功能障礙及內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS),導(dǎo)致骨細(xì)胞活性下降,骨基質(zhì)礦化受損,股骨頭結(jié)構(gòu)破壞。研究表明,糖皮質(zhì)激素以劑量依賴性方式增加氧化損傷,影響代謝微環(huán)境,促進(jìn)還原型NADPH氧化酶(NOX)高表達(dá)作為氧化應(yīng)激的重要來源,導(dǎo)致SANFH過程中骨細(xì)胞凋亡[11]。地塞米松通過上調(diào)成骨細(xì)胞中p-JNK和p-c-Jun蛋白的表達(dá)激活c-Jun氨基末端激酶(JNK)/c-Jun通路,促進(jìn)B細(xì)胞淋巴瘤2
(Bcl-2)相關(guān)蛋白(Bax)表達(dá),然后移動(dòng)到線粒體并與Bcl-2結(jié)合形成促進(jìn)細(xì)胞凋亡的二聚體。增加胞內(nèi)ROS水平,降低線粒體膜電位,激活線粒體凋亡途徑,從而促進(jìn)SANFH[12]。此外,地塞米松通過調(diào)節(jié)ERS刺激骨細(xì)胞凋亡誘導(dǎo)SANFH發(fā)生。CCAAT增強(qiáng)子結(jié)合蛋白同源蛋白是ERS誘發(fā)細(xì)胞凋亡的關(guān)鍵蛋白,通過抑制Bcl-2的表達(dá),增加裂解Caspase-3表達(dá)水平,導(dǎo)致成骨細(xì)胞死亡。在甲潑尼龍誘導(dǎo)的肉雞SANFH模型中,激活ERS信號(hào)通路上的促凋亡基因mRNA表達(dá),影響軟骨細(xì)胞的形態(tài)變化、細(xì)胞活力降低、分泌能力功能障礙和細(xì)胞凋亡[13]。
1.3 轉(zhuǎn)錄因子 Bcl-2家族蛋白直接靶向與細(xì)胞凋亡的關(guān)鍵蛋白質(zhì),促進(jìn)線粒體膜通透性改變,調(diào)控線粒體釋放相關(guān)細(xì)胞凋亡通路[14];Bax是Bcl-2的拮抗基因,其功能活性通過相應(yīng)的編碼功能蛋白執(zhí)行,SANFH發(fā)病中Bcl-2對(duì)骨細(xì)胞凋亡的影響與Bcl-2與Bax比值的變化密切相關(guān)。大量糖皮質(zhì)激素在ROS累積的環(huán)境中,抑制Bcl-2表達(dá)水平,線粒體膜電位降低,導(dǎo)致成骨細(xì)胞凋亡和自噬,從而促進(jìn)SANFH進(jìn)展[15]。凋亡誘發(fā)SANFH根本原因在于股骨頭局部缺血再灌注障礙,而內(nèi)皮細(xì)胞關(guān)鍵轉(zhuǎn)錄因子血小板-內(nèi)皮細(xì)胞黏附分子(CD31)、血管內(nèi)皮生長(zhǎng)因子(VEGF)等促進(jìn)內(nèi)皮細(xì)胞增殖、遷移、存活,協(xié)調(diào)血管生成與骨穩(wěn)態(tài)調(diào)節(jié),改善SANFH[16]。此外,p53是細(xì)胞凋亡調(diào)控和DNA損傷響應(yīng)的轉(zhuǎn)錄因子,提高調(diào)節(jié)骨髓間充質(zhì)干細(xì)胞(BMSCs)中的線粒體自噬,促進(jìn)早期類固醇誘導(dǎo)的SANFH修復(fù)[17]。
綜上所述,細(xì)胞凋亡在SANFH中的機(jī)制呈現(xiàn)復(fù)雜多樣性,通過調(diào)節(jié)炎癥反應(yīng)、氧化應(yīng)激及內(nèi)質(zhì)網(wǎng)應(yīng)激等方式,影響SANFH病理進(jìn)程。
2 miRNA在細(xì)胞凋亡中的機(jī)制
miRNA通過參與細(xì)胞凋亡相關(guān)的信號(hào)通路,調(diào)控細(xì)胞凋亡的啟動(dòng)和執(zhí)行。在細(xì)胞凋亡過程中,miRNA可以作為促進(jìn)因子或抑制因子,參與多種信號(hào)通路的調(diào)節(jié),影響骨細(xì)胞增殖分化。
