李金梅 聶興華 葛婧怡 褚世慧 劉陽(yáng) 秦嶺 邢宇
DOI:10.13925/j.cnki.gsxb.20230520
摘??? 要:【目的】鑒定和分析板栗PAT基因家族及其對(duì)不同脅迫的響應(yīng),探究板栗PAT基因家族的抗逆功能?!痉椒ā吭诎謇跞蚪M水平上進(jìn)行搜索和鑒定板栗PAT基因家族成員,利用生物信息學(xué)方法研究其系統(tǒng)發(fā)育進(jìn)化樹(shù)、基因結(jié)構(gòu)和motif、蛋白理化性質(zhì)、染色體定位、共線性和啟動(dòng)子順式元件等。以燕山紅栗為試驗(yàn)材料,分析鹽脅迫、抗病脅迫和干旱脅迫處理對(duì)板栗PAT基因家族表達(dá)模式的影響。【結(jié)果】在板栗基因組中共鑒定出包含DHHC結(jié)構(gòu)域的21個(gè)PAT基因家族成員,他們與24個(gè)AtPAT基因家族成員共聚集為6個(gè)亞組;大多數(shù)CmPAT家族成員為具有親水性的堿性穩(wěn)定蛋白;21個(gè)PAT基因家族成員不均勻地分布在板栗的9條染色體上;在CmPAT基因啟動(dòng)子區(qū)域鑒定到多種非生物脅迫及激素響應(yīng)元件;表達(dá)模式分析表明,多個(gè)CmPAT基因不同程度地參與抗病、干旱、鹽脅迫響應(yīng)?!窘Y(jié)論】共鑒定了21個(gè)板栗PAT基因家族成員,同時(shí)篩選到CmPAT24、CmPAT7、CmPAT14可能共同參與了鹽脅迫和干旱脅迫的調(diào)控,CmPAT7可能共同參與鹽脅迫、干旱脅迫、抗病脅迫的調(diào)控。
關(guān)鍵詞:板栗;棕櫚酰基轉(zhuǎn)移酶(PAT);脅迫處理
中圖分類號(hào):S664.2?????????? 文獻(xiàn)標(biāo)志碼:A??????????? 文章編號(hào):1009-9980(2024)05-0847-14
收稿日期:2023-12-13??????? 接受日期:2024-02-16
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32271929)
作者簡(jiǎn)介:李金梅,女,在讀碩士研究生,研究方向?yàn)楣麡?shù)分子生物學(xué)。E-mail:vmz0411@163.com
*通信作者 Author for correspondence. E-mail:xingyu@bua.edu.cn
果 樹(shù) 學(xué) 報(bào) 2024,41(5): 847-860
Journal of Fruit Science
Identification of PAT gene family members and analysis of their response to different stresses in Chinese chestnut
LI Jinmei, NIE Xinghua, GE Jingyi, CHU Shihui, LIU Yang, QIN Ling, XING Yu*
(College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China)
Abstract: 【Objective】 The reversibility of protein palmitoylation is a key mechanism for regulating cellular function. Palmitoyl transferase is an important part of this mechanism, which can connect palmitic acid to the cysteine residue of the target protein. Protein palmitoylation is a post-transcriptional modification that plays a critical role in protein transport and function. Palmitate transferase (PAT) catalyzes the occurrence of acylation. Acylated PAT proteins may be involved in a variety of stress responses in material transport and signal transduction. Palmitate transferase plays an important role in growth, development and response to harmful stresses in plants. However, understanding of PAT genes in chestnut is limited so far. In the experiment, we performed a genome-wide identification of the PAT gene family in chestnut and subsequently analyzed how it responded to various stresses in Chinese chestnut. 【Methods】 HMMER, NCBI-CDD and SMART searches were performed to identify PAT genes throughout the chestnut genome. The domain information of the candidate gene family members was obtained through preliminary screening, and the protein sequences without the DHHC domain were eliminated. Ultimately, 21 members of the chestnut PAT gene family were identified. The bioinformatics methods were used to study the phylogenetic tree, gene structure and gene motif, protein physicochemical properties, subcellular and chromosomal localization, collinearity and promoter cis-elements of the PAT genes. To check the stress-resistant function of PAT gene family, Yanshanhong cultivar was used as experimental material. For salt treatment, the seedling roots were submerged in a solution containing 200 mmol·L-1 NaCl and samples were collected on the 7th, 10th and 14th days. Drought treatment was also carried out. Samples were collected and tested at different water loss in fresh leaves, specifically at 0%, 5%, 30% and 50%. To treat disease resistance, Chestnut Blight Mycelia Blocks were cultured on PAD medium. After 3 days, the PAD agar blocks containing chestnut blight mycelia were placed on perforated branches. Samples were collected at 0 h, 12 h, 24 h and 3 days after inoculation. Fresh branches that were only treated with punching served as controls. All samples were then harvested, immediately frozen in liquid nitrogen, and stored at -80 ℃. The influence of salt, disease resistance and drought stress on the expression pattern of the PAT gene family was examined using the real-time quantitative fluorescence analysis. 【Results】 Through a comprehensive genome search and identification, we acquired 21 members of the PAT gene family in the chestnut genome that possessed the DHHC domain. In the phylogenetic evolutionary tree, they grouped into six branches with 24 members of the AtPAT gene family. By analyzing the physical and chemical properties of the protein, it was found that most members of the CmPAT family were hydrophilic, basic and stable proteins, and that their sequence lengths varied significantly. Subcellular localization showed that CmPAT7 was localized in the chloroplast, CmPAT4 in the nucleus, CmPAT23 in the cytoplasm, and the remaining PAT proteins in the plasma membrane. Gene structure and motif visualization showed 10 conserved motifs, and 21 PAT family members all had the DHHC domain, which was the most conserved. Their gene lengths also varied widely, ranging from 3750 to 24 300 bp, and each family member contained 7.28 introns and 8.57 exons. Members of the PAT gene family were unevenly distributed across the nine chromosomes. The CmPAT gene family was more conserved in the process of species differentiation. There were many abiotic stress and hormone response elements in the promoter region of the CmPATs gene. These included basic cis-acting elements, light-response elements, hormone-response elements and many stress-response elements, of which cis-acting and light response elements accounted for the largest proportion. An examination of the transcription factor prediction word cloud identified up to 39 transcription factors related to the control of 21 CmPATs gene. Of these, the Dof protein family was the most abundant at 22%, followed by the AP2/ERF protein family and the BBR-BPC protein family at 17% and 10%, respectively. These protein families may play a crucial role in regulating PAT genes in chestnut. Analysis of the expression pattern revealed that several CmPAT genes were involved to varying degrees in responses to disease resistance, and drought and salt stress. 【Conclusion】 A total of 21 CmPATs gene were identified. The study found that the expression levels of CmPAT24, CmPAT7 and CmPAT14 significantly increased in response to salt and drought stresses, demonstrating their involvement in the regulation of these stressors. Notably, the CmPAT7 gene showed significant upregulation under salt, drought and disease resistance stresses, indicating its role in regulating all three types of stresses.
