国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于葉片形態(tài)及顯微特征評價(jià)12個(gè)獼猴桃栽培品種的抗旱性

2024-06-15 12:30胡光明肖濤彭家清李大衛(wèi)田華王華玲肖麗麗程均歡黃海雷吳偉鐘彩虹
果樹學(xué)報(bào) 2024年5期
關(guān)鍵詞:抗旱性氣孔獼猴桃

胡光明 肖濤 彭家清 李大衛(wèi) 田華 王華玲 肖麗麗 程均歡 黃海雷 吳偉 鐘彩虹

DOI:10.13925/j.cnki.gsxb.20240051

摘??? 要:【目的】探討不同獼猴桃品種的葉片宏觀形態(tài)和微觀結(jié)構(gòu)特征的差異,篩選抗旱性評價(jià)關(guān)鍵指標(biāo)并進(jìn)行抗旱性綜合評價(jià)?!痉椒ā坎捎枚喙δ軋D像分析法、石蠟切片法和掃描電鏡技術(shù),選取12個(gè)獼猴桃栽培品種為材料,對葉片形態(tài)、氣孔器和表皮毛微特征、解剖結(jié)構(gòu)等24項(xiàng)指標(biāo)進(jìn)行觀測、記錄。通過方差分析明確不同品種的葉片形態(tài)和解剖結(jié)構(gòu)的差異,以主成分分析篩選綜合指標(biāo),運(yùn)用隸屬函數(shù)法進(jìn)行抗旱性綜合評價(jià)?!窘Y(jié)果】不同獼猴桃品種的葉片形態(tài)、解剖結(jié)構(gòu)、氣孔器及表皮毛特征具有顯著差異,相關(guān)性分析表明不同指標(biāo)間具有顯著或極顯著的相關(guān)性,運(yùn)用主成分分析從24個(gè)抗旱相關(guān)指標(biāo)中篩選了葉片寬度、葉形指數(shù)、氣孔長軸、單簇茸毛數(shù)、上表皮細(xì)胞厚度、下表皮細(xì)胞厚度、柵海比、組織結(jié)構(gòu)緊密度共8項(xiàng)關(guān)鍵性指標(biāo)。通過隸屬函數(shù)法比較不同品種間的抗旱能力,抗旱性強(qiáng)弱為:徐香>金美>金霞>海沃德>金艷>金魁>金梅>東紅>翠玉>金桃>桂海4號>Hort16A。使用聚類分析將12個(gè)獼猴桃品種按抗旱能力聚為5類?!窘Y(jié)論】通過對葉片形態(tài)及顯微結(jié)構(gòu)的分析,評價(jià)并篩選到抗旱性相對較強(qiáng)的獼猴桃品種,研究結(jié)果為獼猴桃品種改良、品種選擇及生產(chǎn)管理等提供了基礎(chǔ)理論依據(jù)。

關(guān)鍵詞:獼猴桃;葉片形態(tài);解剖結(jié)構(gòu);氣孔;表皮毛;抗旱性

中圖分類號:S663.4?????????? 文獻(xiàn)標(biāo)志碼:A??????????? 文章編號:1009-9980(2024)05-0911-18

收稿日期:2024-01-26??????? 接受日期:2024-03-03

基金項(xiàng)目:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-26);湖北省支持種業(yè)高質(zhì)量發(fā)展資金-農(nóng)業(yè)種質(zhì)資源保護(hù)利用課題(HBZY2023A001-05);湖北省第四批現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)資金(2023HBSTX4-08);農(nóng)業(yè)農(nóng)村部物種品種資源保護(hù)項(xiàng)目(2130135)

作者簡介:胡光明,男,助理農(nóng)藝師,碩士,主要從事獼猴桃育種和栽培生理研究。E-mail:wangyi_guangming@163.com

*通信作者 Author for correspondence. Tel:027-87510298,E-mail:zhongch@wbgcas.cn

Evaluation of drought resistance of 12 kiwifruit cultivars based on leaf morphology and microscopic characteristics

HU Guangming1, 2, XIAO Tao1, PENG Jiaqing1, LI Dawei2, TIAN Hua2, WANG Hualing1, XIAO Lili1, CHENG Junhuan1, HUANG Hailei1, WU Wei1, ZHONG Caihong2*

(1Economic Crops Research Institute of Shiyan City/Kiwifruit Germplasm Conservation Nursery in Qinba Mountain Area, Shiyan 442000, Hubei, China; 2Wuhan Botanical Garden, Chinese Academy of Sciences/Engineering Laboratory for Kiwifruit Industrial Technology, CAS/The National Actinidia Germplasm Nursery, Wuhan 430074, Hubei, China)

Abstract: 【Objective】 The Actinidia chinensis is the most domesticated species of the genus Actinidia and more than 100 commercially valuable cultivars have been developed. However, few studies have evaluated the drought resistance of different kiwifruit cultivars based on the leaf morphology and microstructure. This research aimed to evaluate the drought resistance of different kiwifruit cultivars by observing and analyzing characteristics, such as leaf morphology, anatomical structure, stomata, epidermis and trichomes. Key indicators for evaluating the drought resistance of kiwifruit cultivars and assessing their drought resistance were identified. 【Methods】We selected a total of 12 kiwifruit cultivars (belonging to A. chinensis var. chinensis and A. chinensis var. deliciosa), including Donghong, Guihai No. 4, Hort 16A, Jintao, Jinyan, Jinmei, Jinxia, Cuiyu, Jin Mei, Jinkui, Hayward and Xuxiang, as our observation samples. We employed the multifunctional image analysis method, paraffin sectioning method and scanning electron microscopy technique to observe and record the leaf morphology, anatomical structure, stomata and epidermal trichomes of 12 kiwifruit cultivars. A total of 24 traits (designated as X1-X24) were documented. Subsequently, we conducted variance analysis to compare the significant differences in the 24 traits among different cultivars. Then, using principal component analysis, we identified the key traits related to drought resistance from the original set of indicators. Finally, we employed the membership function method to comprehensively evaluate the drought resistance of different kiwifruit cultivars. 【Results】 There were significant differences in leaf morphology, anatomical structure, stomatal apparatus and the hair of the epidermis among different kiwifruit cultivars. Morphologically, the leaf was heart-shaped or oval-shaped, leaf length (X1) ranged from 10.94 cm to 17.28 cm, leaf width (X2) ranged from 11.39 cm to 16.35 cm, leaf shape index (X3) ranged from 0.93 cm to 1.06 cm, petiole length (X4) ranged from 6.87 cm to 15.91 cm, petiole diameter (X5) and leaf area (X6) ranged from 3.51 mm to 4.58 mm and from 95.03 cm2 to 208.36 cm2. For stomatal apparatus, the length (X7) ranged from 18.77 μm to 29.21 μm, the width (X8) ranged from 12.64 μm to 18.57 μm, the macroaxis (X9) ranged from 8.46 μm to 16.31 μm, and the density (X10) was between 168.70 and 339.63 per square millimeter. In the villi of lower epidermis, all cultivars had fluff, the length (X11) ranged from 249.41 μm to 324.10 μm, the pedestal density (X12) was between 9.37 and 31.83 pedestals per square millimeter, the villus density (X13) was between 54.93 and 113.95 roots per square millimeter, and the number of villis per pedestal (X14) was between 5.57 and 7.30. For sake of anatomical structures, these cultivars had similar anatomical characteristics. The structure of the leaves from the lower epidermis to the upper epidermis was composed of lower epidermal cells, sponge tissue, palisade tissue and upper epidermal cells. Calcium oxalate crystals were scattered in the mesophyll cells. The leaf veins mainly formed protrusions on the lower epidermis, which were vascular bundles, thin-walled tissues and mechanical tissues from the inside to outside. Lateral vein diameter (X15) ranged from 595.04 μm to 860.71 μm, leaf thickness (X16) ranged from 177.68 μm to 264.53 μm, thickness of upper epidermis cell (X17) ranged from 15.36 μm to 23.37 μm, the first layer of palisade tissue cell density (X18) was between 75.33 and 113.00 per square millimeter, thickness of lower epidermis cell (X19) ranged from 10.03 μm to 20.35 μm, thickness of palisade tissue (X20) ranged from 75.16 μm to 123.60 μm, thickness of spongy tissue (X21) ranged from 49.81μm to 85.68 μm, the ratio of X20 to X21 (X22) ranged from 1.19 to 2.16, tightness of leaf tissue structure (X23) ranged from 0.41 to 0.52, and looseness of leaf tissue structure (X24) ranged from 0.24 to 0.36. The coefficient of variation (CV) of the 24 traits ranged from 8.04% to 35.80%, and the correlation analysis showed that there were significant or extremely significant correlations among the different traits. Principal component analysis showed that the cumulative contribution rate of the first 7 principal components reached 93.046%, effectively retaining most of the information of the 24 indicators. Eight key drought-resistance indicators were selected, including X2 (leaf width), X3 (leaf shape index), X9 (macroaxis), X14 (number of villis per pedestal), X17 (thickness of upper epidermis cell), X19 (thickness of lower epidermis cell), X22 (thickness of palisade tissue/thickness of spongy tissue) and X23 (tightness of leaf tissue structure). Furthermore, the drought resistance of different cultivars was compared by subordinate function method. The order of drought resistance was as follows: Xuxiang > Jinmei > Jinxia > Hayward > Jinyan > Jinkui > Jin Mei > Donghong > Cuiyu > Jintao > Guihai No. 4 > Hort 16A. 【Conclusion】 The differences in leaf morphology, stomata, epidermal hair and anatomical structure of different kiwifruit cultivars were revealed. Leaf width, leaf shape index, stomatal length axis, number of villis per pedestal, thickness of upper epidermis, thickness of lower epidermis cell, thickness of palisade tissue/thickness of spongy tissue, and tightness of leaf tissue structure were selected to evaluate drought resistance. The drought-resistant cultivars such as Xuxiang, Jinmei and Jinxia were screened by the method of subordinate function analysis, which could provide reference for genetic breeding, variety selection and production management in the future.