2.1 Wnt/β-catenin通路 Wnt/β-catenin信號(hào)通路在SANFH進(jìn)程中發(fā)揮重要作用。Wnt通路中的關(guān)鍵調(diào)節(jié)因子是β-連環(huán)蛋白(β-catenin),β-catenin易位到細(xì)胞核中,與T細(xì)胞因子結(jié)合,刺激靶基因Bcl-2、c-Myc抗體和細(xì)胞周期蛋白D1的轉(zhuǎn)錄,抑制細(xì)胞凋亡。糖皮質(zhì)激素引起活化的β-catenin和c-Myc表達(dá)顯著降低,促進(jìn)成骨細(xì)胞和骨細(xì)胞發(fā)生凋亡,抑制骨形成、血管生成,明顯影響骨量。而miRNA通過靶向Wnt配體/受體、β-catenin破壞復(fù)合物及轉(zhuǎn)錄因子,調(diào)節(jié)骨細(xì)胞凋亡過程。研究表明,miR-27、miR-140、miR-144和miR-545-3p等幾種miRNA及其相關(guān)靶標(biāo)表達(dá)與Wnt/β-catenin信號(hào)通路密切相關(guān)[18]。Wnt/β-catenin通路通過抑制miR-545-3p異位表達(dá)的成骨分化標(biāo)志物堿性磷酸酶(ALP)、Runt相關(guān)轉(zhuǎn)錄因子(Runx2)水平的消除,抑制前成骨細(xì)胞凋亡,促進(jìn)成骨分化[19]。
miR-144通過激活Wnt/β-catenin通路,上調(diào)Runx2、Osterix重組蛋白表達(dá),促進(jìn)BMSCs增殖、抑制細(xì)胞凋亡和誘導(dǎo)成骨細(xì)胞分化[20]。
2.2 絲裂原活化蛋白激酶(MAPK)通路 MAPK由細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)、p38絲裂原活化蛋白激酶(p38MAPK)和c-Jun氨基末端激酶(JNK)等組成,通過激活經(jīng)典三級(jí)激酶模式將膜外信號(hào)傳遞到細(xì)胞核內(nèi),參與炎癥反應(yīng)、氧化應(yīng)激、細(xì)胞增殖分化等過程。通過維持骨形成與骨吸收動(dòng)態(tài)平衡參與骨穩(wěn)態(tài)調(diào)節(jié),有效促進(jìn)BMSCs成骨分化,在成骨細(xì)胞與破骨細(xì)胞的增殖、分化及其功能活性方面發(fā)揮著重要調(diào)控作用。研究表明,miR-134-5p通過直接靶向MAPK通路激活,提高磷酸化p38和磷酸化ERK的豐度水平,調(diào)節(jié)破骨細(xì)胞分化,miR-134-5p敲低顯著加速破骨細(xì)胞形成和細(xì)胞增殖,并抑制細(xì)胞凋亡[21]。在外周血單個(gè)核細(xì)胞破骨細(xì)胞分化過程中,miR-22-3p表達(dá)降低,MAPK呈時(shí)間依賴性增加。且miR-22-3p通過靶向MAPK抑制p38、NF-κB表達(dá),抑制破骨增殖和分化,促進(jìn)破骨細(xì)胞凋亡[22]。
2.3 磷酸肌醇3激酶(PI3K)/蛋白激酶B(AKT)通路 PI3K是胞內(nèi)磷脂激酶,與生長(zhǎng)因子受體結(jié)合后激活A(yù)KT蛋白并使其活化,調(diào)控細(xì)胞的代謝、生長(zhǎng)、增殖等多種功能。PI3K/AKT信號(hào)通路激活血管內(nèi)皮細(xì)胞的增殖,改善微循環(huán)障礙,改善血管內(nèi)皮細(xì)胞凋亡和功能障礙,有助于血管修復(fù)和再生,滋養(yǎng)外周骨細(xì)胞,刺激間充質(zhì)干細(xì)胞分化為成骨細(xì)胞并促進(jìn)骨骼形成,緩解SANFH發(fā)展進(jìn)程。研究表明,miRNA-148a過表達(dá)抑制PI3K/AKT通路表達(dá),Bax、Caspase-3/9蛋白活性顯著增高,降低成骨細(xì)胞中雌激素受體α蛋白的表達(dá),促進(jìn)成骨細(xì)胞凋亡[23]。miR-320a通過靶向抑制PI3K/AKT信號(hào)通路,破壞前成骨細(xì)胞活力和分化,促進(jìn)細(xì)胞凋亡、誘導(dǎo)氧化應(yīng)激,抑制成骨分化[24]。
2.4 骨形態(tài)發(fā)生蛋白(BMP)信號(hào)通路 BMP是轉(zhuǎn)化生長(zhǎng)因子-β超家族的成員,含有高度同源的保守結(jié)構(gòu)域,在調(diào)節(jié)骨基質(zhì)穩(wěn)態(tài)中發(fā)揮重要作用。研究表明,miR-204的異位表達(dá)通過與BMP mRNA的直接靶向相互作用,呈時(shí)間依賴性地降低大鼠BMSCs的成骨能力[25]。miRNA-142通過靶向BMP-2,下調(diào)Bcl-2、Runx2及骨鈣素(OCN)蛋白表達(dá),抑制小鼠前成骨細(xì)胞的成骨分化及活性,促進(jìn)骨細(xì)胞凋亡[26];miR-542-3p通過抑制BMP-7及其下游信號(hào)傳導(dǎo)抑制成骨分化并促進(jìn)成骨細(xì)胞凋亡,破壞小鼠的骨形成、骨強(qiáng)度和小梁微結(jié)構(gòu)[27]。