Key words: Chinese chestnut; Palmitate transferase (PAT); Stress treatment
生物體正常行使功能必須依賴蛋白質(zhì)等大分子物質(zhì),經(jīng)復(fù)雜翻譯修飾作用(post-translatioanal modification,PTM)的蛋白質(zhì)可以發(fā)揮正常功能及相互之間的調(diào)節(jié)作用[1]。蛋白質(zhì)翻譯修飾的類型眾多[2],其中,脂鏈修飾根據(jù)連接脂肪酸鏈的類型不同,分為豆蔻?;╩yristoylation)、?;╝cylation)等類型[3-5]。棕櫚?;D(zhuǎn)移酶(palmitate transferase,PAT)催化的?;菍⒆貦磅;粤蛑I的方式轉(zhuǎn)移到蛋白質(zhì)的半胱氨酸殘基上,從而影響蛋白質(zhì)生物合成過(guò)程[6-8]。催化這個(gè)反應(yīng)的是一類活性中心含有Asp-His-His-Cys (DHHC)基序的酶,因此它們又被稱為DHHC家族[9]。棕櫚酰基轉(zhuǎn)移酶最先被發(fā)現(xiàn)于酵母中[10-11],并廣泛存在于哺乳動(dòng)物與植物中[12-13]。在楊樹(shù)的相關(guān)研究中,利用?;?生物素交換法和質(zhì)譜法鑒定出的?;鞍讌⑴c物質(zhì)運(yùn)輸、信號(hào)轉(zhuǎn)導(dǎo)和脅迫的響應(yīng)[14]。其中DHHC類棕櫚?;D(zhuǎn)移酶是目前研究最多的家族。前人研究表明,在許多高等植物基因組中均鑒定出了數(shù)目不等的PAT家族成員,例如水稻(Oryza sativa)有30個(gè),玉米(Zea Mays)有40個(gè),擬南芥(Arabidopsis thaliana)有24個(gè)等[15-16]。人們對(duì)擬南芥中PAT家族成員研究最為透徹,其中AtPAT4[17]、AtPAT10[18]、AtPAT13、AtPAT14[19-20]、AtPAT15[21]、AtPAT21[22]、AtPAT24[23]等在生長(zhǎng)發(fā)育、衰老、非生物脅迫反應(yīng)等過(guò)程中具有重要作用,并且根據(jù)演化關(guān)系將擬南芥中24個(gè)PATs聚為3個(gè)分支,PAT1~9屬于分支一,PAT11~16屬于分支二,PAT18~22屬于分支三,其余成員由于演化關(guān)系較遠(yuǎn)并未進(jìn)行聚類分析[24]。
板栗(Castanea mollissima)原產(chǎn)于我國(guó),營(yíng)養(yǎng)物質(zhì)豐富,是中國(guó)重要的經(jīng)濟(jì)作物之一。中國(guó)的板栗種植總面積約為186.6萬(wàn)hm?,年產(chǎn)量高達(dá)194.7萬(wàn)t,占世界板栗年總產(chǎn)量一半以上,穩(wěn)居世界首位[25]。板栗種植主要位于淺山地帶,灌溉條件有限,往往靠自然降水補(bǔ)充水分。同時(shí),當(dāng)栽植地區(qū)的土壤pH超過(guò)7.5、含水量低于田間最大持水量的26.6%時(shí),其生長(zhǎng)階段易受到多種環(huán)境脅迫的影響,包括鹽脅迫、干旱脅迫等[26]。板栗生產(chǎn)中也會(huì)遭受多種病蟲(chóng)害侵襲,其中栗疫病最為嚴(yán)重[27]。因此,提高板栗的抗逆性,對(duì)提高板栗產(chǎn)業(yè)極為重要。
筆者通過(guò)比對(duì)PAT保守結(jié)構(gòu)域序列,在板栗全基因組中鑒定出了21個(gè)PAT基因家族成員,并分析其系統(tǒng)發(fā)育樹(shù)、基因結(jié)構(gòu)、理化性質(zhì)、染色體定位、共線性和啟動(dòng)子順式作用元件等信息,同時(shí)分析板栗PAT家族在不同脅迫下的基因表達(dá)模式,為板栗PAT基因家族抗逆功能的分析提供理論研究基礎(chǔ)。
1 材料和方法
1.1 試驗(yàn)材料
材料為在北京市懷柔區(qū)板栗試驗(yàn)站采集的燕山紅栗,選取大小、質(zhì)量一致的燕山紅栗種子,放置在溫度24 ℃、濕度60%的恒溫培養(yǎng)箱中催芽,催芽后利用1/2 Hogland營(yíng)養(yǎng)液進(jìn)行水培,置于人工氣候室(室溫23~25 ℃,光周期:16 h光照/8 h黑暗)培養(yǎng),獲得具有根系的板栗實(shí)生苗,選取生長(zhǎng)一致的幼苗進(jìn)行后續(xù)試驗(yàn)。
1.2 板栗PAT基因家族成員的鑒定及多序列比對(duì)和系統(tǒng)進(jìn)化樹(shù)構(gòu)建
從板栗基因組網(wǎng)站(http://castaneadb.net/)下載板栗基因組數(shù)據(jù),包括基因數(shù)據(jù)文件,蛋白數(shù)據(jù)文件、GFF注釋文件等。利用pfam(http://pfam.xfam.org/)查找PAT家族基因隱馬爾科夫模型(PF01529),并下載所需家族hmm數(shù)據(jù)信息。使用HMMER3.0搜索得到24個(gè)PAT蛋白序列,利用NCBI(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)Conserved Domain Search和SMART對(duì)初篩得到的候選基因家族成員進(jìn)行結(jié)構(gòu)域信息查對(duì),對(duì)比剔除無(wú)DHHC結(jié)構(gòu)域的蛋白序列,最終確定21個(gè)板栗PAT基因家族成員。將選取的21個(gè)板栗PAT蛋白序列和24個(gè)擬南芥PAT蛋白序列使用ClustalW進(jìn)行多序列比對(duì),通過(guò)軟件MEGA11.0[28]中的最大似然法(maximum likelihood,ML)構(gòu)建進(jìn)化樹(shù),Bootstrap檢驗(yàn)設(shè)定1000次重復(fù),其他參數(shù)設(shè)置為默認(rèn)參數(shù)。使用在線網(wǎng)站itol(https://itol.embl.de/)對(duì)系統(tǒng)發(fā)育進(jìn)化樹(shù)進(jìn)行美化。并根據(jù)與擬南芥的進(jìn)化關(guān)系,對(duì)板栗進(jìn)行命名,例如Cm08G00098命名為CmPAT10、Cm05G00499命名為CmPAT14、Cm01G01675命名為CmPAT7、Cm04G01227命名為CmPAT5、Cm05G00558命名為CmPAT13、Cm01G02604命名為CmPAT8、Cm11G00608命名為CmPAT3、Cm03G00880命名為CmPAT19、Cm04G02086命名為CmPAT17等,進(jìn)化關(guān)系較遠(yuǎn)或無(wú)進(jìn)化關(guān)系的Cm07G01540命名為CmPAT40、Cm05G01777命名為CmPAT77。