Key words: Kiwifruit; Leaf morphology; Anatomical structure; Stomata; Epidermal hair; Drought resistance

獼猴桃因具有營養(yǎng)、健康、美味的特性和極高的商業(yè)價(jià)值成為享譽(yù)全球的特色水果[1-2]。世界上有超過20個(gè)國家和地區(qū)種植獼猴桃,收獲面積與年產(chǎn)量都在持續(xù)增加,中國獼猴桃種植面積已經(jīng)超過28萬hm2,收獲面積超過18萬hm2,均占世界總面積的68%以上[3-4]。獼猴桃對干旱脅迫敏感,干旱脅迫在中國許多獼猴桃產(chǎn)區(qū)經(jīng)常發(fā)生,是影響獼猴桃產(chǎn)量的主要限制因素之一[5]。因此,開展獼猴桃抗旱性相關(guān)研究,尤其是對不同獼猴桃品種的抗旱性進(jìn)行評價(jià),可以為建園前的品種合理篩選、生產(chǎn)中的精確化管理以及新品種培育親本選擇提供可靠的理論依據(jù)。

植物抗旱性與其形態(tài)學(xué)、解剖學(xué)和生理變化密切相關(guān)[6-7]。葉片是植物對生境條件變化反應(yīng)最為敏感的器官,其結(jié)構(gòu)特征最能體現(xiàn)環(huán)境因素的影響和植物對環(huán)境的適應(yīng)性[8]。對于適應(yīng)干旱環(huán)境的植物,葉片會演化形成一系列抗旱耐旱的形態(tài)解剖結(jié)構(gòu),如葉片厚而小、柵欄組織發(fā)達(dá)、維管束直徑粗、葉片緊密度高和表皮毛發(fā)達(dá)等[9]。研究葉片宏觀、微觀結(jié)構(gòu)與環(huán)境之間的關(guān)系,已成為評價(jià)植物抗逆性的一種簡單而有效的方法[10-11]。宋鵬等[12]對6種衛(wèi)矛屬(Euonymus)植物進(jìn)行葉片解剖結(jié)構(gòu)與抗旱性評價(jià),發(fā)現(xiàn)不同種的抗旱性從強(qiáng)到弱依次為衛(wèi)矛>西南衛(wèi)矛>疏花衛(wèi)矛>歐洲衛(wèi)矛>大果衛(wèi)矛>矩葉衛(wèi)矛;范志霞等[13]研究了成都地區(qū)10種園林灌木葉片結(jié)構(gòu)與抗旱性的關(guān)系,結(jié)果表明,紅花繼木、鴨腳木、紅葉石楠和梔子屬于強(qiáng)抗旱樹種,可用于屋頂、邊坡等區(qū)域種植;郭改改等[14]綜合解剖結(jié)構(gòu)與生理生化特性分析了不同區(qū)域長柄扁桃抗旱性的強(qiáng)弱;另在許多植物中均開展過基于葉片解剖結(jié)構(gòu)或表皮微特征與抗旱性關(guān)系的研究,如板栗[15-16]、蘋果[17]、草莓[18]、柑橘[19]、李[20]、西瓜[21]和文冠果[22]等。但關(guān)于葉片表皮毛與抗旱性關(guān)系的研究極少,有研究表明,擰條錦雞兒(Caragana korshinskii)葉片的毛狀體是重要的表皮露水吸收結(jié)構(gòu),有助于該物種抵御干旱脅迫[23]。

商業(yè)栽培的獼猴桃品種大多數(shù)來源于中華獼猴桃(Actinidia chinensis var. chinensis)和美味獼猴桃(A. chinensis var. deliciosa)[2],目前對獼猴桃葉片解剖結(jié)構(gòu)、表皮微觀特征與抗旱性評價(jià)的研究報(bào)道較少,僅有零星的研究聚焦于少數(shù)獼猴桃品種,劉平平等[24]對5個(gè)獼猴桃種的皮孔、氣孔器和葉片下表皮特征進(jìn)行了比較,探討了獼猴桃微觀形態(tài)在分類學(xué)中的意義;劉文等[25]研究了中華獼猴桃不同性別間葉片微觀結(jié)構(gòu)的差異;陳健男[26]依據(jù)18個(gè)抗旱能力相關(guān)指標(biāo)對4個(gè)獼猴桃品種進(jìn)行了抗旱性評價(jià)等。筆者選取了12個(gè)獼猴桃品種,對它們的氣孔器特征、葉表皮毛結(jié)構(gòu)和解剖學(xué)特征進(jìn)行了比較分析,運(yùn)用主成分分析篩選抗旱相關(guān)的關(guān)鍵性指標(biāo),通過隸屬函數(shù)法綜合評價(jià)不同品種的抗旱能力,為獼猴桃品種改良、品種選擇及后期管理等提供基礎(chǔ)理論依據(jù)。

1 材料和方法

1.1 材料與試劑

供試品種分別為東紅、桂海4號、Hort16A、金桃、金艷、金梅、金霞、翠玉、金美、金魁、海沃德和徐香,基本信息如表1所示。供試品種涵蓋了中華獼猴桃和美味獼猴桃兩大主栽類型,而且選取了新優(yōu)品種和經(jīng)典品種進(jìn)行比較。所有材料均保存于國家獼猴桃種質(zhì)資源圃(湖北武漢),管理水平趨于一致,長勢相近。每個(gè)品種于不同方位的一年生枝條上取5片成熟葉,取葉位置均處于枝條基部向上數(shù)第8~10片葉,快速剪取1.0 cm×0.5 cm的葉片方塊,放入事先備好的70% FAA固定液中用于石蠟切片的制作;同時(shí)剪取相同的葉片放入電鏡固定液中用于觀察葉片氣孔器及表皮毛特征。另外每個(gè)品種選取10片成熟葉用于形態(tài)學(xué)比較。

