国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

鐵死亡在阿爾茨海默病中的作用*

2024-07-31 00:00付世青楊杰王芳
中國醫(yī)學創(chuàng)新 2024年18期

【摘要】 鐵死亡是一種新發(fā)現的細胞程序性死亡方式,主要由細胞內鐵依賴性脂質過氧化物積累引起,在形態(tài)學、生物化學和遺傳學上不同于以往報道的細胞凋亡、壞死和自噬。阿爾茨海默?。ˋD)是最常見的神經退行性疾病,其病理特征包括神經纖維纏結、老年斑及鐵的異常沉積等,提示鐵死亡可能參與其發(fā)病的進展。探討鐵死亡的發(fā)生機制及其在AD中的作用,以期為鐵死亡在神經退行性疾病中的研究提供參考。

【關鍵詞】 鐵死亡 發(fā)生機制 神經退行性疾病 阿爾茨海默病

The Role of Ferroptosis in Alzheimer's Disease/FU Shiqing, YANG Jie, WANG Fang. //Medical Innovation of China, 2024, 21(18): -188

[Abstract] Ferroptosis is a newly discovered mode of programmed cell death, mainly caused by the accumulation of iron dependent lipid peroxides in the cell, which is different from apoptosis, necrosis and autophagy in morphology, biochemistry and genetics. Alzheimer's disease (AD) is the most common neurodegenerative disease, and its pathological features include neurofibrillary tangles, age spots and abnormal iron deposition, suggesting that ferroptosis may be involved in the progression of its pathogenesis. Exploring the mechanism of ferroptosis and its role in AD, in order to provide reference for the study of ferroptosis in neurodegenerative diseases.

[Key words] Ferroptosis Occurrence mechanism Neurodegenerative diseases Alzheimer's disease

First-author's address: Department of Physiology, Bijie Medical College, Bijie 551700, China

doi:10.3969/j.issn.1674-4985.2024.18.042

鐵死亡是一種新型的、鐵依賴性的細胞死亡方式,最早由Dixon等[1]于2012年提出,在細胞內,鐵離子可以與細胞內的氧分子反應,產生有害的自由基,導致細胞氧化應激和損傷。此外,鐵還可以干擾細胞內的能量代謝、DNA修復和蛋白質合成等基本生物過程,最終導致細胞死亡。近年來的研究發(fā)現,鐵死亡在神經退行性疾病中發(fā)揮著極其重要的作用,并具有共同的調控機制。本綜述將重點討論鐵死亡的發(fā)生機制及其在阿爾茨海默?。ˋD)中的作用,希望為AD發(fā)病的潛在機制和治療提供有價值的策略。

1 鐵與鐵死亡

鐵參與氧的運輸和細胞呼吸、DNA合成和細胞分裂、細胞新陳代謝和神經傳導,對維持機體功能和日常新陳代謝至關重要[2]。鐵在體內以氧化狀態(tài)循環(huán)的能力是其生物功能的基礎,過量的鐵可導致生物大分子氧化應激損傷及細胞功能障礙。隨著年齡的增長,大腦中積累的鐵將增加神經退行性疾病的風險[3]。

鐵死亡是一種鐵依賴的新型細胞死亡模式,與細胞凋亡、細胞壞死和自噬有明顯區(qū)別。其主要機制是在亞鐵或脂氧合酶的作用下,鐵催化細胞膜上高表達不飽和脂肪酸的脂質體過氧化反應,從而誘導細胞死亡[1]。鐵死亡的形態(tài)特征是線粒體萎縮,雙層膜密度增加,線粒體內膜嵴消失,完整的細胞膜仍然存在,正常大小的線粒體內膜的嵴消失[4],但細胞核內沒有染色質凝集[5]。大量研究表明,鐵死亡還與細胞抗氧化系統(tǒng)中谷胱甘肽和谷胱甘肽過氧化物酶4(GPX4)的表達減少有關[6-8]。脂質過氧化物不能被GPX4催化的還原反應代謝,脂質在Fenton反應中被亞鐵氧化生成大量活性氧促進鐵死亡[9-10]。因此,鐵死亡的實質是細胞內脂質氧化物代謝紊亂,在鐵離子催化下異常代謝產生大量脂質破壞細胞內氧化還原平衡,攻擊生物大分子,引發(fā)細胞程序性死亡。