1.3 板栗PAT基因結(jié)構(gòu)與Motif可視化分析
利用MEME(http://meme-suite.org/tools/meme)進(jìn)行CmPATs保守結(jié)構(gòu)域分析,使用TBtools中的Gene Structure View對(duì)基因結(jié)構(gòu)和保守結(jié)構(gòu)域進(jìn)行可視化分析。
1.4 板栗PAT基因家族的蛋白質(zhì)理化性質(zhì)分析和亞細(xì)胞定位
利用ExPASy(https://www.expasy.org/)對(duì)板栗PAT基因家族成員進(jìn)行蛋白質(zhì)理化性質(zhì)分析,預(yù)測(cè) PATs 氨基酸數(shù)目、蛋白分子質(zhì)量、等電點(diǎn)、親水性平均系數(shù)、脂肪系數(shù)等,通過(guò)WoLF PSORT(https://www.genscript.com/wolf-psort.html)預(yù)測(cè)PAT蛋白的亞細(xì)胞定位。
1.5 板栗PAT基因家族染色體定位與共線性分析
使用MCScanX(The Multiple Collinearity Scan toolkit)工具進(jìn)行染色體定位分析并作可視化處理[29],并對(duì)板栗與擬南芥PAT基因的復(fù)制事件進(jìn)行共線性分析[30],使用TBtools作可視化圖。
1.6 板栗PAT基因家族的啟動(dòng)子順式作用元件分析
在TBtools軟件中,提取PAT基因上游的啟動(dòng)子前1.5 kb序列,順式作用元件的預(yù)測(cè)利用PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcar-e/)進(jìn)行[31],可視化結(jié)果使用TBtools繪圖顯示。
1.7 板栗PAT基因轉(zhuǎn)錄因子的預(yù)測(cè)
CmPATs基因的轉(zhuǎn)錄因子由在線網(wǎng)站http://plantregmap.gao-lab.org/預(yù)測(cè)得到[32],其詞云由在線網(wǎng)站https://www.genescloud.cn/制作而成。
1.8 不同的脅迫處理
選取生長(zhǎng)狀況一致的水培實(shí)生苗進(jìn)行土培,對(duì)土培材料進(jìn)行200 mmol·L-1 NaCl的脅迫處理,以不加NaCl為對(duì)照,每個(gè)處理3盆(1盆1株),并分別在7、10和14 d時(shí)采取同樣位置0和200 mmol·L-1 NaCl處理的葉片。
在進(jìn)行干旱處理時(shí),選取長(zhǎng)勢(shì)一致的水培轉(zhuǎn)土培的板栗實(shí)生苗30株,采摘新鮮葉片,分別在新鮮葉片失水量為0%、5%、30%和50%時(shí)取樣。
在進(jìn)行抗病處理時(shí),選取新鮮板栗樹(shù)枝條,用打孔器打孔,深度以達(dá)到形成層未到木質(zhì)部為準(zhǔn),將培養(yǎng)3 d的栗疫病菌絲塊接種于枝條的打孔處。以只進(jìn)行打孔處理的新鮮枝條為對(duì)照。取樣時(shí)間分別為接種后的0、12、24 h和3 d。
以上樣品均用液氮進(jìn)行速凍后放置-80 ℃超低溫冰箱保存待測(cè),每個(gè)處理均為3次重復(fù)。
1.9 RNA提取、cDNA合成及實(shí)時(shí)熒光定量PCR分析
使用E.Z.N.A. Plant RNA Kit(Omega)試劑盒提取RNA。cDNA的合成使用Reverse Transcriptase M-MLV(RNase H-)試劑盒(TaKaRa,大連)。選擇Cmactin作為內(nèi)參基因[20],利用Primer 3.0設(shè)計(jì)21個(gè)CmPAT基因的qPCR引物(表1),并由生工生物工程股份有限公司(上海)合成。使用Super Real Pre MixPlus (SYBR Green)試劑盒(Takala,大連),在CFX96(BIO-RAD,USA)上進(jìn)行反應(yīng),每個(gè)樣品3次重復(fù)。qPCR反應(yīng)程序?yàn)椋侯A(yù)變性95 ℃ 2 min,變性95 ℃ 15 s,退火58 ℃ 30 s,延伸72 ℃ 30 s,共40個(gè)循環(huán)。利用2-△△Ct法計(jì)算CmPATs相對(duì)表達(dá)量。
2 結(jié)果與分析
2.1 板栗PAT基因的系統(tǒng)進(jìn)化樹(shù)分析
利用HMMER、NCBI-CDD和SMART在板栗全基因組水平上進(jìn)行搜索,并對(duì)獲得的CmPAT基因進(jìn)行Blast,最終鑒定了21個(gè)CmPAT基因。為了解CmPAT蛋白的功能及進(jìn)化關(guān)系,將21個(gè)CmPAT蛋白序列與擬南芥的24個(gè)AtPAT蛋白進(jìn)行蛋白多序列比對(duì),構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹(shù)(圖1)。根據(jù)擬南芥分組情況,將系統(tǒng)進(jìn)化樹(shù)分成6個(gè)亞組(Ⅰ~Ⅵ)。在6個(gè)亞組中,Ⅴ組和Ⅵ組為最小分支組,分別僅有一個(gè)成員:Cm08G0098和Cm07G01540,最大分支組為Ⅰ組(AtPAT1~9)和Ⅱ組(AtPAT11~16),均有6個(gè)成員。在多序列比對(duì)中,21個(gè)CmPAT成員均具有DHHC結(jié)構(gòu)域。
2.2 CmPATs的基因結(jié)構(gòu)和Motif可視化分析