1.2 石蠟切片制作與觀察

參照范志霞等[13]的方法,略作調(diào)整,進(jìn)行常規(guī)石蠟切片制作。先取1.0 cm×0.5 cm的新鮮組織用FAA固定液固定24 h以上。再經(jīng)不同濃度梯度的乙醇脫水、二甲苯透明、浸蠟、包埋,然后修塊和切片。采用手搖輪轉(zhuǎn)式切片機(jī)切成8 μm的薄片,經(jīng)脫蠟、番紅-固綠染色、脫水透明后,用樹膠封片。將制作完成的切片送往武漢賽維爾生物科技有限公司進(jìn)行全視野數(shù)字切片掃描(whole slide imaging),掃描結(jié)果通過CaseViewer 2.4軟件查看并計(jì)量葉片側(cè)脈直徑、葉片厚度、上表皮厚度、下表皮厚度、柵欄組織厚度、海綿組織厚度和第一層?xùn)艡诩?xì)胞密度等指標(biāo)。以葉片的長度/寬度為葉形指數(shù)、柵欄組織厚度/葉片厚度的百分?jǐn)?shù)為葉片組織緊密度、海綿組織厚度/葉片厚度的百分?jǐn)?shù)為葉片組織疏松度。

1.3 掃描電鏡觀察

參照木巴熱克·阿尤普等[8]的方法略作調(diào)整:切取0.5 cm×0.5 cm左右的新鮮葉片組織迅速投入電鏡固定液室溫固定2 h,再轉(zhuǎn)移至4 ℃保存;固定好的樣品經(jīng)0.1 mol·L-1磷酸緩沖液PB(pH=7.4)漂洗3次,每次15 min;然后將組織依次轉(zhuǎn)入30%、50%、70%、80%、90%、95%和100% 7個(gè)濃度(w)梯度的乙醇中脫水,每次15 min,再轉(zhuǎn)入乙酸異戊酯中15 min;將樣品放入臨界點(diǎn)干燥儀內(nèi)進(jìn)行干燥后放入離子濺射儀樣品臺上噴金30 s左右;最后以SU8100掃描電子顯微鏡觀察并拍照,用Image-J圖像處理軟件分別對表皮毛數(shù)目、表皮毛長度、氣孔密度和氣孔器大小進(jìn)行計(jì)量,并將密度相關(guān)指標(biāo)換算成每平方毫米的數(shù)目。

1.4 數(shù)據(jù)處理與分析

所有指標(biāo)(代號X1~X24)數(shù)據(jù)經(jīng)Excel 2019整理,利用SPSS 26軟件和OriginPro 2020軟件進(jìn)行單因素方差和相關(guān)性分析,采用主成分分析法篩選典型指標(biāo)并確定其權(quán)重,運(yùn)用隸屬函數(shù)法計(jì)算12個(gè)獼猴桃品種各典型指標(biāo)的平均隸屬值,以各品種的平均隸屬值作為品種抗旱性度量值,進(jìn)行綜合排名及聚類分析[13,16]。

2 結(jié)果與分析

2.1 不同品種葉片形態(tài)特征比較

12個(gè)品種的葉片形態(tài)特征如圖1和表2所示,不同品種之間存在明顯差異。葉片長度(X1)介于10.94~17.28 cm之間,葉片寬度(X2)介于11.39~16.35 cm之間,葉片面積(X6)介于95.03~208.36 cm2之間,3項(xiàng)指標(biāo)在不同品種中均為徐香最大,金美次之,翠玉最小,且徐香的葉片長度與葉面積極顯著高于其他品種;葉形指數(shù)(X3)介于0.93~1.06之間,徐香和金魁最大,二者顯著大于除東紅、金美和金艷外的其他品種,Hort16A最??;葉柄長度(X4)介于6.87~15.91 cm之間,金梅極顯著大于其他品種,桂海4號最?。蝗~柄直徑(X5)介于3.51~4.58 mm之間,金梅最大,金美次之,金桃最小。在12個(gè)品種的形態(tài)學(xué)特征中,變異系數(shù)(CV)最大的是葉柄長度,其次是葉面積,最小的是葉形指數(shù),分別為31.89%、28.53%和9.91%。

2.2 不同品種葉片氣孔器與表皮毛特征比較

不同品種葉片氣孔器與表皮毛均分布于葉片下表皮,特征如圖2、圖3和表3所示,12個(gè)品種的氣孔器與表皮毛特征存在顯著或極顯著差異。不同品種氣孔器長度(X7)的平均值為23.35 μm,海沃德為29.21 μm,極顯著高于其他品種,桂海4號為18.77 μm,顯著低于其他品種;氣孔器寬度(X8)的平均值為16.29 μm,金霞、徐香、海沃德和金桃分別為18.57、18.16、18.09和17.35 μm,均顯著高于其他品種(金美除外),桂海4號為12.64 μm,極顯著低于其他品種;氣孔長軸(X9)的平均值為12.20 μm,海沃德為16.31 μm,顯著高于其他品種,桂海4號的氣孔長軸為8.46 μm,顯著低于除金梅外的其他品種;氣孔密度(X10)的平均值為238.04個(gè)·mm-2,東紅和Hort16A分別為339.63和346.50個(gè)·mm-2,極顯著高于其他品種,金霞、海沃德和金艷的氣孔密度分別為168.70、171.43和185.97個(gè)·mm-2,極顯著低于其他品種。

12個(gè)品種下表皮部分細(xì)胞均發(fā)育成乳狀突起,其上簇生多條單細(xì)胞非腺毛,表皮毛的長度及密度均存在顯著差異。茸毛長度(X11)的平均值為324.10 μm,金霞和海沃德分別為414.02和399.79 μm,顯著高于其他品種,翠玉和金桃分別為249.41和256.36 μm,極顯著低于其他品種;茸毛簇密度(X12)的平均值為18.33簇·mm-2,桂海4號為31.83簇·mm-2,極顯著高于其他品種,金魁和徐香分別為9.37和9.53簇·mm-2,極顯著低于其他品種;茸毛根密度(X13)的平均值為113.95根·mm-2,桂海4號為216.10根·mm-2,極顯著高于其他品種,金魁為54.93根·mm-2,極顯著低于其他品種;單簇茸毛數(shù)(X14)的平均值為6.47根,各品種間的差異較小。

2.3 不同品種葉片內(nèi)部解剖結(jié)構(gòu)比較

不同獼猴桃品種葉片解剖結(jié)構(gòu)如圖4所示,他們具有相似的解剖特征,葉片從下表皮到上表皮的結(jié)構(gòu)依次為下表皮細(xì)胞、海綿組織、柵欄組織和上表皮細(xì)胞,葉肉細(xì)胞中零散分布有草酸鈣結(jié)晶;葉脈主要在下表皮形成突起,由內(nèi)到外依次是維管束、薄壁組織和機(jī)械組織。對12個(gè)品種葉片解剖相關(guān)的10個(gè)特征進(jìn)行統(tǒng)計(jì)分析,發(fā)現(xiàn)不同品種間存在顯著差異。從表4可以看出,側(cè)脈直徑(X15)的平均值為761.19 μm,較大的依次為金梅(860.71 μm)、海沃德(846.08 μm)、金魁(837.69 μm)和金美(814.55 μm),均極顯著大于除Hort16A外的其他品種,金桃(595.04 μm)極顯著小于其他品種;葉片厚度(X16)的平均值為221.92 μm,其中金美(264.53 μm)極顯著厚于其他品種,Hort16A(177.68 μm)和金桃(182.03 μm)極顯著薄于其他品種;上表皮細(xì)胞厚度(X17)的平均值為19.01 μm,其中徐香(23.37 μm)極顯著厚于其他品種,桂海4號(15.36 μm)、東紅(16.62 μm)和金艷(16.93 μm)均顯著薄于其他品種;第一層?xùn)艡诩?xì)胞密度(X18)的平均值為86.25個(gè)·mm-2,其中桂海4號(113.00個(gè)·mm-2)極顯著高于其他品種,最低的為徐香(75.33個(gè)·mm-2),極顯著低于部分品種;下表皮細(xì)胞厚度(X19)的平均值為14.40 μm,其中徐香(20.35 μm)極顯著厚于其他品種,桂海4號(10.03 μm)和Hort16A(10.66 μm)顯著薄于其他品種;柵欄組織厚度(X20)的平均值為98.80 μm,其中金霞(123.60 μm)和金美(121.87 μm)極顯著厚于其他品種,Hort16A(75.16 μm)極顯著薄于其他品種;海綿組織厚度(X21)的平均值為63.95 μm,其中東紅(85.68 μm)極顯著厚于其他品種,桂海4號(49.81 μm)極顯著薄于其他品種;柵海比(X22)的平均值為1.58,其中金霞(2.16)極顯著高于其他品種,Hort16A(1.19)和東紅(1.20)極顯著低于其他品種;組織結(jié)構(gòu)緊密度(X23)的平均值為0.45,其中金霞(0.52)極顯著高于其他品種,東紅(0.41)和海沃德(0.41)顯著低于部分品種;組織結(jié)構(gòu)疏松度(X24)的平均值為0.29,其中Hort16A(0.36)極顯著高于其他品種,金霞(0.24)和徐香(0.24)顯著低于部分品種。

