胡俊林 劉哲含 胡勁松
DOI:10.16783/j.cnki.nwnuz.2024.03.014
收稿日期:2023-10-20;修改稿收到日期:2023-11-25
基金項目:四川省應用基礎研究資助項目(2019YJ0387);國家自然科學青年基金資助項目(11701481)
作者簡介:胡俊林(1998—),男,四川會理人,碩士研究生.主要研究方向為微分方程數(shù)值解.
E-mail:1072450812@qq.com
*通信聯(lián)系人,男,四川射洪人,教授,博士.主要研究方向為微分方程數(shù)值解.
E-mail:hjs888hjs@163.com
摘要:對一類廣義Rosenau-KdV-RLW方程的初邊值問題提出一個新的高精度守恒差分算法.利用Taylor展式,在空間層做部分外推處理,直接從整體上抵消空間截斷誤差的二階部分,在時間層采用Crank-Nicolson格式,從而在時間方向和空間方向分別達到了二階精度和四階精度;合理模擬了問題本身的一個守恒量,并利用離散Sobolev嵌入不等式和離散泛函分析方法,證明了格式的收斂性和穩(wěn)定性;最后,數(shù)值算例驗證了該方法的有效性.
關鍵詞:廣義Rosenau-KdV-RLW方程;高精度守恒差分格式;收斂性;穩(wěn)定性
中圖分類號:O 241.82??? 文獻標志碼:A??? 文章編號:1001-988Ⅹ(2024)03-0127-06
A new high-accuracy conservative difference scheme
for the generalized Rosenau-KdV-RLW equation
HU Jun-lin,LIU Zhe-han,HU Jin-song
(School of Science,Xihua University,Chengdu 610039,Sichuan,China)
Abstract:A new conservative difference algorithm with the high-accuracy is proposed for the initial boundary value problem of the generalized Rosenau-KdV-RLW equation.For the space direction in this scheme,the Taylor expansion and the partial extrapolation are used to make the second-order term of the truncation error be removed directly,then it can achieve the fourth-order accuracy.And for the time direction,the Crank-Nicolson method is performed so that it has second-order accuracy in time.This algorithm can simulate reasonably a conservative property of the original problem.By using discrete Sobolev embedding inequality and the discrete functional analysis method,the convergence and stability of this algorithm are proved,respectively.Finally,the numerical examples show that this algorithm is reliable.
Key words:generalized Rosenau-KdV-RLW equation;high-accuracy conservative difference scheme;convergence;stability
考慮廣義Rosenau-KdV-RLW方程[1,2]初邊值問題
ut-3ux2t+5ux4t+
ux+3ux3+upx=0,
x∈(xL,xR),t∈(0,T],(1)
u|t=0=u0(x), x∈[xR,xL],(2)
u|x=xR=u|x=xL=0,
2ux2x=xR=2ux2x=xL=0,
t∈(0,T],(3)
其中u0(x)是一個已知的光滑函數(shù),p≥2為整數(shù).問題(1)~(3)滿足守恒律[1,2]:
Q(t)=∫xRxLu(x,t)dx=
∫xRxLu0(x)dx=Q(0),(4)
其中Q(0)為僅與初始條件有關的常數(shù).方程(1)是描述非線性波動行為的重要數(shù)學模型,在許多領域都有著廣泛的應用,著名的KdV方程[3]、RLW方程[4]和Rosenau方程[5]等均可視為其特殊情形,其數(shù)值求解方法研究也備受關注[6-16].由于不能用離散分部求和公式[17]在齊次邊界條件下推導出如下結論[16]:
(n)p,2n=0, p≥2,
故文獻[16]不能從理論上嚴格保證其方法的有效性.本文利用Tayor展開,在空間層做部分外推離散,直接從整體上抵消空間截斷誤差的二階部分,在時間層采用Crank-Nicolson格式,從而對問題(1)~(3)提出一個理論精度為O(τ2+h4)的兩層非線性差分格式,并合理模擬了守恒量(4),并利用離散Sobolev嵌入不等式[17]和離散泛函分析方法給出了其收斂性和穩(wěn)定性的理論證明,最后進行數(shù)值驗證.