為了深入研究CmPATs的結(jié)構(gòu)異同,通過(guò)在線網(wǎng)站MEME,在系統(tǒng)發(fā)育樹(shù)的基礎(chǔ)上預(yù)測(cè)到了PAT序列中的10個(gè)保守基序和基因結(jié)構(gòu)圖(圖2)。在21個(gè)PAT基因中,發(fā)現(xiàn)每個(gè)PAT基因中包含不同種類和數(shù)目的Motifs。其中Motif4存在于6個(gè)CmPAT基因中(CmPAT7、CmPAT3、CmPAT4、CmPAT5、CmPAT77、CmPAT8),Motif5存在7個(gè)CmPAT基因中(CmPAT7、CmPAT3、CmPAT4、CmPAT5、CmPAT77、CmPAT8、CmPAT17)、Motif7和Motif10共同存在4個(gè)CmPAT基因中(CmPAT22、CmPAT21、CmPAT18、CmPAT19),說(shuō)明它們具有相似的功能,在進(jìn)化關(guān)系上也比較近。各個(gè)CmPAT的基因長(zhǎng)度差異較大,范圍為3750~24 300 bp。所有的PAT基因都含有Motif1,則Motif1應(yīng)為DHHC保守結(jié)構(gòu)域。CmPAT77不存在UTR區(qū),CmPAT40、CmPAT15只有1個(gè)UTR區(qū),其他基因都具有2個(gè)以上的UTR區(qū)。
2.3 板栗PAT基因家族的蛋白理化性質(zhì)分析和亞細(xì)胞定位
利用pfam數(shù)據(jù)庫(kù)與板栗V4基因組進(jìn)行比對(duì)分析,獲得了板栗基因組中包含一個(gè)DHHC結(jié)構(gòu)域的21個(gè)基因。隨后對(duì)其蛋白序列進(jìn)行蛋白質(zhì)理化性質(zhì)分析,發(fā)現(xiàn)序列長(zhǎng)度差異較大,在274~794個(gè)氨基酸之間,氨基酸長(zhǎng)度最長(zhǎng)的是CmPAT77,最短的是CmPAT15。平均分子質(zhì)量為51.27 kDa,等電點(diǎn)為5.91~9.82,其中只有CmPAT3、CmPAT14、CmPAT23、CmPAT24、CmPAT77這5個(gè)蛋白的PI小于7,說(shuō)明多數(shù)板栗PAT蛋白表現(xiàn)為堿性,少數(shù)為酸性。脂肪指數(shù)為73.60~104.69。蛋白的平均親水性(GRAVY)為-0.279~0.419,其中GRAVY為正值的有10個(gè)CmPAT蛋白,負(fù)值的有11個(gè)CmPAT蛋白。通過(guò)蛋白疏、親水性分析發(fā)現(xiàn),僅有CmPAT12、CmPAT13、CmPAT16、CmPAT17、CmPAT40、CmPAT77這6個(gè)PAT蛋白脂肪系數(shù)大于100,為疏水性蛋白,其余均為親水性蛋白。同時(shí),有12個(gè)PAT蛋白的不穩(wěn)定系數(shù)小于40,9個(gè)PAT蛋白不穩(wěn)定系數(shù)大于40,表明板栗PAT家族中大多為穩(wěn)定蛋白。其中CmPAT77除了上述PAT家族共有的DHHC保守結(jié)構(gòu)域外,還具有特異的泛素蛋白激酶序列。通過(guò)WoLF PSORT Prediction進(jìn)行亞細(xì)胞定位,發(fā)現(xiàn)CmPAT7定位在葉綠體,CmPAT4定位在細(xì)胞核,CmPAT23定位在細(xì)胞質(zhì),剩余18個(gè)PAT蛋白定位在質(zhì)膜中(表2)。
2.4 板栗PAT基因的染色體定位和共線性分析
繪制CmPAT基因在染色體上的分布圖,并利用1~12號(hào)染色體表示基因在染色體上的分布(圖3)。21個(gè)基因家族成員不均勻分布在1號(hào)、3號(hào)、4號(hào)、5號(hào)、7號(hào)、8號(hào)、10號(hào)、11號(hào)和12號(hào)染色體上,2號(hào)、6號(hào)和9號(hào)染色體上沒(méi)有CmPAT基因的分布。CmPAT24、CmPAT7、CmPAT8、CmPAT21分布于1號(hào)染色體上,CmPAT19分布在3號(hào)染色體上,CmPAT17、CmPAT11、CmPAT5和CmPAT22分布在4號(hào)染色體上,CmPAT77、CmPAT15、CmPAT13、CmPAT14、CmPAT12分布于5號(hào)染色體上,CmPAT40、CmPAT10、CmPAT23分別分布在7號(hào)、8號(hào)和10號(hào)染色體上,CmPAT3、CmPAT4及CmPAT16分布在11號(hào)染色體上,CmPAT18分布在12號(hào)染色體上。對(duì)板栗和擬南芥PAT基因進(jìn)行共線性分析發(fā)現(xiàn),在板栗與擬南芥之間存在10個(gè)具有共線性關(guān)系的PATs,在板栗間無(wú)共線性關(guān)系的PATs。板栗和擬南芥的PAT數(shù)目相差不大,因此CmPAT基因家族在物種間分化過(guò)程中比較保守(圖4)。
2.5 CmPATs基因啟動(dòng)子順式作用元件分析
為探索CmPAT基因的功能,將21個(gè)板栗PAT基因上游1.5 kb的啟動(dòng)子序列提交到PlantCARE網(wǎng)站進(jìn)行順式作用元件預(yù)測(cè)。如圖5所示,在板栗PAT基因的啟動(dòng)子區(qū)域中預(yù)測(cè)到基本順式作用元件、光響應(yīng)元件,激素響應(yīng)元件,多種逆境脅迫響應(yīng)元件,植物生長(zhǎng)發(fā)育相關(guān)元件等?;卷樖阶饔迷?shù)量最多,其中有943個(gè)TATA-box、623個(gè)CAAT-box 和152個(gè)AT~TATA-box等啟動(dòng)子元件;其次為光響應(yīng)元件,包括42個(gè)Box4、24個(gè)G-box、16個(gè)TCT-motif、13個(gè)GATA-motif、11個(gè)MRE、9個(gè)GT 1-motif等;在植物激素響應(yīng)元件中,含有45個(gè)生長(zhǎng)素響應(yīng)元件(ARE、TGA-element)、19個(gè)赤霉素響應(yīng)元件(P-box、TATC-box、GARE-motif、F-box)、24個(gè)乙烯響應(yīng)元件ERE、60個(gè)脫落酸響應(yīng)元件(ABRE、AAGAA-motif、ABRE4、ABRE3a)、42個(gè)水楊酸響應(yīng)元件(as-1、TCA、TCA-element)等;在逆境脅迫響應(yīng)元件中,含有7個(gè)干旱誘導(dǎo)元件(MBS、MBSI)、12個(gè)低溫響應(yīng)元件LTR、20個(gè)損傷誘導(dǎo)元件(WUN-motif、WRE3)、12個(gè)抗病響應(yīng)元件W-box等;植物生長(zhǎng)發(fā)育相關(guān)元件包括12個(gè)參與玉米醇溶蛋白代謝調(diào)節(jié)元件O 2-site、4個(gè)與植物胚乳發(fā)育相關(guān)元件(GCN 4_motif、AACA_motif)、1個(gè)參與種子特異調(diào)控元件RY-element等;此外還預(yù)測(cè)到66個(gè)MYB和61個(gè)MYC參與環(huán)境適應(yīng)性的響應(yīng)元件等。推測(cè)CmPAT基因在板栗生長(zhǎng)發(fā)育、激素調(diào)控、逆境脅迫及光調(diào)控中發(fā)揮著重要作用。