此外,腺苷酸活化蛋白激酶(AMPK)、程序性細(xì)胞生物蛋白等信號(hào)通路均是miRNA在細(xì)胞凋亡中的關(guān)鍵機(jī)制,且各信號(hào)通路間相互串?dāng)_加強(qiáng)執(zhí)行效應(yīng)。因此,明確各類發(fā)病機(jī)制在細(xì)胞凋亡過程中的作用,有望為新治療策略的制定提供理論基礎(chǔ)。
3 miRNA參與細(xì)胞凋亡調(diào)控SANFH
3.1 miRNA與SANFH的關(guān)聯(lián) miRNA與細(xì)胞凋亡存在復(fù)雜的交互關(guān)系,在SANFH發(fā)病中至關(guān)重要。例如miR-34a和miRNA-141可以靶向p53基因,降低p53的表達(dá),從而影響細(xì)胞凋亡執(zhí)行階段[15-16]。miR-146a通過調(diào)控NF-κB信號(hào)通路,影響細(xì)胞凋亡的敏感性[17]。大量研究表明,miRNA在SANFH發(fā)病中具有雙向調(diào)節(jié)作用。
3.1.1 負(fù)性調(diào)節(jié)miRNA 研究表明,miR-206在SANFH標(biāo)本中表達(dá)上調(diào),導(dǎo)致細(xì)胞活力下降、成骨細(xì)胞增殖受到抑制,miR-206過表達(dá)導(dǎo)致細(xì)胞凋亡調(diào)節(jié)因子Bax表達(dá)增加,加速細(xì)胞凋亡的發(fā)生,導(dǎo)致SANFH病理進(jìn)展[28]。miR-15a-5p在SANFH大鼠模型中表達(dá)上調(diào),通過抑制Wnt/β-catenin信號(hào)通路,導(dǎo)致乳酸脫氫酶活性、Caspase-3/9表達(dá)水平顯著增高,加速BMSCs凋亡并延緩細(xì)胞生長(zhǎng)[29];
抑制miR-145的表達(dá)有助于促進(jìn)細(xì)胞增殖,降低細(xì)胞凋亡,沉默miR-145激活Wnt/β-catenin信號(hào),誘導(dǎo)VEGF、Bcl-2、c-Myc表達(dá)水平升高,Bax和Caspase-3水平顯著降低,抑制炎癥反應(yīng)及線粒體受損,進(jìn)而減緩骨細(xì)胞凋亡,促進(jìn)SANFH骨修復(fù)過程[30-31];此外,miR-1207-5p在SANFH患者壞死的股骨頭組織和血清中顯著上調(diào),抑制骨組織中VEGF表達(dá),促進(jìn)骨細(xì)胞凋亡[32];miR-4739抑制劑通過激活PI3K/AKT信號(hào)通路,促進(jìn)ALP、Osterix和Runx2等成骨蛋白的表達(dá),誘導(dǎo)成骨細(xì)胞增殖、分化并抑制細(xì)胞凋亡[33]。
3.1.2 正性調(diào)節(jié)miRNA 研究表明,在使用二苯基四唑溴化物測(cè)定和流式細(xì)胞術(shù)檢測(cè)大鼠模型中,miR-150通過沉默趨化因子NF-κB表達(dá),抑制TNF-α處理的成骨細(xì)胞凋亡與自噬,減緩骨細(xì)胞凋亡,促進(jìn)成骨分化,緩解大鼠SANFH癥狀[34]。miRNA-210通過刺激VEGF、CD31過表達(dá),增強(qiáng)微血管密度與股骨頭的骨重塑,促進(jìn)BMSCs的增殖、遷移和血管生成能力,降低細(xì)胞凋亡率,進(jìn)而保護(hù)BMSCs和改善SANFH進(jìn)展[35]。miR-199a靶向Wnt/β-catenin信號(hào)傳導(dǎo),上調(diào)Runx2、Osterix表達(dá)水平,參與糖皮質(zhì)激素抑制的成骨細(xì)胞增殖,有利于預(yù)防SANFH[36]。此外,肌內(nèi)注射MPS建立的肉雞模型中,miR-30b-5p過表達(dá)通過調(diào)節(jié)Runx2及下游基因X型膠原等表達(dá),抑制Caspase-3介導(dǎo)的炎癥反應(yīng),進(jìn)而調(diào)節(jié)軟骨細(xì)胞肥大與細(xì)胞凋亡,有望成為SANFH的治療靶點(diǎn)[37]。