2.4 指標(biāo)相關(guān)性與主成分分析

上述統(tǒng)計(jì)分析結(jié)果表明,24項(xiàng)指標(biāo)的變異系數(shù)(CV)介于8.04%~35.80%之間,說明不同獼猴桃品種葉片在葉片形態(tài)、氣孔器和表皮毛特征、葉片內(nèi)部解剖結(jié)構(gòu)等方面的特征指標(biāo)存在較大差異,可進(jìn)一步用于抗旱性分析。皮爾遜相關(guān)系數(shù)(Pearson correlation coefficient)表明,不同指標(biāo)間大部分表現(xiàn)出顯著或極顯著的相關(guān)性(圖5)。鑒于各指標(biāo)間密切相關(guān)且分別對抗旱性有一定的影響,全部用于抗旱性評價(jià)則不利于揭示類型特征,也容易產(chǎn)生認(rèn)知上的偏差[13]。為了篩選出可以代表品種抗旱性的關(guān)鍵性指標(biāo),借助主成分分析法對24項(xiàng)指標(biāo)進(jìn)一步篩選,依據(jù)特征值≥1的原則抽取主成分,據(jù)各主成分中每個(gè)指標(biāo)載荷量的大小并結(jié)合相關(guān)性分析篩選出貢獻(xiàn)較大的關(guān)鍵性指標(biāo)。

主成分分析結(jié)果(表5)表明,前7個(gè)主成分的累積貢獻(xiàn)率達(dá)到93.046%,較好保留了24項(xiàng)指標(biāo)的大部分信息,因此提取前7個(gè)主成分。各主成分因子載荷值有極大差異,絕對載荷值越高的指標(biāo)說明其對主成分的貢獻(xiàn)越大,其典型性越強(qiáng)。第1主成分的方差貢獻(xiàn)率為35.720%,其中下表皮細(xì)胞厚度(X19)、第一層?xùn)艡诩?xì)胞密度(X18)、茸毛根密度(X13)和簇密度(X12)的載荷值較大,主要反映了葉片組織結(jié)構(gòu)特征及表皮毛密度特征;第2主成分的方差貢獻(xiàn)率為17.333%,其中柵海比(X22)、組織結(jié)構(gòu)緊密度(X23)和組織結(jié)構(gòu)疏松度(X24)載荷值較大,主要反映了葉片組織結(jié)構(gòu)特征;第3主成分的方差貢獻(xiàn)率為13.607%,其中葉片寬度(X2)、葉柄直徑(X5)和葉面積(X6)的載荷值較大,主要反映了葉片的形態(tài)特征;第4主成分的方差貢獻(xiàn)率為10.369%,其中上表皮細(xì)胞厚度(X17)和葉片厚度(X16)的載荷值較大,反映了葉片的組織結(jié)構(gòu)特征;第5主成分的方差貢獻(xiàn)率為6.294%,其中氣孔器長(X7)和氣孔長軸(X9)的載荷值較大,主要反映了氣孔器長度特征;第6主成分的方差貢獻(xiàn)率為5.293%,其中葉形指數(shù)(X3)和茸毛長度(X11)的載荷值較大,主要反映了葉片形態(tài)和表皮毛長度特征;第7主成分的方差貢獻(xiàn)率為4.431%,其中單簇茸毛數(shù)(X14)載荷值最大,主要與表皮毛密度相關(guān)。

進(jìn)一步對不同品種進(jìn)行主成分因子分析,以第1主成分和第2主成分進(jìn)行二維排序,散點(diǎn)圖結(jié)果如圖6所示,在主成分1和主成分2排序下,12個(gè)品種可以分為3個(gè)類群,第Ⅰ類群包含東紅和Hort16A等2個(gè)品種,第Ⅱ類群包含金美、金梅、徐香、金魁和海沃德5個(gè)品種,第Ⅲ類群包含金桃、翠玉、金艷、桂海4號和金霞5個(gè)品種。

2.5 不同獼猴桃品種抗旱性綜合評價(jià)

根據(jù)7個(gè)主成分的得分系數(shù)與方差貢獻(xiàn)率的占比求得各個(gè)指標(biāo)的權(quán)重,求得抗旱性綜合得分值F的表達(dá)式系數(shù)[16]。F=0.099X1+0.103X2+0.026X3+0.023X4+0.117X5+0.099X6+0.07X7+0.049X8+0.059X9+0.083X10+0.103X11-0.011X12-0.005X13+0.033X14+0.095X15+0.074X16+0.009X17-0.029X18+0.080X19+0.084X20-0.021X21+0.084X22+0.036X23-0.093X24,該表達(dá)式中,指標(biāo)前數(shù)值絕對值表示該指標(biāo)所占權(quán)重,值為正數(shù),說明該指標(biāo)與F呈正相關(guān),即與抗旱性呈正相關(guān),指標(biāo)前數(shù)值為負(fù)數(shù)說明該指標(biāo)與F值呈負(fù)相關(guān),即與抗旱性呈負(fù)相關(guān)。根據(jù)主成分分析結(jié)果,選擇主成分下載荷值絕對值大于0.9或排名第一的指標(biāo)作為抗旱性平均關(guān)鍵指標(biāo),最后選擇X2(葉片寬度)、X3(葉形指數(shù))、X9(氣孔長軸)、X14(單簇茸毛數(shù))、X17(上表皮細(xì)胞厚度)、X19(下表皮細(xì)胞厚度)、X22(柵海比)、X23(組織結(jié)構(gòu)緊密度)共8項(xiàng)指標(biāo)參與抗旱性評價(jià),所選指標(biāo)與抗旱性均呈正相關(guān)。

隸屬函數(shù)法是目前應(yīng)用最廣的多指標(biāo)評價(jià)方法[13],參照張俊環(huán)等[27]的方法將8項(xiàng)關(guān)鍵性指標(biāo)帶入隸屬函數(shù),求取隸屬函數(shù)平均值作為獼猴桃品種抗旱性度量值,值越大則抗旱性越強(qiáng)。通過對12個(gè)獼猴桃品種各項(xiàng)指標(biāo)綜合評價(jià)得出,結(jié)果如表6所示,抗旱性強(qiáng)弱為:徐香>金美>金霞>海沃德>金艷>金魁>金梅>東紅>翠玉>金桃>桂海4號>Hort16A。將隸屬函數(shù)值均值標(biāo)準(zhǔn)化后進(jìn)行聚類分析[12],如圖7所示,在歐氏距離等于5處可將12個(gè)品種分成5類,對應(yīng)不同的抗旱等級,第Ⅰ類由徐香組成,其抗旱性度量值大于0.80,抗旱性極強(qiáng);第Ⅱ類由金美、金霞和海沃德組成,其抗旱性度量值介于0.50~0.80之間,抗旱性強(qiáng);第Ⅲ類由金艷、金魁、金梅和東紅組成,抗旱性度量值介于0.39~0.50之間,抗旱性中等;第Ⅳ類由金桃和翠玉組成,抗旱性度量值介于0.30~0.39之間,抗旱性弱;第Ⅴ類由桂海4號和Hort16A組成,抗旱性度量值低于0.30,抗旱性最弱。