1? 差分格式及其守恒律
對區(qū)域[xL,xR]×[0,T]作等距網(wǎng)格剖分,設時間步長為τ,令
tn=nτ, 0≤n≤N,N=Tτ;
xj=xL+jh, 0≤j≤J,h=xR-xLJ
為空間步長;記unj=u(xj,tn),Unj≈u(xj,tn),約定C是一般常數(shù),且C>0.并定義
(Unj)x=Unj+1-Unjh, (Unj)=Unj-Unj-1h,
(Unj)=Unj+1-Unj-12h, (Unj)t=Un+1j-Unjτ,
Un+1/2j=Un+1j+Unj2, Un,Vn=h∑J-1j=1UnjVnj,
Un2=Un,Un, Un∞=max1≤j≤J-1Unj,
Z0h={U=(Uj):U-2=U-1=U0=UJ=UJ+1=
UJ+2=0, j=-2,-1,…,J+1,J+2}.
若函數(shù)u(x,t)足夠光滑,當τ,h→0時,通過Taylor展開可得
(unj)x=2ux2nj+112h24ux4nj+O(h4),(5)
(unj)=2ux2nj+13h24ux4nj+O(h4),(6)
(unj)x=3ux3nj+14h25ux5nj+O(h4),(7)
(unj)=3ux3nj+12h25ux5nj+O(h4).(8)
由(5)~(8)式,有
23(unj)x+13(unj)=2ux2nj+
16h24ux4nj+O(h4),(9)
43(unj)x-13(unj)=3ux3nj+
16h25ux5nj+O(h4),(10)
又
(unj)t=utn+1/2j+O(τ2),(11)
(unj)=uxnj+16h23ux3nj+O(h4),(12)
[(unj)p]=upxnj+16h23upx3nj+O(h4),(13)
(unj)xx=4ux4nj+16h26ux6nj+O(h4).(14)
將方程(1)對x兩次求偏導,則有
3ux2t-5ux4t+7ux6t+
3ux3+5ux5+3upx3=0,(15)
再將方程(1)在點(xj,tn+1/2)處進行差分離散,并結合(9)~(14)式有
(unj)t-23(unj)xt+13(unj)t-
16h25ux4tn+1/2j+
(unj)xxt-16h27ux6tn+1/2j+
(un+1/2j)-16h23ux3n+1/2j+
43(un+1/2j)x-13(un+1/2j)-
16h25ux5n+1/2j+
[(un+1/2j)p]-16h23upx3n+1/2j=
O(τ2+h4).
結合(15)式,整理有
(unj)t-23(unj)xt+13(unj)t+
(unj)xxt+(un+1/2j)+
43(un+1/2j)x-13(un+1/2j)+
[(un+1/2j)p]+16h23ux2tnj=
O(τ2+h4).
再由(5)式可得
(unj)t-23(unj)xt+13(unj)t+
(unj)xxt+(un+1/2j)+
43(un+1/2j)x-13(un+1/2j)+
[(un+1/2j)p]+16h2(unj)xt=
O(τ2+h4).(16)
于是,對問題(1)~(3)構造如下差分格式:
(Unj)t-23(Unj)xt+13(Unj)t+
(Unj)xxt+(Un+1/2j)+
43(Un+1/2j)x-13(Un+1/2j)+
[(Un+1/2j)p]+16h2(Unj)xt=0,
j=1,2,…,J-1,
n=0,1,…,N-1;(17)
Unj=u0(xj), j=0,1,…,J;(18)
Un∈Z0h, n=0,1,…,N.(19)
定理1? 差分格式(17)~(19)關于離散能量
Qn=h∑J-1j=1Unj=Qn-1=…=Q0(20)
守恒,其中,n=1,2,…,N.
證明? 將(17)式兩端乘以h后,對j從1到J-1求和,由邊界條件(19)和分部求和公式[17]有
h∑J=1j=1(Unj)t=0,
由Qn的定義,關于n遞推即可得(20)式.? 】
2? 收斂性和穩(wěn)定性
定義差分格式(17)~(19)的截斷誤差為:
rnj=(unj)t-23(unj)xt+13(unj)t+
(unj)xxt+(un+1/2j)+
43(un+1/2j)x-13(un+1/2j)+
[(un+1/2j)p]+16h2(unj)xt,
j=1,2,…,J-1,
n=0,1,…,N-1;(21)
u0j=u0(xj), j=0,1,…,J;(22)
un∈Z0h, n=0,1,…,N.(23)
由(16)式可知,當h,τ→0時,
|rnj|=O(τ2+h4).(24)
引理1[8]? 設u0足夠光滑,則初邊值問題(1)~(3)的解滿足:
uL∞≤C, uxL∞≤C.
引理2[15]? 對U∈Z0h有U2≤Ux2.
定理2? 設u0足夠光滑,若時間步長τ和空間步長h充分小,則差分格式(17)~(19)的解Un以·∞收斂到初邊值問題(1)~(3)的解,且收斂階為O(τ2+h4).