3.2 典型miRNA調(diào)控SANFH miRNA通過靶向Wnt/β-catenin、PI3K/AKT等通路,改善炎癥反應(yīng)與氧化應(yīng)激,影響骨細(xì)胞凋亡與骨基質(zhì)礦化,進(jìn)而調(diào)控SANFH。miR-34a通過抑制p53負(fù)調(diào)節(jié)因子,增強(qiáng)p53活性,誘導(dǎo)氧化應(yīng)激,促使細(xì)胞進(jìn)入凋亡通路。此外,通過調(diào)控Bcl-2蛋白,影響線粒體膜通透性,增加細(xì)胞凋亡敏感性[38]。而靶向Wnt/β-catenin通路可逆轉(zhuǎn)miR-34a對(duì)SANFH損害[39]。miR-20b、miR-21是癌癥中上調(diào)最多的miRNA,同時(shí)是SANFH典型的miRNA譜,已被證明負(fù)向調(diào)節(jié)低氧誘導(dǎo)因子-1α(HIF-1α)的翻譯并抑制骨細(xì)胞的增殖和遷移。研究表明,miR-20b過表達(dá)介導(dǎo)BMP信號(hào)通路,促進(jìn)炎癥因子IL-1β、IL-6和TNF-α等釋放,導(dǎo)致Bcl-2/Bax表達(dá)水平明顯下降,誘發(fā)骨細(xì)胞凋亡,骨小梁密度減低,發(fā)生SANFH;miR-21通過抑制磷酸酶的翻譯作用,破壞PI3K/AKT和MAPK信號(hào)通路傳導(dǎo)的活性,誘導(dǎo)股骨頭病變[40-41]。miR-25是miR-106b-25簇的成員,其表達(dá)有利于人類成骨細(xì)胞的存活。miR-25
通過激活A(yù)MPK信號(hào)通路,發(fā)揮抗氧化功能并保護(hù)應(yīng)激細(xì)胞?;罨腁MPK通過脂肪酸氧化促進(jìn)NADPH合成,抑制ROS產(chǎn)生,逆轉(zhuǎn)地塞米松誘導(dǎo)的成骨細(xì)胞損傷,減輕細(xì)胞凋亡程度,促進(jìn)成骨分化[42]。此外,糖皮質(zhì)激素誘導(dǎo)松質(zhì)骨內(nèi)局部?jī)?nèi)皮細(xì)胞功能障礙,使血流量減少并處于高凝狀態(tài),發(fā)生細(xì)胞凋亡,增加促炎細(xì)胞因子TNF-α、IL-1β表達(dá),導(dǎo)致股骨頭損傷。而過表達(dá)miR-122-5p后BMP-2/6/7蛋白顯著激活,內(nèi)皮損傷減弱,表現(xiàn)為細(xì)胞活力、細(xì)胞遷移能力增強(qiáng),防止SANFH內(nèi)皮損傷[43]。
綜上所述,miRNA在SANFH中發(fā)揮著多樣的功能,其通過靶向關(guān)鍵凋亡蛋白、調(diào)節(jié)信號(hào)通路的活性,參與細(xì)胞凋亡的調(diào)控。
4 臨床藥物與潛在治療策略
4.1 藥物靶向調(diào)控SANFH 大量研究表明,臨床藥物通過調(diào)節(jié)miRNA介導(dǎo)的細(xì)胞凋亡,緩解SANFH病理進(jìn)展。研究顯示,黃芪多糖通過降低miR-206水平,靶向HIF-1α增加腺病毒相關(guān)蛋白表達(dá),以促進(jìn)自噬并抑制骨細(xì)胞凋亡,成功抑制SANFH細(xì)胞模型中的骨細(xì)胞凋亡[44];同時(shí),通過抑制miR-200b-3p表達(dá)激活Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo),抑制促凋亡蛋白Bax、Caspase-3、Caspase-9表達(dá),抵抗炎癥反應(yīng),上調(diào)Bcl-2的水平,調(diào)節(jié)骨細(xì)胞自噬和凋亡,改善SANFH[45]。均質(zhì)多糖及其硫酸衍生物在SANFH病理過程中通過增強(qiáng)miR-107