3 討 論

3.1 不同獼猴桃品種的抗旱性

植物在適應(yīng)自然環(huán)境的過程中,會逐漸演化形成比較穩(wěn)定的外部形態(tài)和內(nèi)部結(jié)構(gòu)[28]。葉片是植物進(jìn)行光合作用、氣體交換及蒸騰作用的主要器官,也是對環(huán)境變化較為敏感的器官,葉片形態(tài)和解剖結(jié)構(gòu)特征的變化能較好地反映出植物對干旱等逆境的適應(yīng)性[29]。植物的抗旱性是一個(gè)復(fù)雜的綜合性狀,用單一或過多的指標(biāo)均難以確切地反映各品種抗旱性強(qiáng)弱[16]。筆者在本研究中對12個(gè)獼猴桃品種的葉片形態(tài)特征、氣孔器特征、表皮毛特征和解剖結(jié)構(gòu)特征進(jìn)行比較,發(fā)現(xiàn)24個(gè)特征值在不同品種間具有顯著差異,變異系數(shù)介于8.04%~35.80%之間。通過相關(guān)性系數(shù)和主成分分析篩選8項(xiàng)關(guān)鍵性指標(biāo),結(jié)合隸屬函數(shù)法評價(jià)了12個(gè)獼猴桃品種的抗旱性,隸屬函數(shù)均值排名及聚類分析表明美味獼猴桃品種的抗旱性總體上強(qiáng)于中華獼猴桃品種。在美味獼猴桃中,抗旱能力由強(qiáng)到弱依次為徐香、金美、海沃德和金魁,在中華獼猴桃中,抗旱能力由強(qiáng)到弱依次為金霞、金艷、金梅、東紅、翠玉、金桃、桂海4號和Hort16A。這些品種為經(jīng)過嚴(yán)格篩選培育出具有較強(qiáng)抗逆能力的優(yōu)良品種,均能適應(yīng)一定的干旱脅迫,如徐香[30]、海沃德[31]、金霞[32]、金梅[33]和翠玉[34]等在田間均有出色的抗旱能力,本研究結(jié)果僅反映了品種間抗旱性的相對強(qiáng)弱。

降水量是影響干旱脅迫的主要因素[35-36]。自然條件下,中華獼猴桃大多分布在中國年降水量1000~2000 mm、相對濕度75%~85%、氣候濕熱的東南地區(qū),美味獼猴桃多分布在中國年降水量600~1600 mm、相對濕度60%~85%、氣候相對干燥的西北地區(qū)[37],并在雪峰山脈、巫山山脈及幕阜山脈一帶重疊分布[38-39]。本研究結(jié)果佐證了美味獼猴桃因長期適應(yīng)降雨量較少、空氣濕度較低的環(huán)境而更耐干旱的論點(diǎn),與姚春潮等[40]的觀點(diǎn)一致。竺元琦[41]以電導(dǎo)率作為抗性指標(biāo)對不同獼猴桃品種的抗旱性進(jìn)行比較,發(fā)現(xiàn)在高溫高濕脅迫后,中華獼猴桃比美味獼猴桃具有更強(qiáng)的抗高溫能力,與鐘彩虹[37]所述中華獼猴桃更耐熱的觀點(diǎn)相同,但在高溫干旱脅迫后,二者的抗逆能力沒有顯著性差異,表明美味獼猴桃相對于高熱脅迫更適應(yīng)干旱脅迫。

3.2 不同指標(biāo)與抗旱性綜合評價(jià)

單一的評價(jià)指標(biāo)難以準(zhǔn)確反映不同種質(zhì)的抗旱性,不同作物或同一作物不同品種具有不同的抗旱機(jī)制,同一作物或品種往往存在多種協(xié)同抗旱機(jī)制[42-43]。葉片的形態(tài)特征與植物的抗旱性息息相關(guān),趙秀明[44]認(rèn)為葉片小是抗旱的重要表型之一,可以減少蒸騰面積,在本研究中,葉面積較小可能為翠玉、桂海4號和金霞等品種的主要抗旱性特征之一。葉片表皮毛對植物抗旱具有重要意義,表皮毛發(fā)達(dá)可避免太陽直射,減少蒸騰作用過程中水分的散失[9],錦雞兒屬的部分植物表皮毛狀體與獼猴桃類似,此類表皮毛是干旱區(qū)植物適應(yīng)干旱環(huán)境的重要特征[45],另有研究表明,葉片表皮毛具有吸附、收集大氣中水分的作用,用于植株保溫、保濕,可作為植物在干旱環(huán)境中獲取水分的適應(yīng)性策略[23,46],獼猴桃不同品種葉片毛被的差異可能是其關(guān)鍵的抗旱性機(jī)制之一。王仁才等[47]對抗旱性強(qiáng)弱不同的美味獼猴桃品系的研究結(jié)果表明,抗旱性強(qiáng)的品系葉片表皮毛的簇?cái)?shù)和單簇茸毛數(shù)較多,茸毛密度大,本研究中桂海4號具有最大的根密度和簇密度,東紅具有最多的單簇茸毛數(shù),這些特征為他們的抗旱適應(yīng)提供了重要保障。氣孔器是植株與外界交換氣體及水分的通路,在碳同化、呼吸、蒸騰作用等方面具有重要意義,氣孔密度大,有利于散熱,氣孔器較小可減少蒸騰失水[13],陳健男[26]對4個(gè)獼猴桃品種(系)的研究表明,氣孔密度與品種(系)抗旱性呈正相關(guān),本研究中Hort16A和東紅的氣孔密度較大,表現(xiàn)出較強(qiáng)的抗旱性特征。葉片的組織結(jié)構(gòu)與抗旱性密切相關(guān)[48-49],較高的柵海比和組織結(jié)構(gòu)緊密度對植物增強(qiáng)抗旱性極為重要[50-51],本研究中金霞的柵海比和組織結(jié)構(gòu)緊密度均最高,表現(xiàn)出極強(qiáng)的抗旱特征。

對于抗旱性評價(jià),選擇不同指標(biāo)及不同評價(jià)方法往往會得到不同的結(jié)果,單一的指標(biāo)更難以代表復(fù)雜的抗旱因素,通過主成分篩選關(guān)鍵性指標(biāo),結(jié)合隸屬函數(shù)平均法是一種相對可靠的方法,已經(jīng)在植物抗旱性評價(jià)中得到了廣泛應(yīng)用[16,27,52]。植物抗旱性具有復(fù)雜的機(jī)制,除本研究已統(tǒng)計(jì)的相關(guān)指標(biāo)外,仍有許多與抗旱性相關(guān)的特征未被關(guān)注,如在葉片組織中發(fā)現(xiàn)的草酸鈣晶體,在緩解逆境脅迫方面可能發(fā)揮了重要作用[53]。

4 結(jié) 論

筆者在本研究中揭示了12個(gè)獼猴桃品種葉片形態(tài)和顯微結(jié)構(gòu)的差異,24個(gè)指標(biāo)在不同品種間具有顯著性差異,從中篩選到葉片寬度、葉形指數(shù)、氣孔長軸、單簇茸毛數(shù)、上表皮細(xì)胞厚度、下表皮細(xì)胞厚度、柵海比和組織結(jié)構(gòu)緊密度共8項(xiàng)典型指標(biāo)參與抗旱性評價(jià)。通過隸屬函數(shù)法分析得出徐香、金美、金霞和海沃德等品種的抗旱性較強(qiáng),金霞為中華獼猴桃中較抗旱的品種,而徐香、金美和海沃德為美味獼猴桃中較抗旱的品種,是較干旱地區(qū)種植獼猴桃的首選品種。金美獼猴桃是近兩年新選育的品種,正處于推廣初期,研究結(jié)論為今后獼猴桃品種選擇、遺傳改良以及生產(chǎn)上的經(jīng)營管理提供了借鑒依據(jù)。

參考文獻(xiàn) References:

[1]?? RICHARDSON D P,ANSELL J,DRUMMOND L N. The nutritional and health attributes of kiwifruit:A review[J]. European Journal of Nutrition,2018,57(8):2659-2676.