證明? 用數(shù)學歸納法.記enj=unj-Unj,由(21)~(23)式減去(17)~(19)式,有
rnj=(enj)t-23(enj)xt+13(enj)t+
(enj)xxt+(en+1/2j)+
43(en+1/2j)x-13(en+1/2j)+
[(un+1/2j)p]-[(Un+1/2j)p]+h26(enj)xt,
j=1,2,…,J-1,
n=0,1,…,N-1;(25)
e0j=0, j=0,1,…,J;(26)
en∈Z0h, n=0,1,…,N.(27)
由引理1以及(24)式知,存在與τ和h無關的常數(shù)Cu和Cr,使得
un∞≤Cu, rn∞≤Cr(τ2+h4),
n=1,2,…,N.(28)
再由(26)式以及(18)式可得以下估計:
e0=0, U0≤Cu.(29)
現(xiàn)在假設當n≤N-1時,有
el+elx+elxx≤Cl(τ2+h4),(30)
其中Cl(l=1,2,…,n)為與τ和h無關的常數(shù),則由離散的Sobolev不等式[17]和Cauchy-Schwarz不等式,有
el∞≤C0elelx+el≤
12C0(2el+elx)≤
32C0Cl(τ2+h4),(31)
Ul∞≤ul∞+el∞≤
Cu+32C0Cl(τ2+h4),
l=1,2,…,n.(32)
將(25)式兩端與en+1/2取內(nèi)積,由邊界條件(27)式和分部求和公式[17],并注意到
en+1/2,en+1/2=0,
en+1/2x,en+1/2=0,
en+1/2,en+1/2=0,
整理得
12en2t+13-h212enx2t+
16en2t+12enxx2t=
rn,en+1/2-[(un+1/2)p-
(Un+1/2)p],en+1/2.(33)
再取h和τ充分小,使得
32C0·max0≤l≤nCl(τ2+h4)≤1,(34)
則由(32),(34)式和分部求和公式[17]、引理2以及Cauchy-Schwarz不等式可得
-[(un+1/2)p-(Un+1/2)p],en+1/2=
[(un+1/2)p-(Un+1/2)p],en+1/2=
h∑J-1j=1en+1/2j∑p-1i=1(un+1/2j)p-1-i(Un+1/2j)i)×
(en+1/2j)≤
∑p-1i=1(Cu)p-1-i(Cu+1)ih×
∑J-1j=1en+1/2j·(en+1/2j)≤
p(Cu+1)p-1h∑J-1j=1en+1/2j·(en+1/2j)≤
p2(Cu+1)p-1en+1/22+en+1/2x2≤
p4(Cu+1)p-1(en+12+en2+
en+1x2+enx2),(35)
rn,en+1/2≤12rn2+
14(en+12+en2).(36)
將(35)和(36)式代入(33)式,整理得
(en+12-en2)+23-h26×
(en+1x2-enx2)+
13(en+12-en2)+
(en+1xx2-enxx2)≤
τrn2+12τ(en+12+en2)+
τp2(Cn+1)p-1×
(en+12+en2+en+1x2+enx2)≤
τrn2+τp(Cu+1)p-1(en+12+
en2+en+1x2+enx2).(37)
令
An=en2+enx2+enxx2,
Bn=en2+23-h26enx2+
13en2+enxx2,
將(37)式從1到n遞推求和,并整理有
Bn+1≤B1+τ∑nk=1rk2+
τ∑n+1k=12p(Cn+1)p-1×
(ek2+ekx2).(38)
由(28)式和(30)式有
τ∑nk=1rk2≤nτmax1≤k≤nrk2≤T(Cr)2(τ2+h4)2,
B1≤(C1)2(τ2+h4)2,
取h充分小使得2/3-h2/6>1/3,則(38)式變?yōu)?/p>
An+1≤3Bn+1≤3(T(Cr)2+(C1)2)(τ2+h4)2+
τ∑n+1k=16p(Cu+1)p-1Ak.
利用離散Gronwall不等式[17],取
τ<112p(Cn+1)p-1,
則
An+1≤(Cn+1)2(τ2+h4)2, n=1,2,…,N-1,
其中Cn+1=(3TCr+3C1)eT[6p(Cu+1)p-1].顯然常數(shù)Cn+1與時間層n無關.從而由歸納假設有
en≤O(τ2+h4), enx≤O(τ2+h4),
enxx≤O(τ2+h4), n=1,2,…,N.