表達(dá)促進(jìn)細(xì)胞增殖和成骨分化。在地塞米松處理的前成骨細(xì)胞中膠原含量、Runx2、OCN、Bcl-2和c-Myc蛋白表達(dá)降低,Bax、細(xì)胞色素C和Caspase-3表達(dá)上調(diào),導(dǎo)致前成骨細(xì)胞產(chǎn)生細(xì)胞毒性,發(fā)生凋亡。而均質(zhì)多糖及其硫酸衍生物通過miR-107介導(dǎo)的Wnt/β-catenin、BMP通路可以逆轉(zhuǎn)上述損害[46]。此外,白藜蘆醇通過上調(diào)miR-146a預(yù)防類固醇誘導(dǎo)的骨壞死,通過Wnt/β-catenin和Sirt1/NF-κB途徑調(diào)控成骨細(xì)胞與破骨細(xì)胞的發(fā)育穩(wěn)態(tài),改善骨形成[47]。阿托伐他汀通過miR-186
抑制MAPK/NF-κB途徑激活,下調(diào)大鼠p38 MAPK、ERK、JNK、NF-ΚB磷酸化水平,降低ROS、炎性因子水平,抑制炎癥、緩解氧化應(yīng)激和細(xì)胞凋亡,減輕SANFH大鼠的損傷[48]。因此,大量藥物通過miRNA調(diào)控細(xì)胞凋亡對(duì)SANFH具有明確療效。但上述結(jié)論均來自動(dòng)物實(shí)驗(yàn),缺乏臨床數(shù)據(jù)支持,仍需進(jìn)一步實(shí)驗(yàn)來證實(shí)。
4.2 miRNA作為治療靶點(diǎn)的前景 隨著對(duì)miRNA功能及其在疾病診療中的深入研究,miRNA被認(rèn)為是治療SANFH潛在靶點(diǎn)。通過干預(yù)miRNA的表達(dá)調(diào)節(jié)細(xì)胞凋亡通路,進(jìn)而影響SANFH進(jìn)展,這一新興治療策略為臨床提供了更明確的治療選擇。目前,已有大量研究致力于探索針對(duì)miRNA的藥物治療策略,其中包括抑制具有異?;钚缘膍iRNA(miRNA抑制劑)或恢復(fù)被抑制miRNA的功能(miRNA模擬物)等方式。抑制劑通過抑制miRNA表達(dá)的上調(diào),減輕對(duì)靶基因的調(diào)控,恢復(fù)細(xì)胞正常生存狀態(tài)[49]。YANG等[50]通過實(shí)驗(yàn)表明,miR-195-5p抑制劑沉默miR-195-5p表達(dá),調(diào)節(jié)Wnt/β-catenin和NF-κB信號(hào)通路抑制軟骨細(xì)胞凋亡,在骨穩(wěn)態(tài)保護(hù)中具有重要意義。模擬物則促進(jìn)miRNA表達(dá),調(diào)控細(xì)胞凋亡。SUN等[51]發(fā)現(xiàn),在骨折患者中miRNA-211模擬物通過上調(diào)miRNA-211表達(dá),恢復(fù)對(duì)靶基因的抑制作用,并觀察到骨細(xì)胞活力下降、誘導(dǎo)細(xì)胞凋亡。miRNA可以同時(shí)調(diào)節(jié)多個(gè)靶基因,具有多靶點(diǎn)效應(yīng),從而更全面調(diào)控疾病發(fā)展。然而,miRNA作為治療靶點(diǎn)還面臨一些挑戰(zhàn)。比如如何選擇合適的miRNA靶點(diǎn)激活SANFH保護(hù)機(jī)制需要深入的研究,其治療的長(zhǎng)期影響也有待進(jìn)一步考證。
5 小 結(jié)
SANFH發(fā)病機(jī)制復(fù)雜,其防治是相關(guān)領(lǐng)域的熱點(diǎn)與難點(diǎn),而miRNA已成為SANFH治療中的潛在靶點(diǎn)。本文通過綜述miRNA、細(xì)胞凋亡與SANFH之間的關(guān)聯(lián)性,明確miRNA通過調(diào)控與細(xì)胞凋亡相關(guān)的關(guān)鍵基因、炎癥反應(yīng)和氧化應(yīng)激等過程,影響骨細(xì)胞增殖分化,與SANFH具有科學(xué)相關(guān)性。因此,基于miRNA調(diào)控細(xì)胞凋亡明確SANFH發(fā)病機(jī)制及防治措施將成為重要契機(jī),深入研究miRNA在SANFH中的作用,為其治療策略提供理論依據(jù),同時(shí)為臨床治療新藥研發(fā)提供更多靶點(diǎn)。
參考文獻(xiàn)
[1] YIN B,CHEN H,ZHANG W,et al.Effects of hypoxia environment on osteonecrosis of the femoral head in Sprague-Dawley rats[J].J Bone Miner Metab,2020,38(6):780-793.