2 鐵死亡的發(fā)生機制

2.1 鐵在神經元中的運輸和儲存

神經元的鐵代謝相關蛋白1,即轉鐵蛋白受體蛋白1(TfR1)在神經細胞膜表面高表達[11];與腦毛細血管內皮細胞的轉鐵相似,鐵通過網格蛋白介導的Tf/TfR1吞噬作用而進入神經元,并通過二價金屬轉運體(DMT1)以還原二價鐵離子(Fe2+)的形式離開內含體釋放到胞質中[12]。朊病毒蛋白(PrPC)作為DMT1的鐵還原酶輔酶,以鐵離子絡合物的形式介導PrPc/DMT1在質膜中的攝取[13]。在大腦中,Fe2+通常在神經元的胞質中代謝,并以三價鐵離子(Fe3+)的形式儲存在鐵蛋白中;當神經元缺鐵時,鐵蛋白可被溶酶體降解從而釋放出儲存的鐵以滿足神經元的正常生理需要[14]。鐵代謝平衡在翻譯水平上受到調節(jié)。鐵調控蛋白2(IRP2)是一種RNA結合蛋白,在編碼多種鐵調控分子(包括DMT1和TfR1)的基因的非翻譯區(qū)(UTR)中,IRP1和IRP2與鐵反應元件(IREs)結合從而控制參與鐵代謝相關蛋白的翻譯。在缺鐵狀態(tài)下,IRP2和IREs的結合可最大限度地提高細胞內的鐵含量。當鐵含量增加時,細胞外鐵調節(jié)途徑(IRE/IRP系統(tǒng))將被激活從而降低鐵過載[15]。核受體輔激活因子4(NCOA4)可以降解鐵蛋白并介導鐵自噬,該過程使細胞內Fe2+增加和導致鐵死亡[16]。鐵響應元件結合蛋白2(IREB2)是鐵死亡的調控因子,能上調鐵代謝過程中細胞質中鐵蛋白輕鏈和重鏈的表達,減輕鐵死亡誘導劑erastin誘導的鐵死亡[17]。核因子E2相關因子2(Nrf2)可降低TfR1的表達,調節(jié)鐵代謝,維持細胞內鐵平衡,限制活性氧(ROS)的產生,從而減少鐵死亡[18]。

2.2 谷氨酸/半胱氨酸反轉運蛋白在鐵死亡中的作用

細胞通過谷氨酸/半胱氨酸反轉運蛋白,即Xc-系統(tǒng),包括12次跨膜蛋白轉運體溶質運載家族7成員11(SLC7A11)和單通道跨膜調節(jié)蛋白溶質運載家族3成員2(SLC3A2)攝取胱氨酸在鐵死亡發(fā)生中受到抑制[1]。因此,抑制Xc-系統(tǒng)會導致細胞內半胱氨酸的缺乏[19]。半胱氨酸在谷胱甘肽(GSH)的生物合成中發(fā)揮著重要作用。GSH作為GPX4的底物,是脂質修復功能所必需的,半胱氨酸缺乏引起的GSH耗竭會導致GPX4活性喪失,以及未修復的脂質過氧化物和鐵毒性的積累[20]。GPX4可以將還原型GSH轉化為氧化型谷胱甘肽(GSSG),進而把脂質過氧化氫還原為相應的醇或將游離過氧化氫還原為水[21]。硒(Se)是GPX4活性的關鍵調節(jié)因子,含Se的野生型GPX4可有效地將過氧化物還原為相應的醇,從而防止鐵死亡[22]。不穩(wěn)定鐵池(LIP)是神經元中易解離鐵離子的交換池,GSH則是Fe2+的天然配體,GSH結合LIP中的Fe2+以防止鐵氧化,這不僅維持了Fe2+的溶解度,還阻止了Fe2+作為催化劑將生理上可用的氫催化成強氧化劑羥基自由基[23]。因此,直接抑制GSH合成可觸發(fā)鐵死亡。