[2]?? 胡光明,黎純斌,楊斌,王周倩,申素云,李作洲,鐘彩虹. 宜昌市72份野生中華獼猴桃果實(shí)性狀多樣性分析與綜合評價(jià)[J]. 果樹學(xué)報(bào),2022,39(9):1540-1552.

HU Guangming,LI Chunbin,YANG Bin,WANG Zhouqian,SHEN Suyun,LI Zuozhou,ZHONG Caihong. Analysis and comprehensive evaluation of fruit trait diversity of 72 Actinidia chinensis accessions in Yichang[J]. Journal of Fruit Science,2022,39(9):1540-1552.

[3]?? 鐘彩虹,黃文俊,李大衛(wèi),張瓊,李黎. 世界獼猴桃產(chǎn)業(yè)發(fā)展及鮮果貿(mào)易動(dòng)態(tài)分析[J]. 中國果樹,2021(7):101-108.

ZHONG Caihong,HUANG Wenjun,LI Dawei,ZHANG Qiong,LI Li. Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J]. China Fruits,2021(7):101-108.

[4]?? ZHONG C H,HUANG W J,WANG Z P,LI L,LI D W,ZHANG Q,ZHAO T T,ZHANG P. The breeding progress and development status of the kiwifruit industry in China[J]. Acta Horticulturae,2022,1332:445-454.

[5]?? BAO W W,ZHANG X C,ZHANG A L,ZHAO L,WANG Q C,LIU Z D. Validation of micrografting to evaluate drought tolerance in micrografts of kiwifruits (Actinidia spp.)[J]. Plant Cell,Tissue and Organ Culture,2020,140(2):291-300.

[6]?? DA CUNHA CRUZ Y,SCARPA A L M,PEREIRA M P,DE CASTRO E M,PEREIRA F J. Growth of Typha domingensis as related to leaf physiological and anatomical modifications under drought conditions[J]. Acta Physiologiae Plantarum,2019,41(5):64.

[7]?? BHUSAL N,LEE M S,LEE H,ADHIKARI A,HAN A R,HAN A,KIM H S. Evaluation of morphological,physiological,and biochemical traits for assessing drought resistance in eleven tree species[J]. The Science of the Total Environment,2021,779:146466.

[8]?? 木巴熱克·阿尤普,艾沙江·買買提,郭春苗,徐葉挺,買買提依明·阿有甫,龔鵬,楊波. 基于葉片顯微及亞顯微結(jié)構(gòu)的新疆扁桃10個(gè)主栽品種抗旱性綜合評價(jià)[J]. 果樹學(xué)報(bào),2019,36(3):347-358.

Mubareke·Ayoupu,Aishajiang·Maimaiti,GUO Chunmiao,XU Yeting,Maimaitiyiming·Ayoufu,GONG Peng,YANG Bo. Comprehensive evaluation of drought resistance of 10 main cultivars of almond (Amygdalus communis L.) in Xinjiang by means of leaf microstructure and ultrastructure[J]. Journal of Fruit Science,2019,36(3):347-358.

[9]?? 閔小瑩,熊康寧,申小云,杭紅濤,池永寬,張仕豪. 喀斯特石漠化地區(qū)植物對干旱脅迫的適應(yīng)性研究進(jìn)展[J]. 世界林業(yè)研究,2020,33(3):7-12.

MIN Xiaoying,XIONG Kangning,SHEN Xiaoyun,HANG Hongtao,CHI Yongkuan,ZHANG Shihao. Research progress of plant adaptability to drought stress in Karst rocky desertification area[J]. World Forestry Research,2020,33(3):7-12.

[10] 陳雪峰,景晨娟,趙習(xí)平,武曉紅. 植物葉片組織結(jié)構(gòu)在抗逆研究中的應(yīng)用進(jìn)展[J]. 河北農(nóng)業(yè)科學(xué),2018,22(3):50-53.

CHEN Xuefeng,JING Chenjuan,ZHAO Xiping,WU Xiaohong. Advances in application of plant leaf tissue structure in the research of stress tolerance[J]. Journal of Hebei Agricultural Sciences,2018,22(3):50-53.

[11] 岑湘濤,沈偉,??罚瑓莻ヌm. 基于植物葉片解剖結(jié)構(gòu)的抗逆性評價(jià)研究進(jìn)展[J]. 北方園藝,2021(18):140-147.

CEN Xiangtao,SHEN Wei,NIU Junle,WU Weilan. Research progress of stress resistance evaluation based on the anatomy of plant leaves[J]. Northern Horticulture,2021(18):140-147.

[12] 宋鵬,丁彥芬,朱貴珍,李涵,王亞楠. 6種衛(wèi)矛屬植物葉片解剖結(jié)構(gòu)與抗旱性評價(jià)[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,53(4):574-580.

SONG Peng,DING Yanfen,ZHU Guizhen,LI Han,WANG Yanan. Evaluation of leaf anatomical structure and drought resistance evaluation of six species of Euonymus[J]. Journal of Henan Agricultural University,2019,53(4):574-580.

[13] 范志霞,陳越悅,付荷玲. 成都地區(qū)10種園林灌木葉片結(jié)構(gòu)與抗旱性關(guān)系研究[J]. 植物科學(xué)學(xué)報(bào),2019,37(1):70-78.

FAN Zhixia,CHEN Yueyue,F(xiàn)U Heling. Study on drought resistance and leaf structure in 10 species of garden shrubs in Chengdu[J]. Plant Science Journal,2019,37(1):70-78.

[14] 郭改改,封斌,麻保林,井趙斌,張應(yīng)龍,郭春會. 不同區(qū)域長柄扁桃抗旱性的研究[J]. 植物科學(xué)學(xué)報(bào),2013,31(4):360-369.

GUO Gaigai,F(xiàn)ENG Bin,MA Baolin,JING Zhaobin,ZHANG Yinglong,GUO Chunhui. Studies on drought resistance of different regional Amygdalus pedunculata Pall.[J]. Plant Science Journal,2013,31(4):360-369.

[15] 郭素娟,武燕奇. 板栗葉片解剖結(jié)構(gòu)特征及其與抗旱性的關(guān)系[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,46(9):51-59.

GUO Sujuan,WU Yanqi. Leaf anatomical structure characteristics and drought resistance of Chinese chestnut[J]. Journal of Northwest A & F University (Natural Science Edition),2018,46(9):51-59.

[16] 郭燕,張樹航,李穎,張馨方,王廣鵬. 基于葉片解剖結(jié)構(gòu)的京津冀主栽板栗品種抗旱性評價(jià)[J]. 核農(nóng)學(xué)報(bào),2021,35(8):1771-1782.

GUO Yan,ZHANG Shuhang,LI Ying,ZHANG Xinfang,WANG Guangpeng. Drought resistance evaluation based on leaf anatomical structure of major chestnut cultivars in Beijing-Tianjin-Hebei region[J]. Journal of Nuclear Agricultural Sciences,2021,35(8):1771-1782.

[17] 王延秀,賈旭梅,石曉昀,朱燕芳,胡亞,郭愛霞. 三種蘋果砧木應(yīng)對干旱脅迫的超微及解剖結(jié)構(gòu)響應(yīng)特性[J]. 植物生理學(xué)報(bào),2018,54(4):594-606.

WANG Yanxiu,JIA Xumei,SHI Xiaoyun,ZHU Yanfang,HU Ya,GUO Aixia. The response characteristics of the ultrastructure and anatomical structure of three apple rootstocks under drought stress[J]. Plant Physiology Journal,2018,54(4):594-606.

[18] 劉倩文,邱安然,謝翔,劉瑞,王唯先,武春霞. 5種草莓葉片解剖結(jié)構(gòu)與抗旱性的關(guān)系[J]. 天津農(nóng)業(yè)科學(xué),2019,25(7):18-22.

LIU Qianwen,QIU Anran,XIE Xiang,LIU Rui,WANG Weixian,WU Chunxia. Relationships between blade anatomical structure and drought resistances of five strawberry varieties[J]. Tianjin Agricultural Sciences,2019,25(7):18-22.