[2] 張龍,韋標(biāo)方.激素性股骨頭壞死發(fā)病機(jī)制的研究進(jìn)展[J].風(fēng)濕病與關(guān)節(jié)炎,2018,7(3):73-76.
[3] RYKOVA E,ERSHOV N,DAMAROV I,et al.SNPs in 3' UTR miRNA target sequences associated with individual drug susceptibility[J].Int J Mol Sci,2022,23(22):13725-13746.
[4] 胡康一,曹林忠,尚征亞,等.細(xì)胞焦亡在激素性股骨頭壞死發(fā)病機(jī)制中的研究進(jìn)展[J].風(fēng)濕病與關(guān)節(jié)炎,2023,12(11):61-65,70.
[5] YUAN Y,TIAN Y,JIANG H,et al.Mechanism of PGC-1α-mediated mitochondrial biogenesis in cerebral ischemia-reperfusion injury[J].Front Mol Neurosci,2023,10(16):1224964-1224970.
[6] WANG Y,ZHAN Y,JI C,et al.Houttuynia cordata Thunb repairs steroid-induced avascular necrosis of the femoral head through regulating NF-κB signaling path-
way[J].Toxicon,2023,233(1):107270-107279.
[7] WEI S,PENG L,YANG J,et al.Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer[J].
J Exp Clin Cancer Res,2020,39(1):1-18.
[8] FENG Z,ZHENG W,TANG Q,et al.Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats[J].Apoptosis,2017,22(8):1001-1012.
[9] FEI M,LI Z,CAO Y,et al.MicroRNA-182 improves spinal cord injury in mice by modulating apoptosis and the inflammatory response via IKKβ/NF-κB[J].Lab Invest,2021,101(9):1238-1253.
[10] ZHENG LW,WANG WC,MAO XZ,et al.TNF-α regulates the early development of avascular necrosis of the femoral head by mediating osteoblast autophagy and apoptosis via the p38 MAPK/NF-κB signaling path-
way[J].Cell Biol Int,2020,44(9):1881-1889.
[11] BAI SC,XU Q,LI H,et al.NADPH oxidase isoforms are involved in glucocorticoid-induced preosteoblast apoptosis[J].Oxid Med Cell Longev,2019,27(1):9192413-9192422.
[12] PENG P,NIE Z,SUN F,et al.Glucocorticoids induce femoral head necrosis in rats through the ROS/JNK/c-Jun pathway[J].FEBS Open Bio,2021,11(1):312-321.
[13] TAO SC,YUAN T,RUI BY,et al.Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the AKT/Bad/Bcl-2 signal pathway[J].Theranostics,2017,7(3):733-750.
[14] KATAOKA T.Biological properties of the Bcl-2 family protein BCL-RAMBO,which regulates apoptosis,mitochondrial fragmentation,and mitophagy[J].Front Cell Dev Biol,2022,16(10):1065702-1065721.
[15] 張勇杰,曹林忠,萬超超,等.線粒體自噬在激素性股骨頭壞死發(fā)病中的作用及研究進(jìn)展[J].風(fēng)濕病與關(guān)節(jié)炎,2023,12(10):66-70.