2.3 脂質過氧化在鐵死亡中的作用

ROS是導致鐵死亡的重要因素,其主要來源包括氮氧化合物(NOXs)的產生和膜脂過氧化[1]。多不飽和脂肪酸(PUFAs)在胞質中的量和分布決定了細胞中脂質過氧化的程度及導致鐵死亡,最易受影響的脂質是含有多不飽和脂肪酸(PUFA-PLs)的磷脂,它可導致細胞死亡[24]。游離PUFAs通過酯化形成膜磷脂,然后被氧化為鐵離子信號合成脂質信號,特別是含有磷脂酰乙醇胺(PE)和花生四烯酸或腎上腺素部分的磷脂[25]。在膜脂代謝中,PUFAs被一類非血紅素含鐵蛋白脂質氧化酶(LOXs)特異性過氧化,最終導致鐵死亡的發(fā)生[26]。

3 鐵死亡與AD

AD的病理學特征除了β-淀粉樣蛋白(Aβ)沉積和由tau蛋白組成的細胞內神經纖維纏結(NFTs)的積累外[27],鐵在大腦中的異常沉積也是AD的一個共同特征,鐵對AD的影響被歸結于其與AD病理學的主要蛋白[淀粉樣前體蛋白(APP)和tau蛋白]的相互作用和/或通過鐵介導的促氧化分子(如羥基自由基)的生成[9];鐵積累的潛在原因是組織內的衰老細胞隨著年齡的增長而增加,而鐵積累的衰老細胞引發(fā)炎癥將導致與衰老相關的各種病癥,鐵的積累使衰老組織易受氧化應激的影響,導致細胞功能障礙和鐵死亡[28]。此外,腦鐵水平升高與AD進展和認知能力下降有關[29]。在300例AD病例的meta分析表明,大腦皮層多個區(qū)域的鐵水平顯著升高,且不同區(qū)域的鐵水平存在差異[30]。鐵的積累可能導致神經退行性變,可能是通過誘導氧化應激和鐵死亡[31]。研究發(fā)現,腦鐵水平、腦脊液鐵蛋白和定量易感性圖譜具有預測AD臨床嚴重程度和認知能力下降的潛力[32]。通過對209例AD患者死后腦鐵水平與死前12年認知能力下降之間的關系研究發(fā)現,AD患者腦內鐵含量明顯升高,且與認知功能明顯相關;皮質部位的鐵可能通過誘導氧化應激或鐵死亡,或通過與炎癥反應相關聯,導致AD潛在蛋白病變使認知功能惡化[33]。

鐵的積累可加速老年斑的沉積和神經纖維纏結的產生[34]。尸檢證據和核磁共振成像分析證明,不僅在老年斑中存在大量鐵沉積[35],而且在皮質tau蛋白聚集部位也存在大量鐵沉積[36],這表明鐵與老年斑和神經纖維纏結存在潛在的相互作用。鐵代謝平衡紊亂是Aβ沉積的關鍵因素之一。細胞內鐵濃度過高會增強IRE與IRP的相互作用,誘導APP上調,而裂解APP的α-和β-分泌酶受內切蛋白酶furin的調控,鐵的過量能損傷furin的作用,使α-分泌酶被抑制,而β-分泌酶則被激活,導致Aβ生產增多[37]。有研究認為,在沒有氧化還原金屬劑的情況下,Aβ是無毒的,而Aβ的聚集需要金屬的參與[3]。當細胞外鐵增加時,可溶性的Aβ與Fe3+結合以清除多余的鐵,且相互作用后則很難解離,Aβ可促進Fe3+還原成Fe2+,在此過程中釋放的ROS更容易使Aβ迅速沉積并形成更多的老年斑[38]。鐵與APP和Aβ的相互作用大大增加了老年斑形成的速度和程度,鐵沉積可被納入AD的“Aβ級聯假說”[39]。鐵還可與tau蛋白相互作用,AD患者大腦中可溶性tau蛋白的減少通過抑制FPN1的活性使腦鐵沉積增加[40]。高鐵飲食會導致小鼠的認知能力下降,神經元tau蛋白磷酸化異常增加,胰島素信號通路的相關蛋白表達異常;補充胰島素后可降低鐵誘導的tau蛋白磷酸化,這表明鐵沉積可能通過干擾胰島素信號通路導致tau蛋白過度磷酸化[41]。