2.6 板栗PAT轉(zhuǎn)錄因子對(duì)應(yīng)的詞云分析
通過(guò)轉(zhuǎn)錄因子預(yù)測(cè)發(fā)現(xiàn),與21個(gè)板栗PAT基因調(diào)控相關(guān)的轉(zhuǎn)錄因子多達(dá)39種,其中以Dof蛋白家族的數(shù)量最多,BBR-BPC、AP2/ERF、MYB蛋白家族的數(shù)量在300~400之間,C2H2、GRAS、NAC、WRKY、TCP、HD-ZIP蛋白家族的數(shù)量在100~250之間,bHLH、TALE、bZIP、Trihelix、MYB_related、LBD、CPP、GATA、G2-like、MIKC_MADS、B3、WOX、HSF、C3H、ARF、ZF-HD、SBP蛋白家族的數(shù)量在20~85之間。其中Dof占比22%,AP2/ERF占比17%,BBR-BPC占比10%。這些轉(zhuǎn)錄因子可能在板栗中PAT基因的轉(zhuǎn)錄過(guò)程中發(fā)揮著重要作用(圖6)。
2.7 板栗PAT基因參與不同脅迫響應(yīng)
為進(jìn)一步了解板栗PAT基因在不同脅迫條件下的作用,對(duì)板栗實(shí)生苗進(jìn)行不同濃度鹽脅迫和干旱脅迫處理,進(jìn)行板栗PAT基因表達(dá)量熱圖繪制。
如圖7-A所示,21個(gè)CmPAT基因在不同時(shí)期不同程度地參與了鹽脅迫響應(yīng)。在7 d時(shí),相對(duì)于對(duì)照,有2個(gè)基因表達(dá)上調(diào),5個(gè)基因表達(dá)下調(diào)。在10 d時(shí),有11個(gè)基因表達(dá)上調(diào),其中有6個(gè)基因表達(dá)明顯上調(diào),2個(gè)基因表達(dá)明顯下調(diào)。在14 d時(shí),有6個(gè)基因表達(dá)上調(diào),5個(gè)基因表達(dá)下調(diào),其中4個(gè)基因表達(dá)明顯下調(diào)。以上結(jié)果說(shuō)明CmPAT基因廣泛參與鹽脅迫的響應(yīng)。在干旱脅迫處理中,失水量為5%時(shí),有2個(gè)基因表達(dá)明顯上調(diào),失水量為30%時(shí),有7個(gè)基因表達(dá)明顯上調(diào),失水量為50%時(shí),僅有1個(gè)基因表達(dá)未上調(diào),且無(wú)表達(dá)下調(diào)的基因,說(shuō)明CmPAT基因亦廣泛參與干旱脅迫響應(yīng)。CmPAT24、CmPAT7、CmPAT14共同正向參與響應(yīng)鹽脅迫與干旱脅迫(圖7-B)。
在植物生長(zhǎng)過(guò)程中,除了非生物脅迫以外,還面臨著病原菌的侵染等生物脅迫,抗病的作用機(jī)制也較為復(fù)雜。在CmPAT基因響應(yīng)抗栗疫病的轉(zhuǎn)錄組數(shù)據(jù)中發(fā)現(xiàn),整體基因表達(dá)量數(shù)值較低。在栗疫病病菌侵染12 h時(shí),與對(duì)照相比,基因表達(dá)量明顯上調(diào)的有2個(gè),為CmPAT11和CmPAT4,分別上調(diào)了1.11倍和1.39倍,僅有CmPAT17表達(dá)量明顯下調(diào),下調(diào)了72.61%。在栗疫病病菌侵染24 h時(shí),與對(duì)照相比,有6個(gè)基因表達(dá)量明顯上調(diào),分別為CmPAT24、CmPAT7、CmPAT16、CmPAT17、CmPAT14、CmPAT77,其基因表達(dá)量上調(diào)在1.5倍以上,其中CmPAT14和CmPAT77的基因表達(dá)量分別上調(diào)了2.79倍和2.49倍;CmPAT21和CmPAT22基因表達(dá)量下調(diào)較為明顯,分別下調(diào)了31%和37%。在栗疫病病菌侵染3 d時(shí),與對(duì)照相比,有6個(gè)基因表達(dá)量明顯上調(diào),分別為CmPAT7、CmPAT10、CmPAT16、CmPAT23、CmPAT17、CmPAT4,其基因表達(dá)量上調(diào)在1.5倍以上,其中CmPAT7和CmPAT17表達(dá)量分別上調(diào)2.61倍和2.44倍;CmPAT21、CmPAT5、CmPAT77基因表達(dá)量下調(diào)較為顯著,分別為42%、44%、57%。CmPAT7、CmPAT16和CmPAT17基因表達(dá)量在24 h和3 d 2個(gè)時(shí)期里均明顯上調(diào),CmPAT21和CmPAT77均明顯下調(diào),說(shuō)明他們可能參與了響應(yīng)栗疫病脅迫的網(wǎng)絡(luò)(圖7-C)。不同的CmPAT基因在不同脅迫中具有不同程度的響應(yīng),其中CmPAT7正向參與了鹽脅迫、干旱脅迫和抗病脅迫的調(diào)控。
3 討 論
蛋白質(zhì)棕櫚?;且环N后轉(zhuǎn)錄修飾的可逆反應(yīng),棕櫚?;D(zhuǎn)移酶催化?;陌l(fā)生,發(fā)生?;牡鞍卓梢詤⑴c多種物質(zhì)運(yùn)輸、信號(hào)轉(zhuǎn)導(dǎo)脅迫響應(yīng)。因此PAT家族作為參與調(diào)控植物生長(zhǎng)發(fā)育與逆境脅迫的相關(guān)蛋白逐漸進(jìn)入人們的視野。
在本研究中,筆者共鑒定出板栗中21個(gè)PAT基因家族成員,其基因數(shù)目與擬南芥基因數(shù)目接近,但不同物種間的PAT基因家族成員數(shù)目差異說(shuō)明該基因家族在植物進(jìn)化過(guò)程中產(chǎn)生一定程度的分化和擴(kuò)增[33]。將鑒定出的CmPAT家族成員通過(guò)系統(tǒng)發(fā)育進(jìn)化樹(shù)、基因結(jié)構(gòu)和motif、蛋白質(zhì)理化性質(zhì)、染色體定位、基因復(fù)制事件、共線性和不同脅迫下表達(dá)模式等生物信息學(xué)方法進(jìn)行綜合分析。