[16] YANG C,WANG J,CHEN L,et al.Tongluo Shenggu capsule promotes angiogenesis to ameliorate glucocorticoid-induced femoral head necrosis via upregulating VEGF signaling pathway[J].Phytomedicine,2023,24(110):154629-154638.
[17] ZHANG F,PENG W,ZHANG J,et al.P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head[J].Cell Death Dis,2020,11(1):42-51.
[18] SHANG X,B?KER KO,TAHERI S,et al.The interaction between microRNAs and the Wnt/β-Catenin signaling pathway in osteoarthritis[J].Int J Mol Sci,2021,22(18):9887-9893.
[19] LI L,QIU X,SUN Y,et al.SP1-stimulated miR-545-3p inhibits osteogenesis via targeting LRP5-activated Wnt/beta-catenin signaling[J].Biochem Biophys Res Commun,2019,517(1):103-110.
[20] TANG L,LU W,HUANG J,et al.miR?144 promotes the proliferation and differentiation of bone mesenchymal stem cells by downregulating the expression of
SFRP1[J].Mol Med Rep,2019,20(1):270-280.
[21] HUANG M,WANG Y,WANG Z,et al.miR-134-5p inhibits osteoclastogenesis through a novel miR-134-5p/Itgb1/MAPK pathway[J].J Biol Chem,2022,298(7):102116-1021131.
[22] JIA X,YANG M,HU W,et al.Overexpression of miRNA-22-3p attenuates osteoporosis by targeting MAPK14[J].Exp Ther Med,2021,22(1):692-700.
[23] XIAO Y,LI B,LIU J.MicroRNA?148a inhibition protects against ovariectomy?induced osteoporosis through PI3K/AKT signaling by estrogen receptor α[J].Mol Med Rep,2018,17(6):7789-7796.
[24] KONG Y,NIE ZK,LI F,et al.MiR-320a was highly expressed in postmenopausal osteoporosis and acts as a negative regulator in MC3T3E1 cells by reducing MAP9 and inhibiting PI3K/AKT signaling pathway[J].Exp Mol Pathol,2019,110(1):104282-104293.
[25] WANG Y,CHEN S,DENG C,et al.MicroRNA-204 targets Runx2 to attenuate BMP-2-induced osteoblast differentiation of human aortic valve interstitial cells[J].J Cardiovasc Pharmacol,2015,66(1):63-71.
[26] LUO B,YANG J,YUAN Y,et al.MicroRNA-142 regulates osteoblast differentiation and apoptosis of mouse pre-osteoblast cells by targeting bone morphogenetic protein 2[J].FEBS Open Bio,2020,10(9):1793-1801.
[27] KUREEL J,DIXIT M,TYAGI AM,et al.miR-542-3p suppresses osteoblast cell proliferation and differentiation,targets BMP-7 signaling and inhibits bone formation[J].Cell Death Dis,2014,5(2):e1050-e1060.
[28] ZHANG Z,JIN A,YAN D.MicroRNA?206 contributes to the progression of steroid?induced avascular necrosis of the femoral head by inducing osteoblast apoptosis by suppressing programmed cell death 4[J].Mol Med Rep,2018,17(1):801-808.
[29] ZHANG WL,CHI CT,MENG XH,et al.miRNA?15a?5p facilitates the bone marrow stem cell apoptosis of femoral head necrosis through the Wnt/β?catenin/PPARγ signaling pathway[J].Mol Med Rep,2019,19(6):4779-4787.
[30] XU P,CHANG J,MA G,et al.MiR-145 inhibits the differentiation and proliferation of bone marrow stromal mesenchymal stem cells by GABARAPL1 in steroid-induced femoral head necrosis[J].BMC Musculoskeletal Disorders,2022,23(1):1020-1026.
[31] TIAN ZJ,LIU BY,ZHANG YT,et al.MiR-145 silencing promotes steroid-induced avascular necrosis of the femoral head repair via upregulating VEGF[J].Eur Rev Med Pharmacol Sci,2017,21(17):3763-3769.
[32] CHAO PC,CUI MY,LI XA,et al.Correlation between miR-1207-5p expression with steroid-induced necrosis of femoral head and VEGF expression[J].Eur Rev Med Pharmacol Sci,2019,23(7):2710-2718.
[33] SONG Y,MENG Z,ZHANG S,et al.miR-4739/ITGA10/PI3K signaling regulates differentiation and apoptosis of osteoblast[J].Regen Ther,2022,8(21):342-350.