最后由離散的Sobolev不等式[17],有
en∞≤O(τ2+h4), n=1,2,…,N.? 】
定理3? 在定理2的條件下,差分格式(17)~(19)的解滿足:
Un∞≤0, n=1,2,…,N,
其中0是與τ和h無關的常數(shù).
證明? 對于充分小的τ和h,由定理2有
Un∞≤un∞+en∞≤0.? 】
注1? 定理3表明差分格式(17)~(19)的解Un以·∞關于初值穩(wěn)定.
3? 數(shù)值實驗
考慮p=3和p=5兩種情形進行數(shù)值實驗.當p=3時,方程(1)的孤波解[1]為
u(x,t)=15(57-5)/(45(57-5)-8)×
sech218257-10
x-142(557+33)t;
當p=5時,方程(1)的孤波解[1]為
u(x,t)=3-3/42243-10×
(9/80(43-5)-72))1/4×
sech16443-20×
x-191(59+1043)t.
在數(shù)值實驗中,取初值函數(shù)u0(x)=u(x,0).固定xL=-40,xR=120,T=40.就τ和h的不同取值,數(shù)值解在一些不同時刻的誤差見表1~2,對差分格式(17)~(19)的理論精度檢驗見表3~4,對守恒量(4)的數(shù)值模擬部分數(shù)據(jù)見表5.
從數(shù)值實驗結果可以看出,本文對問題(1)~(3)提出的差分格式(17)~(19)是可靠的.
參考文獻:
[1]? RAZBOROVA P,AHMED B,BISWAS A.Solitons,shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity[J].Appl Math Inf Sci,2014,8(2):485.
[2]? SANCHEZ P,EBADI G,MOJAVER A,et al.Solitons and other solutions to perturbed Rosenau-KdV-RLW equation with power law nonlinearity[J].Acta Phys Polon A,2015,127(6):1577.
[3]? KORTEWAG D J,DEVRIES G.On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves[J].Philos Mag,1985,39(5):422.
[4]? BENJAMIN T B,BONA J L,MAHONY J J.Model equations for long waves in nonlinear dispersive systems[J].Philos T R Soc B,1972,272:47.
[5]? ROSENAU P.A quasi-continuous description of a nonlinear transmission line[J].Phys Scripta,1986,34:827.
[6]? FOROUTAN M,EBADIAN A,Chebyshev rational approximations for the Rosenau-KdV-RLW equation on the whole line[J].Int J Anal Appl,2018,16(1):1.
[7]? SIBEL .An effective numerical technique for the Rosenau-KdV-RLW equation[J].Balkesir niv Fen Bilim Enst derg,2018,20(3):1.
[8]? 卓茹,李佳佳,胡勁松.求解廣義Rosenau-KdV-RLW方程的一個非線性守恒差分格式[J].四川大學學報(自然科學版),2017,54(4):703.
[9]? WONGSAIJAI B,POOCHINAPAN K.A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation[J].Appl Math Comput,2014,245:289.
[10]? PAN X,WANG Y,ZHANG L.Numerical analysis of a pseudo-compact C-N conservative scheme for the Rosenau-KdV equation coupling with the Rosenau-RLW equation[J].Bound Value Probl,2015:65.
[11]? SHALLU,KUMAR K V.An efficient collocation algorithm with SSP-RK43 scheme to solve Rosenau-KdV-RLW equation[J].Int J Ap Mat Com-Pol,2021,7(161):1.
[12]? AHMAT M,QIU J X.SSP IMEX Runge-Kutta WENO scheme for generalized Rosenau-KdV-RLW equation[J].J Math Study,2022,55(1):1.
[13]? ANKUR,JIWARI R,KUMAR N.Analysis and simulation of Korteweg-de Vries-Rosenau-Regularised long-wave model via Galerkin finite element method[J].Comput Math Appl,2023,135:134.
[14]? VERMA A K,RAWANI M K.Numerical solutions of generalized Rosenau-KdV-RLW equation by using haar wavelet collocation approach coupled with nonstandard finite difference scheme and quasilinearization[J].Numer Meth Part D E,2022,39(2):1085.
[15]? GHILOUFI A,OMRANI K.New conservative difference schemes with fourth-order accuracy for some model equation for nonlinear dispersive waves[J].Numer Meth Part D E,2018,34(2):451.
[16]? WANG X,DAI W.A new conservative finite difference scheme for the generalized Rosenau-KdV-RLW Equation[J].Comput Math Appl,2020,39(3):1.
[17]? ZHOU Y.Application of Discrete Functional Analysis to the Finite Difference Method[M].Beijing:International Academic Publishers,1991.
(責任編輯? 馬宇鴻)