在系統(tǒng)發(fā)育進(jìn)化樹(shù)中發(fā)現(xiàn)21個(gè)CmPAT蛋白中有17個(gè)與擬南芥成員存在同源關(guān)系,在同一個(gè)亞組中的成員含有一致或相似的蛋白保守基序,支持了進(jìn)化分析的結(jié)果,同時(shí)也表明在氨基酸水平上存在同源關(guān)系的CmPAT和AtPAT間可能具有相似的生物學(xué)功能。Zhou等[18]對(duì)定位在液泡的AtPAT10的功能進(jìn)行研究,表明AtPAT10對(duì)擬南芥的發(fā)育及耐鹽性至關(guān)重要,因此CmPAT10可能也具有耐鹽性等功能。通過(guò)分析板栗PAT基因上游啟動(dòng)子中順式作用元件的組成情況發(fā)現(xiàn),其上游存在大量生長(zhǎng)發(fā)育和各種脅迫應(yīng)答相關(guān)的順式作用元件,他們?cè)谵D(zhuǎn)錄過(guò)程中可能受到多種轉(zhuǎn)錄因子的調(diào)控,以此提高板栗在生長(zhǎng)發(fā)育過(guò)程中的抗逆性。這與其他物種通過(guò)對(duì)啟動(dòng)子進(jìn)行分析來(lái)研究PAT家族成員對(duì)不同非生物脅迫等的響應(yīng)機(jī)制結(jié)果一致[34-36]。
板栗在生長(zhǎng)過(guò)程中,易受到鹽害和干旱等非生物脅迫。張新業(yè)等[37]對(duì)鑒定的27個(gè)胡蘿卜PAT基因進(jìn)行鹽脅迫處理,發(fā)現(xiàn)有3個(gè)DsPAT響應(yīng)了鹽脅迫。本研究中鹽脅迫處理下發(fā)現(xiàn)CmPAT24、CmPAT7、CmPAT13、CmPAT14在10 d和14 d表達(dá)上調(diào)顯著。筆者推測(cè)這些基因在不同時(shí)期可能參與板栗對(duì)鹽脅迫的響應(yīng),與前人研究結(jié)果相似。Tian等[33]發(fā)現(xiàn)OsPAT30參與了水稻耐鹽性的調(diào)控。Qi等[38]研究表明,擬南芥中的一個(gè)棕櫚酰基轉(zhuǎn)移酶AtPAT10對(duì)鹽脅迫響應(yīng)極為敏感。姜翰[39]在對(duì)蘋(píng)果PAT16的功能進(jìn)行研究時(shí)發(fā)現(xiàn)MdPAT16能抵抗鹽脅迫并促進(jìn)蘋(píng)果糖分的積累。但在擬南芥和蘋(píng)果中響應(yīng)鹽脅迫的PAT10和PAT16在板栗實(shí)生苗中并沒(méi)有明顯的響應(yīng),這與前人研究結(jié)果不一致,同時(shí)Tian等[33]的結(jié)果也表明了PAT基因功能在不同物種中對(duì)鹽脅迫具有一定的保守性。此外,呂慧等[40]發(fā)現(xiàn)干辣椒果實(shí)在干旱和鹽脅迫的共同刺激下,促進(jìn)了10個(gè)基因的表達(dá)。在本研究中,CmPAT24、CmPAT7、CmPAT14亦共同正向響應(yīng)鹽脅迫和干旱脅迫,這與呂慧等[40]的研究結(jié)果一致,在鹽脅迫和干旱脅迫雙重脅迫下促進(jìn)多個(gè)基因的表達(dá)。ZmPAT24(ZmTIP1)能夠調(diào)節(jié)玉米根毛的長(zhǎng)度及參與干旱脅迫的調(diào)控[41]。在本研究中,干旱脅迫失水量50%時(shí),大部分CmPAT基因的表達(dá)量均上調(diào),僅有CmPAT21未表現(xiàn)出明顯的抗旱性。這與前人研究結(jié)果相似,不同之處在于大部分CmPAT基因均參與調(diào)控板栗響應(yīng)干旱脅迫。據(jù)報(bào)道,Deng等[36]發(fā)現(xiàn)部分GhPAT基因在病原菌、干旱、鹽等非生物脅迫下參與響應(yīng),并驗(yàn)證了GhPAT27參與陸地棉花黃萎病抗性響應(yīng)。Gao等[42]發(fā)現(xiàn)AtPAT13和AtPAT16通過(guò)棕櫚酰化修飾NB-LRR蛋白R(shí)5L1調(diào)控?cái)M南芥的抗病機(jī)制。在本研究中,根據(jù)抗病脅迫轉(zhuǎn)錄組測(cè)序的結(jié)果發(fā)現(xiàn),CmPAT7、CmPAT16和CmPAT17基因表達(dá)量在24 h和3 d 2個(gè)時(shí)期均明顯上調(diào),CmPAT21和CmPAT77均明顯下調(diào)。說(shuō)明他們可能參與了響應(yīng)栗疫病脅迫的網(wǎng)絡(luò)。推測(cè)這5個(gè)基因極有可能參與板栗抗栗疫病的響應(yīng),并在板栗抗栗疫病中特異表達(dá)。CmPAT24、CmPAT7、CmPAT14共同響應(yīng)鹽脅迫和干旱脅迫的調(diào)控,CmPAT7共同響應(yīng)鹽脅迫、干旱脅迫和抗病脅迫的調(diào)控,部分CmPAT基因共同參與各種脅迫,與前人的研究結(jié)果一致。
4 結(jié) 論
筆者在本研究中共鑒定出21個(gè)板栗PAT基因家族成員,他們?cè)邴}脅迫、干旱脅迫和抗病脅迫等生物和非生物脅迫中發(fā)揮著重要作用。其中CmPAT24、CmPAT7、CmPAT14共同正向參與了鹽脅迫和干旱脅迫的調(diào)控,CmPAT7同時(shí)正向響應(yīng)鹽脅迫、干旱脅迫和抗病脅迫。研究結(jié)果可為研究板栗PAT基因家族的抗逆功能提供理論基礎(chǔ)。
參考文獻(xiàn)References:
[1]?? LI Y H,ZHANG Y Z,F(xiàn)ENG F J,LIANG D,CHENG L L,MA F W,SHI S G. Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M. 26 and its influence on salt tolerance[J]. Plant Cell,Tissue and Organ Culture,2010,102(3):337-345.
[2]?? MANN M,JENSEN O N. Proteomic analysis of post-translational modifications[J]. Nature Biotechnology,2003,21:255-261.
[3]?? WALSH G,JEFFERIS R. Post-translational modifications in the context of therapeutic proteins[J]. Nature Biotechnology,2006,24(10):1241-1252.
[4]?? SEET B T,DIKIC I,ZHOU M M,PAWSON T. Reading protein modifications with interaction domains[J]. Nature Reviews Molecular Cell Biology,2006,7:473-483.
[5]?? SOREK N,BLOCH D,YALOVSKY S. Protein lipid modifications in signaling and subcellular targeting[J]. Current Opinion in Plant Biology,2009,12(6):714-720.