[34] ZHENG LW,LAN CN,KONG Y,et al.Exosomal miR-150 derived from BMSCs inhibits TNF-α-mediated osteoblast apoptosis in osteonecrosis of the femoral head by GREM1/NF-κB signaling[J].Regen Med,2022,17(10):739-753.
[35] ZHENG C,WU Y,XU J,et al.Exosomes from bone marrow mesenchymal stem cells ameliorate glucocorticoid-induced osteonecrosis of femoral head by transferring microRNA-210 into bone microvascular endothelial cells[J].J Orthop Surg Res,2023,18(1):939-945.
[36] SHI C,HUANG P,KANG H,et al.Glucocorticoid inhibits cell proliferation in differentiating osteoblasts by microRNA-199a targeting of WNT signaling[J].J Mol Endocrinol,2015,54(3):325-337.
[37] LIN L,YU Y,LIU K,et al.Downregulation of miR-30b-5p facilitates chondrocyte hypertrophy and apoptosis via targeting Runx2 in steroid-induced osteonecrosis of the femoral head[J].Int J Mol Sci,2022,23(19):11275-11286.
[38] YI L,ZHU J,DONG S,et al.Berberine exerts antidepressant-like effects via regulating miR-34a-synaptotagmin1/Bcl-2 axis[J].Chin Herb Med,2021,13(1):116-123.
[39] YUAN HF,VON ROEMELING C,GAO HD,et al.Analysis of altered microRNA expression profile in the reparative interface of the femoral head with osteonecrosis[J].Exp Mol Pathol,2015,98(2):158-163.
[40] GREEN D,MOHORIANU I,PIEC I,et al.MicroRNA expression in a phosphaturic mesenchymal tumour[J].Bone Rep,2017,6(7):63-69.
[41] LI GQ,WANG ZY.MiR-20b promotes osteocyte apoptosis in rats with steroid-induced necrosis of the femoral head through BMP signaling pathway[J].Eur Rev Med Pharmacol Sci,2019,23(11):4599-4608.
[42] FAN JB,LIU W,ZHU XH,et al.microRNA-25 targets PKCζ and protects osteoblastic cells from dexamethasone via activating AMPK signaling[J].Oncotarget,2017,8(2):3226-3236.
[43] HUANG X,JIE S,LI W,et al.miR-122-5p targets GREM2 to protect against glucocorticoid-induced endothelial damage through the BMP signaling pathway[J].Mol Cell Endocrinol,2022,15(29):111541-111553.
[44] ZHANG SY,WANG F,ZENG XJ,et al.Astragalus polysaccharide ameliorates steroid-induced osteonecrosis of femoral head through miR-206/HIF-1α/BNIP3 axis[J].Kaohsiung J Med Sci,2021,37(12):1089-1100.
[45] ZHANG S,DONG K,ZENG X,et al.Astragalus polysaccharide ameliorates steroid-induced osteonecrosis of the femoral head by regulating miR-200b-3p-mediated Wnt/β-catenin signaling pathway via inhibiting SP1 expression[J].BMC Musculoskeletal Disorders,2023,24(1):1-12.
[46] HUANG W,JIN S,YANG W,et al.Agrimonia pilosa polysaccharide and its sulfate derives facilitate cell proliferation and osteogenic differentiation of MC3T3-E1 cells by targeting miR-107[J].Int J Biol Macromol,2020,15(28):616-625.
[47] NAN K,PEI J,F(xiàn)AN L,et al.Resveratrol prevents steroid-induced osteonecrosis of the femoral head via miR-146a modulation[J].Ann N Y Acad Sci,2021,1503(1):23-37.
[48] ZHANG Y,MA L,LU E,et al.Atorvastatin upregulates microRNA-186 and inhibits the TLR4-mediated MAPKs/NF-κB pathway to relieve steroid-induced avascular necrosis of the femoral head[J].Front Pharmacol,2021,16(12):583975-583989.
[49] SZCZEPANEK J,SKORUPA M,TRETYN A.MicroRNA as a potential therapeutic molecule in cancer[J].Cells,2022,11(6):1008-1031.
[50] YANG S,LONG J,GUO W,et al.MicroRNA?195?5p inhibitor prevents the development of osteoarthritis by targeting REGγ[J].Mol med rep,2019,19(6):4561-4568.
[51] SUN T,YANG D,WU Y,et al.The function of microRNA-211 expression in post-fracture bone cell apoptosis involving the transforming growth factor-β/phosphoinositide 3-kinase signaling pathway[J].J Int Med Res,2020,48(7):1-13.
收稿日期:2023-12-11;修回日期:2024-01-27