[19] 鐘灶發(fā),張利娟,高思思,彭婷. 干旱脅迫下4種柑橘砧木葉片細(xì)胞學(xué)特征及抗旱性比較[J]. 園藝學(xué)報(bào),2021,48(8):1579-1588.

ZHONG Zaofa,ZHANG Lijuan,GAO Sisi,PENG Ting. Leaf cytological characteristics and resistance comparison of four citrus rootstocks under drought stress[J]. Acta Horticulturae Sinica,2021,48(8):1579-1588.

[20] 景晨娟,陳雪峰,王端,季文章,武曉紅. 三個(gè)李子品種葉片結(jié)構(gòu)差異及其抗旱性分析[J]. 北方園藝,2021(15):27-34.

JING Chenjuan,CHEN Xuefeng,WANG Duan,JI Wenzhang,WU Xiaohong. Analysis of leaf structure differences and relationships between the anatomical structure and drought resistances of three plums cultivars[J]. Northern Horticulture,2021(15):27-34.

[21] 陳菁菁,孫小妹,紀(jì)海波,陳亮,劉斌,陳年來. 西瓜品種葉部特征與抗旱性的關(guān)系[J]. 中國瓜菜,2015,28(5):8-13.

CHEN Jingjing,SUN Xiaomei,JI Haibo,CHEN Liang,LIU Bin,CHEN Nianlai. The relationship between leaf characteristics and drought resistance of watermelon cultivars[J]. China Cucurbits and Vegetables,2015,28(5):8-13.

[22] 馬小芬,王興芳,李強(qiáng),賀曉. 不同種源地文冠果葉片解剖結(jié)構(gòu)比較及抗旱性分析[J]. 干旱區(qū)資源與環(huán)境,2013,27(6):92-96.

MA Xiaofen,WANG Xingfang,LI Qiang,HE Xiao. The analysis of drought resistance and the comparison of anatomical structures of the leave of Xanthoceras sorbifolia Bunge introduced from different regions[J]. Journal of Arid Land Resources and Environment,2013,27(6):92-96.

[23] WASEEM M,NIE Z F,YAO G Q,HASAN M,XIANG Y,F(xiàn)ANG X W. Dew absorption by leaf trichomes in Caragana korshinskii:An alternative water acquisition strategy for withstanding drought in arid environments[J]. Physiologia Plantarum,2021,172(2):528-539.

[24] 劉平平,熊雅蘭,韋宇靜,莫權(quán)輝,王發(fā)明,葉開玉. 五個(gè)獼猴桃種的皮孔、氣孔器和葉片下表皮微觀特征[J]. 廣西植物,2021,41(1):157-166.

LIU Pingping,XIONG Yalan,WEI Yujing,MO Quanhui,WANG Faming,YE Kaiyu. Microscopic characteristics of lenticel,stomatal apparatus and lower epidermis of leaf from five kiwifruit species[J]. Guihaia,2021,41(1):157-166.

[25] 劉文,楊妙賢,梁紅. 中華獼猴桃不同性別葉片的形態(tài)學(xué)和解剖學(xué)觀察[J]. 仲愷農(nóng)業(yè)工程學(xué)院學(xué)報(bào),2011,24(4):5-11.

LIU Wen,YANG Miaoxian,LIANG Hong. Observations on morphology and anatomy of leaves of male and female Actinidia chinensis plants[J]. Journal of Zhongkai University of Agriculture and Engineering,2011,24(4):5-11.

[26] 陳健男. 獼猴桃果實(shí)香氣成分及其抗旱性、砧木耐澇性評價(jià)[D]. 楊凌:西北農(nóng)林科技大學(xué),2018.

CHEN Jiannan. The aromatic constituents and drought resistance and evaluation of rootstocks flooding tolerance in kiwi fruit[D]. Yangling:Northwest A & F University,2018.

[27] 張俊環(huán),張美玲,楊麗,姜鳳超,于文劍,王玉柱,孫浩元. 基于葉片顯微結(jié)構(gòu)綜合評價(jià)杏不同品種(系)的抗旱性[J]. 果樹學(xué)報(bào),2023,40(11):2381-2390.

ZHANG Junhuan,ZHANG Meiling,YANG Li,JIANG Fengchao,YU Wenjian,WANG Yuzhu,SUN Haoyuan. Comprehensive evaluation of drought resistance of different apricot cultivars (lines) based on leaf microstructure[J]. Journal of Fruit Science,2023,40(11):2381-2390.

[28] 劉培衛(wèi),張玉秀,楊云,陳波. 六種沉香屬植物葉片解剖結(jié)構(gòu)研究[J]. 廣西植物,2017,37(5):565-571.

LIU Peiwei,ZHANG Yuxiu,YANG Yun,CHEN Bo. Leaf anatomical structure of six Aquilaria species[J]. Guihaia,2017,37(5):565-571.

[29] 孫梅,田昆,張贇,王行,管東旭,岳海濤. 植物葉片功能性狀及其環(huán)境適應(yīng)研究[J]. 植物科學(xué)學(xué)報(bào),2017,35(6):940-949.

SUN Mei,TIAN Kun,ZHANG Yun,WANG Hang,GUAN Dongxu,YUE Haitao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal,2017,35(6):940-949.

[30] 李崇高. ‘徐香獼猴桃在閩西北的引種適應(yīng)性及栽培技術(shù)要點(diǎn)[J]. 東南園藝,2019,7(5):32-34.

LI Chonggao. Introduction adaptation and key points of cultivation techniques of a kiwifruit cultivar ‘Xuxiang in the Northwest of Fujian Province[J]. Southeast Horticulture,2019,7(5):32-34.

[31] 鐘彩虹,陳美艷. 獼猴桃生產(chǎn)精細(xì)管理十二個(gè)月[M]. 北京:中國農(nóng)業(yè)出版社,2020.

ZHONG Caihong,CHEN Meiyan. Twelve months of fine management of kiwifruit production[M]. Beijing:China Agriculture Press,2020.

[32] 張忠慧,黃仁煌,王圣梅,姜正旺,黃宏文,武顯維. 中華獼猴桃優(yōu)良新品種金霞的選育研究[J]. 中國果樹,2006(5):11-12.

ZHANG Zhonghui,HUANG Renhuang,WANG Shengmei,JIANG Zhengwang,HUANG Hongwen,WU Xianwei. Study on Breeding of Jinxia,an excellent new cultivar of Actinidia chinensis[J]. China Fruits,2006(5):11-12.

[33] ZHONG C,WANG S,HAN F,LI D,JIANG Z,GONG J,HUANG H. Jinmei,a new yellow-fleshed kiwifruit cultivar with medium maturity and long storage[J]. Acta Horticulturae,2018,1218:61-66.

[34] 鐘彩虹,王中炎,卜范文,蔡金術(shù). 優(yōu)質(zhì)耐貯中華獼猴桃新品種翠玉[J]. 中國果樹,2002(5):2-4.

ZHONG Caihong,WANG Zhongyan,BU Fanwen,CAI Jinshu. ‘Cuiyu,a new kiwifruit cultivar of Actinidia chinensis with high quality and storage resistance[J]. China Fruits,2002(5):2-4.

[35] 王銘涵,丁玎,張晨禹,高羲之,陳建姣,唐瀚,沈程文. 干旱脅迫對茶樹幼苗生長及葉綠素?zé)晒馓匦缘挠绊慬J]. 茶葉科學(xué),2020,40(4):478-491.

WANG Minghan,DING Ding,ZHANG Chenyu,GAO Xizhi,CHEN Jianjiao,TANG Han,SHEN Chengwen. Effects of drought stress on growth and chlorophyll fluorescence characteristics of tea seedlings[J]. Journal of Tea Science,2020,40(4):478-491.

[36] 逯玉蘭,李廣,韓俊英,燕振剛,董莉霞. 降水量和氣溫變化對定西地區(qū)旱地春小麥產(chǎn)量的影響[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,47(3):268-273.