[6]?? LINDER M E,DESCHENES R J. Palmitoylation:Policing protein stability and traffic[J]. Nature Reviews Molecular Cell Biology,2007,8:74-84.
[7]?? BAEKKESKOV S,KANAANI J. Palmitoylation cycles and regulation of protein function (Review)[J]. Molecular Membrane Biology,2009,26(1):42-54.
[8]?? GREAVES J,CARMICHAEL J A,CHAMBERLAIN L H. The palmitoyl transferase DHHC2 targets a dynamic membrane cycling pathway:Regulation by a C-terminal domain[J]. Molecular Biology of the Cell,2011,22(11):1887-1895.
[9]?? RESH M D. Trafficking and signaling by fatty-acylated and prenylated proteins[J]. Nature Chemical Biology,2006,2:584-590.
[10] SRIVASTAVA V,WEBER J R,MALM E,F(xiàn)OUKE B W,BULONE V. Proteomic analysis of a poplar cell suspension culture suggests a major role of protein S-acylation in diverse cellular processes[J]. Frontiers in Plant Science,2016,7:477.
[11] OHNO Y,KIHARA A,SANO T,IGARASHI Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins[J]. Biochimica et Biophysica Acta-General Subjects,2006,1761(4):474-483.
[12] OHNO Y,KASHIO A,OGATA R,ISHITOMI A,YAMAZAKI Y,KIHARA A. Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system[J]. Molecular Biology of the Cell,2012,23(1):4543-4551.
[13] LI Y X,QI B X. Progress toward understanding protein S-acylation:Prospective in plants[J]. Frontiers in Plant Science,2017,8:346.
[14] SOREK N,PORATY L,STERNBERG H,BAR E,LEWINSOHN E,YALOVSKY S. Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase[J]. Molecular and Cellular Biology,2007,27(6):2144-2154.
[15] BATISTI? O,KUDLA J. Analysis of calcium signaling pathways in plants[J]. Biochimica et Biophysica Acta-General Subjects,2012,1820(8):1283-1293.
[16] GAGNE J M,CLARK S E. The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated[J]. The Plant Cell,2010,22(3):729-743.
[17] WAN Z Y,CHAI S,GE F R,F(xiàn)ENG Q N,ZHANG Y,LI S. Arabidopsis PROTEIN S-ACYL TRANSFERASE4 mediates root hair growth[J]. The Plant Journal,2017,90(2):249-260.
[18] ZHOU L Z,LI S,F(xiàn)ENG Q N,ZHANG Y L,ZHAO X Y,ZENG Y L,WANG H,JIANG L W,ZHANG Y. PROTEIN S-ACYL TRANSFERASE10 is critical for development and salt tolerance in Arabidopsis[J]. The Plant Cell,2013,25(3):1093-1107.
[19] LAI J B,YU B Y,CAO Z D,CHEN Y M,WU Q,HUANG J Y,YANG C W. Two homologous protein S-acyltransferases,PAT13 and PAT14,cooperatively regulate leaf senescence in Arabidopsis[J]. Journal of Experimental Botany,2015,66(20):6345-6353.
[20] LI Y X,SCOTT R,DOUGHTY J,GRANT M,QI B X. Protein S-acyltransferase 14:A specific role for palmitoylation in leaf senescence in Arabidopsis[J]. Plant Physiology,2015,170(1):415-428.
[21] LI Y X,XU J F,LI G,WAN S,BATISTI? O,SUN M H,ZHANG Y X,SCOTT R,QI B X. Protein S-acyl transferase 15 is involved in seed triacylglycerol catabolism during early seedling growth in Arabidopsis[J]. Journal of Experimental Botany,2019,70(19):5205-5216.