神經膠質細胞活化和神經炎癥已被證明是AD病理學的突出特征[42]。小膠質細胞對大腦中鐵水平升高較為敏感,當腦中鐵水平升高時,小膠質細胞被激活,體積增大,長度減少[43]。鐵可能通過核因子κB(NF-κB)介導的促炎因子激活小膠質細胞[44],激活后的小膠質細胞將表達更多的鐵蛋白以清除細胞外的鐵,導致細胞內鐵潴留[45],腫瘤壞死因子-α(TNF-α)表達增加,最終以β-斑塊形式沉積[46]。β-斑塊與APP相互作用,促進Aβ的形成[47]。在鐵水平升高的環(huán)境中,Aβ的形成會導致小膠質細胞中IL-1β的表達增加,加劇促炎效應[48]。另外,星形膠質細胞被增加的膠質纖維酸性蛋白(GFAP)激活后,釋放炎癥介質,誘導氧化應激,促進Aβ和tau蛋白纏結的形成,抑制了Aβ的清除[49]。在AD小鼠模型中,GSH在皮層中的表達減少,并與認知能力下降呈正相關,額葉和海馬的GSH水平可作為預測AD和輕度認知障礙的生物標志物[33]。在AD患者的大腦中Nrf2的水平隨著年齡的增長而降低,這使鐵死亡更容易發(fā)生[50]。另外,在AD小鼠模型和AD患者大腦中,GPX4的表達都會降低,GPX4基因敲除小鼠表現出明顯的海馬神經元缺失和認知障礙[51-52]。這些結果表明,鐵死亡在AD中起著關鍵作用,可導致神經元損傷和認知能力下降。因此,調節(jié)腦鐵代謝和減少神經元鐵死亡可能是治療AD的一種有前景的方法。

4 展望

鐵死亡是一種新發(fā)現的細胞死亡形式,表現為鐵超載、脂質過氧化物和ROS的積累。越來越多的研究表明鐵死亡在神經退行性疾病中發(fā)揮著重要作用[53]。在臨床上,可通過補充外源性脂質促進細胞脂質過氧化、抑制GPX4和GSH的表達、補充過氧化氫和鐵離子促進腫瘤細胞的Fenton反應等方法誘導鐵死亡。在神經退行性疾病治療反面可考慮針對鐵死亡作為潛在靶點研發(fā)相關藥物。

參考文獻

[1] DIXON S J,LEMBERG K M,LAMPRECHT M R,et al.

Ferroptosis: an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.

[2] CHIFMAN J,LAUBENBACHER R,TORTI S V.A systems biology approach to iron metabolism[J].Adv Exp Med Biol,2014,844:201-225.

[3] BELAIDI A A,BUSH A I.Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics[J].

J Neurochem,2016,139 Suppl 1:179-197.

[4] NIKSERESHT S,BUSH A I,AYTON S.Treating Alzheimer's disease by targeting iron[J].Br J Pharmacol,2019,176(18):3622-3635.

[5] OU M,JIANG Y,JI Y,et al.Role and mechanism of ferroptosis in neurological diseases[J].Mol Metab,2022,61:101502.

[6] ZHU K,ZHU X,LIU S,et al.Glycyrrhizin attenuates hypoxic-ischemic brain damage by inhibiting ferroptosis and neuroinflammation in neonatal rats via the HMGB1/GPX4 pathway[J].Oxid Med Cell Longev,2022:8438528.

[7] ZHAO Y Y,YANG Y Q,SHENG H H,et al.GPX4 plays a crucial role in Fuzheng Kang'ai Decoction-induced non-small cell lung cancer cell ferroptosis[J].Front Pharmacol,2022,13:851680.

[8] ZHAN S,LU L,PAN S S,et al.Targeting NQO1/GPX4-mediated ferroptosis by plumbagin suppresses in vitro and in vivo glioma growth[J].Br J Cancer,2022,127(2):364-376.

[9] ALBORZINIA H,IGNASHKOVA T I,DEJURE F R,et al.

Golgi stress mediates redox imbalance and ferroptosis in human cells[J].Commun Biol,2018,1:210.

[10] HE Y J,LIU X Y,XING L,et al.Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator[J].Biomaterials,2020,241:119911.