LU Yulan,LI Guang,HAN Junying,YAN Zhengang,DONG Lixia. Effect of precipitation and temperature changes on dryland spring wheat yield in Dingxi area[J]. Journal of Hunan Agricultural University (Natural Sciences),2021,47(3):268-273.

[37] 鐘彩虹. 獼猴桃栽培理論與生產(chǎn)技術(shù)[M]. 北京:科學(xué)出版社,2020.

ZHONG Caihong. Cultivation theory and production technology of kiwifruit[M]. Beijing:Science Press,2020.

[38] 黃韋. 中華獼猴桃/美味獼猴桃復(fù)合體自然居群倍性變異格局的研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2009.

HUANG Wei. Studies on ploidy variance pattern of natural populations in Actinidia chinensis var. chinensis/Actinidia chinensis var. deliciosa complex[D]. Wuhan:Huazhong Agricultural University,2009.

[39] WANG Z,ZHONG C H,LI D W,YAN C L,YAO X H,LI Z Z. Cytotype distribution and chloroplast phylogeography of the Actinidia chinensis complex[J]. BMC Plant Biology,2021,21(1):325.

[40] 姚春潮,李建軍,劉占德. 獼猴桃高效栽培與病蟲害防治彩色圖譜[M]. 北京:中國農(nóng)業(yè)出版社,2021.

YAO Chunchao,LI Jianjun,LIU Zhande. Color atlas of kiwifruit high efficiency cultivation and pest control[M]. Beijing:China Agriculture Press,2021.

[41] 竺元琦. 獼猴桃高溫干旱抗性研究[J]. 湖北林業(yè)科技,1999,28(4):14-15.

ZHU Yuanqi. Study on resistance of kiwifruit to high temperature and drought[J]. Hubei Forestry Science and Technology,1999,28(4):14-15.

[42] 厲廣輝,張昆,劉風(fēng)珍,劉丹丹,萬勇善. 不同抗旱性花生品種的葉片形態(tài)及生理特性[J]. 中國農(nóng)業(yè)科學(xué),2014,47(4):644-654.

LI Guanghui,ZHANG Kun,LIU Fengzhen,LIU Dandan,WAN Yongshan. Morphological and physiological traits of leaf in different drought resistant peanut cultivars[J]. Scientia Agricultura Sinica,2014,47(4):644-654.

[43] 張海燕,解備濤,姜常松,馮向陽,張巧,董順旭,汪寶卿,張立明,秦楨,段文學(xué). 不同抗旱性甘薯品種葉片生理性狀差異及抗旱指標(biāo)篩選[J]. 作物學(xué)報(bào),2022,48(2):518-528.

ZHANG Haiyan,XIE Beitao,JIANG Changsong,F(xiàn)ENG Xiangyang,ZHANG Qiao,DONG Shunxu,WANG Baoqing,ZHANG Liming,QIN Zhen,DUAN Wenxue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance[J]. Acta Agronomica Sinica,2022,48(2):518-528.

[44] 趙秀明. 新引進(jìn)蘋果矮化砧木的抗旱性研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2012.

ZHAO Xiuming. Study on the drought resistence of newly introduced apple dwarf rootstocks[D]. Yangling:Northwest A & F University,2012.

[45] 劉艷霞,馬亞麗,蘭海燕. 植物非腺毛形態(tài)發(fā)生及其功能研究進(jìn)展[J]. 植物生理學(xué)報(bào),2018,54(10):1527-1534.

LIU Yanxia,MA Yali,LAN Haiyan. Advances in morphology and function of plant non-glandular trichomes[J]. Plant Physiology Journal,2018,54(10):1527-1534.

[46] NING P B,WANG J H,ZHOU Y L,GAO L F,WANG J,GONG C M. Adaptional evolution of trichome in Caragana korshinskii to natural drought stress on the Loess Plateau,China[J]. Ecology and Evolution,2016,6(11):3786-3795.

[47] 王仁才,陳夢龍,李順望,熊興耀. 獼猴桃良種選育及栽培技術(shù)的研究:Ⅴ. 美味獼猴桃品種抗旱性研究[J]. 湖南農(nóng)學(xué)院學(xué)報(bào),1991,17(1):42-48.

WANG Rencai,CHEN Menglong,LI Shunwang,XIONG Xingyao. Studies of selection and culture techniques of Actinidia:Ⅴ. Drought adaptability of Actinidia[J]. Journal of Hunan Agricultural University (Natural Sciences),1991,17(1):42-48.

[48] LU M,CHEN M M,SONG J Y,WANG Y,PAN Y H,WANG C Y,PANG J Y,F(xiàn)AN J F,ZHANG Y. Anatomy and transcriptome analysis in leaves revealed how nitrogen (N) availability influence drought acclimation of Populus[J]. Trees,2019,33(4):1003-1014.

[49] 王樹森,孟凡旭,趙波,閆潔,程冀文,馬迎梅,郭宇,何英志,鐵英,張波. 大青山陽坡五種灌木葉片解剖結(jié)構(gòu)及其抗旱性研究[J]. 中國農(nóng)業(yè)科技導(dǎo)報(bào),2020,22(1):38-44.

WANG Shusen,MENG Fanxu,ZHAO Bo,YAN Jie,CHENG Jiwen,MA Yingmei,GUO Yu,HE Yingzhi,TIE Ying,ZHANG Bo. Leaf anatomic structure of five shrubs and its effects on drought tolerance in sunny slope of Daqing Mountain[J]. Journal of Agricultural Science and Technology,2020,22(1):38-44.

[50] 任媛媛,劉艷萍,王念,羅曉雅,翟曉巧. 9種屋頂綠化闊葉植物葉片解剖結(jié)構(gòu)與抗旱性的關(guān)系[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,38(4):64-68.

REN Yuanyuan,LIU Yanping,WANG Nian,LUO Xiaoya,ZHAI Xiaoqiao. The relationship between leaf anatomic structure and drought resistance of nine broadleaf plants[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2014,38(4):64-68.

[51] 李嘉誠,羅達(dá),史彥江,宋鋒惠. 平歐雜種榛葉片解剖結(jié)構(gòu)的抗旱性研究[J]. 西北植物學(xué)報(bào),2019,39(3):462-471.

LI Jiacheng,LUO Da,SHI Yanjiang,SONG Fenghui. Study on drought resistance of leaf anatomical structure of Corylus heterophylla × Corylus avellana[J]. Acta Botanica Boreali-Occidentalia Sinica,2019,39(3):462-471.

[52] 田小霞,許明爽,鄭明利,魏浩,谷艷蓉,毛培春. 黃花草木樨苗期抗旱性鑒定及抗旱指標(biāo)篩選[J]. 干旱區(qū)資源與環(huán)境,2021,35(10):120-127.

TIAN Xiaoxia,XU Mingshuang,ZHENG Mingli,WEI Hao,GU Yanrong,MAO Peichun. Drought resistance identification and drought resistance indices screening for Melilotus officinalis resources at seedling stage[J]. Journal of Arid Land Resources and Environment,2021,35(10):120-127.

[53] 朱廣龍,馬茵,韓蕾,霍張麗,魏學(xué)智. 植物晶體的形態(tài)結(jié)構(gòu)、生物功能及形成機(jī)制研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),2014,34(22):6429-6439.

ZHU Guanglong,MA Yin,HAN Lei,HUO Zhangli,WEI Xuezhi. Current status of research on morphological structure,biological function and formation mechanism of plant crystals[J]. Acta Ecologica Sinica,2014,34(22):6429-6439.

猜你喜歡
抗旱性氣孔獼猴桃
玉米葉氣孔特征對氮素和水分的響應(yīng)及其與葉氣體交換的關(guān)系
摘獼猴桃
提取獼猴桃的DNA
某灰鑄鐵汽油機(jī)缸體電機(jī)面氣孔的解決探討
摘獼猴桃
KD490:一種軟包鋰離子電池及其制作工藝
不同光質(zhì)對黃瓜幼苗抗旱性的影響
養(yǎng)個(gè)獼猴桃
基于稱重法的煙草伸根期抗旱性鑒定
重型車用氣缸蓋濕型砂鑄造氣孔缺陷的降低