[22] LI Y X,LI H J,MORGAN C,BOMBLIES K,YANG W C,QI B X. Both male and female gametogenesis require a fully functional protein S-acyl transferase 21 in Arabidopsis thaliana[J]. The Plant Journal,2019,100(4):754-767.
[23] HEMSLEY P A,KEMP A C,GRIERSON C S. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis[J]. The Plant Cell,2005,17(9):2554-2563.
[24] BATISTI? O,REHERS M,AKERMAN A,SCHL?CKING K,STEINHORST L,YALOVSKY S,KUDLA J. S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses[J]. Cell Research,2012,22(7):1155-1168.
[25] 劉曉書(shū),劉芳,張俊. 京津冀地區(qū)板栗產(chǎn)業(yè)布局及前景分析[J]. 中國(guó)果樹(shù),2022(2):99-102.
LIU Xiaoshu,LIU Fang,ZHANG Jun. Chestnut industry layout and prospect analysis in Beijing-Tianjin-Hebei region[J]. China Fruits,2022(2):99-102.
[26] 戴永務(wù),劉偉平. 中國(guó)板栗產(chǎn)業(yè)國(guó)際競(jìng)爭(zhēng)力現(xiàn)狀及其提升策略[J]. 農(nóng)業(yè)現(xiàn)代化研究,2012,33(4):456-460.
DAI Yongwu,LIU Weiping. Study on current status and promotion strategy of international competitiveness of Chinese chestnut industry[J]. Research of Agricultural Modernization,2012,33(4):456-460.
[27] 郝雅瓊,劉紅星,王澤華,聶興華,李伊然,陳旭,王維香,秦嶺,邢宇. 栗疫病菌侵染板栗枝條的顯微觀察[J]. 植物保護(hù),2022,48(1):179-184.
HAO Yaqiong,LIU Hongxing,WANG Zehua,NIE Xinghua,LI Yiran,CHEN Xu,WANG Weixiang,QIN Ling,XING Yu. Microscopic observation on infection process of chestnut branches by Cryphonectria parasitica[J]. Plant Protection,2022,48(1):179-184.
[28] TAMURA K,STECHER G,KUMAR S. MEGA11:Molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution,2021,38(7):3022-3027.
[29] CHEN C J,CHEN H,ZHANG Y,THOMAS H R,F(xiàn)RANK M H,HE Y H,XIA R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[30] WANG Y P,TANG H B,DEBARRY J D,TAN X,LI J P,WANG X Y,LEE T H,JIN H Z,MARLER B,GUO H,KISSINGER J C,PATERSON A H. MCScanX:A toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research,2012,40(7):e49.
[31] LESCOT M,D?HAIS P,THIJS G,MARCHAL K,MOREAU Y,VAN DE PEER Y,ROUZ? P,ROMBAUTS S. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.
[32] GINESTET C. ggplot2:Elegant graphics for data analysis[J]. Journal of the Royal Statistical Society Series A:Statistics in Society,2011,174(1):245-246.
[33] TIAN Y,ZENG H,WU J C,HUANG J,GAO Q,TANG D Y,CAI L P,LIAO Z Y,WANG Y,LIU X M,LIN J Z. Screening DHHCs of S-acylated proteins using an OsDHHC cDNA library and bimolecular fluorescence complementation in rice[J]. The Plant Journal,2022,110(6):1763-1780.
[34] ZHOU J M,ZHANG Y L. Plant immunity:Danger perception and signaling[J]. Cell,2020,181(5):978-989.
[35] 龐宏光. 梨棕櫚酰基轉(zhuǎn)移酶基因家族鑒定及PbPAT14功能研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2020.
PANG Hongguang. Identification of pear palmitoyl transferases gene family and functional study of PbPAT14[D]. Baoding:Hebei Agricultural University,2020.
[36] DENG Y H,CHEN Q J,QU Y Y. Protein S-acyl transferase GhPAT27 was associated with Verticillium wilt resistance in cotton[J]. Plants,2022,11(20):2758.
[37] 張新業(yè),李文靜,朱姝,孫艷香,王聰艷,閆訓(xùn)友,周志國(guó). 三種傘形科蔬菜作物棕櫚?;D(zhuǎn)移酶基因家族的鑒定與分析[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2023,35(6):1315-1327.
ZHANG Xinye,LI Wenjing,ZHU Shu,SUN Yanxiang,WANG Congyan,YAN Xunyou,ZHOU Zhiguo. Identification and analysis of PAT gene family in three kinds of Apiaceae vegetable crops[J]. Acta Agriculturae Zhejiangensis,2023,35(6):1315-1327.
[38] QI B X,DOUGHTY J,HOOLEY R. A Golgi and tonoplast localized S-acyl transferase is involved in cell expansion,cell division,vascular patterning and fertility in Arabidopsis[J]. The New Phytologist,2013,200(2):444-456.
[39] 姜翰. 蘋(píng)果棕櫚酰轉(zhuǎn)移酶基因MdPAT16促進(jìn)糖分轉(zhuǎn)運(yùn)和增強(qiáng)耐鹽性機(jī)理研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2021.
JIANG Han. Mechanism of apple palmitoyltransferase gene MdPAT16 in promoting sugar translocation and enhancing salt tolerance[D]. Yangling:Northwest A & F University,2021.
[40] 呂慧,吉雪花,張中榮,朱冉冉,王世寧,謝雪果,袁雷.制干辣椒果實(shí)辣椒素對(duì)干旱、鹽及其雙重脅迫的響應(yīng)[J].中國(guó)瓜菜,2022,35(2):78-84.
L? Hui,JI Xuehua,ZHANG Zhongrong,ZHU Ranran,WANG Shining,XIE Xueguo,YUAN Lei. Capsaicin of dry pepper fruit grown under drought,salt and combined stress condition[J]. China Cucurbits and Vegetables,2022,35(2):78-84.
[41] ZHANG X M,MI Y,MAO H D,LIU S X,CHEN L M,QIN F. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize[J]. Plant Biotechnology Journal,2020,18(5):1271-1283.
[42] GAO J,HUANG G,CHEN X,ZHU Y X. PROTEIN S-ACYL TRANSFERASE 13/16 modulate disease resistance by S-acylation of the nucleotide binding,leucine-rich repeat protein R5L1 in Arabidopsis[J]. Journal of Integrative Plant Biology,2022,64(9):1789-1802.