[11] GIOMETTO B,BOZZA F,ARGENTIERO V,et al.Transferrin receptors in rat central nervous system. An immunocytochemical study[J].J Neurol Sci,1990,98(1):81-90.

[12] JUAN T,WEI Z,XIN L L,et al.Lower expression of Ndfip1 is associated with alzheimer disease pathogenesis through decreasing DMT1 degradation and increasing iron influx[J].Frontiers in Aging Neuroence,2018,10:165.

[13] TRIPATHI A K,HALDAR S,QIAN J,et al.Prion protein functions as a ferrireductase partner for ZIP14 and DMT1[J].Free Radic Biol Med,2015,84:322-330.

[14] RAHA A A,BISWAS A,HENDERSON J,et al.Interplay of ferritin accumulation and ferroportin loss in ageing brain: implication for protein aggregation in Down syndrome dementia, Alzheimer's, and Parkinson's diseases[J].Int J Mol Sci,2022,23(3):1060.

[15] LI Y,HUANG X,WANG J,et al.Regulation of iron homeostasis and related diseases[J].Mediators Inflamm,2020:6062094.

[16] LI W,LI W,WANG Y,et al.Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury[J].Cell Death Discov,2021,7(1):267.

[17] MISHIMA E.The E2F1-IREB2 axis regulates neuronal ferroptosis in cerebral ischemia[J].Hypertens Res,2022,45(6):1085-1086.

[18] LI S,ZHENG L,ZHANG J,et al.Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy[J].Free Radic Biol Med,2021,162:435-449.

[19] MA L,ZHANG X,YU K,et al.Targeting SLC3A2 subunit of system X(C)(-)is essential for m(6)A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma[J].Free Radic Biol Med,2021,168:25-43.

[20] FAN B Y,PANG Y L,LI W X,et al.Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4[J].Neural Regen Res,2021,16(3):561-566.

[21] GASCHLER M M,ANDIA A A,LIU H,et al.FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation[J].Nat Chem Biol,2018,14(5):507-515.

[22] INGOLD I,BERNDT C,SCHMITT S,et al.Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J].Cell,2018,172(3):409-422.

[23] LIU Y,WAN Y,JIANG Y,et al.GPX4: the hub of lipid oxidation, ferroptosis, disease and treatment[J].Biochim Biophys Acta Rev Cancer,2023,1878(3):188890.

[24] DOLL S,PRONETH B,TYURINA Y Y,et al.ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J].Nat Chem Biol,2017,13(1):91-98.

[25] KAGAN V E,MAO G,QU F,et al.Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J].Nat Chem Biol,2017,13(1):81-90.

[26] SHINTOKU R,TAKIGAWA Y,YAMADA K,et al.

Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3[J].Cancer Sci,2017,108(11):2187-2194.

[27]付曉明,楊任民,汪世靖,等.TMS在神經系統(tǒng)變性疾病中的應用研究進展[J].中國醫(yī)學創(chuàng)新,2022,19(8):77-83.

[28] MASALDAN S,BUSH A I,DEVOS D,et al.Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration[J].Free Radic Biol Med,2019,133:221-233.

[29] MASALDAN S,BELAIDI A A,AYTON S,et al.Cellular senescence and iron dyshomeostasis in Alzheimer's disease[J].Pharmaceuticals(Basel),2019,12(2):93.

[30] TAO Y,WANG Y,ROGERS J T,et al.Perturbed iron distribution in Alzheimer's disease serum, cerebrospinal fluid,and selected brain regions: a systematic review and meta-analysis[J].J Alzheimers Dis,2014,42(2):679-690.

[31] STOCKWELL B R,FRIEDMANN ANGELI J P,BAYIR H,et al.

Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J].Cell,2017,171(2):273-285.

[32] AYTON S,FAZLOLLAHI A,BOURGEAT P,et al.Cerebral quantitative susceptibility mapping predicts amyloid-beta-related cognitive decline[J].Brain,2017,140(8):2112-2119.

[33] AYTON S,WANG Y,DIOUF I,et al.Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology[J].Mol Psychiatry,2020,25(11):2932-2941.

[34] KIM A C,LIM S,KIM Y K.Metal ion effects on abeta and tau aggregation[J].Int J Mol Sci,2018,19(1):128.

[35] JAMES S A,CHURCHES Q I,DE JONGE M D,et al.Iron, copper, and zinc concentration in abeta plaques in the APP/PS1 mouse model of AHjM1+r338ch+OPNbLkLln4jVBeR30nBZqd0KSI/vYBQ=lzheimer's disease correlates with metal levels in the surrounding neuropil[J].ACS Chem Neurosci,2017,8(3):629-637.

[36] SPOTORNO N,ACOSTA-CABRONERO J,STOMRUD E,et al.Relationship between cortical iron and tau aggregation in Alzheimer's disease[J].Brain,2020,143(5):1341-1349.

[37] WANG F,WANG J,SHEN Y,et al.Iron dyshomeostasis and ferroptosis: a new Alzheimer's disease hypothesis?[J].Front Aging Neurosci,2022,14:830569.

[38] COLLIN F.Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases[J].Int J Mol Sci,2019,20(10):2407.

[39] PETERS D G,POLLACK A N,CHENG K C,et al.Dietary lipophilic iron alters amyloidogenesis and microglial morphology in Alzheimer's disease knock-in APP mice[J].Metallomics,2018,10(3):426-443.

[40] RAO S S,ADLARD P A.Untangling tau and iron:exploring the interaction between iron and tau in neurodegeneration[J].Front Mol Neurosci,2018,11:276.

[41] WAN W,CAO L,KALIONIS B,et al.Iron deposition leads to hyperphosphorylation of tau and disruption of insulin signaling[J].Front Neurol,2019,10:607.

[42] LENG F,EDISON P.Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J].Nat Rev Neurol,2021,17(3):157-172.

[43] DONLEY D W,REALING M,GIGLEY J P,et al.Iron activates microglia and directly stimulates indoleamine-2, 3-dioxygenase activity in the N171-82Q mouse model of Huntington's disease[J/OL].PLoS One,2021,16(5):e0250606.https://doi.org/10.1371/journal.pone.0250606.

[44] MENG F X,HOU J M,SUN T S.In vivo evaluation of microglia activation by intracranial iron overload in central pain after spinal cord injury[J].J Orthop Surg Res,2017,12(1):75.

[45] STREIT W J,ROTTER J,WINTER K,et al.Droplet degeneration of hippocampal and cortical neurons signifies the beginning of neuritic plaque formation[J].J Alzheimers Dis,2022,85(4):1701-1720.

[46] KENKHUIS B,SOMARAKIS A,DE HAAN L,et al.Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients[J].Acta Neuropathol Commun,2021,9(1):27.

[47] TSATSANIS A,MCCORKINDALE A N,WONG B X,et al.

The acute phase protein lactoferrin is a key feature of Alzheimer's disease and predictor of Abeta burden through induction of APP amyloidogenic processing[J].Mol Psychiatry,2021,26(10):5516-5531.

[48] NNAH I C,LEE C H,WESSLING-RESNICK M.Iron potentiates microglial interleukin-1beta secretion induced by amyloid-beta[J].J Neurochem,2020,154(2):177-189.

[49] DOLOTOV O V,INOZEMTSEVA L S,MYASOEDOV N F,et al.

Stress-induced depression and Alzheimer's disease: focus on astrocytes[J].Int J Mol Sci,2022,23(9):4999.

[50] OSAMA A,ZHANG J,YAO J,et al.Nrf2: a dark horse in Alzheimer's disease treatment[J].Ageing Res Rev,2020,64:101206.

[51] YOO M H,GU X,XU X M,et al.Delineating the role of glutathione peroxidase 4 in protecting cells against lipid hydroperoxide damage and in Alzheimer's disease[J].Antioxid Redox Signal,2010,12(7):819-827.

[52] HAMBRIGHT W S,FONSECA R S,CHEN L,et al.Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration[J].Redox Biol,2017,12:8-17.

[53]劉皎茹,楊惠,王海燕,等.鐵死亡的機制及其在神經退行性疾病中的研究進展[J].中國醫(yī)藥導報,2023,20(22):38-42.

(收稿日期:2024-01-27) (本文編輯:馬嬌)