黃壯壯 楊坤 王戈 王杰 成兆君
摘 要:針對(duì)純電動(dòng)商用車(chē)在連續(xù)制動(dòng)時(shí),氣源壓力偏低會(huì)導(dǎo)致驅(qū)動(dòng)軸耦合制動(dòng)力響應(yīng)速度變慢,影響制動(dòng)能量回收效率的問(wèn)題,提出一種基于比例繼動(dòng)閥的解耦式制動(dòng)能量回收系統(tǒng)(uncoupled braking energy recovery system, URBS)方案。首先,基于比例繼動(dòng)閥的遲滯特性,采用前饋-單神經(jīng)元PID控制方法,實(shí)現(xiàn)制動(dòng)氣壓的準(zhǔn)確輸出;其次,以電池SOC、車(chē)速等為約束條件,根據(jù)氣源壓力信號(hào)確定供壓模式,并制定解耦式制動(dòng)能量回收控制策略;最后,基于AMESim,MATLAB/Simulink及TruckSim搭建聯(lián)合仿真平臺(tái),選取單次制動(dòng)工況與循環(huán)工況驗(yàn)證了制動(dòng)力耦合效果及系統(tǒng)的制動(dòng)能量回收效果。結(jié)果表明,基于比例繼動(dòng)閥的URBS可實(shí)現(xiàn)耦合制動(dòng)力的快速響應(yīng),達(dá)到穩(wěn)態(tài)壓力值75%的時(shí)間小于0.1 s,且在中國(guó)重型商用車(chē)行駛工況和中國(guó)重型商用車(chē)瞬態(tài)工況下有效制動(dòng)能量回收率分別為10.13%,17.17%。所提URBS方案能有效提高驅(qū)動(dòng)軸耦合制動(dòng)力的響應(yīng)速度及耦合精度,可為純電動(dòng)商用車(chē)氣壓式URBS方案設(shè)計(jì)提供參考。
關(guān)鍵詞:車(chē)輛工程;解耦式制動(dòng)能量回收;比例繼動(dòng)閥;單神經(jīng)元PID;遲滯補(bǔ)償;聯(lián)合仿真
中圖分類(lèi)號(hào):U469.72? 文獻(xiàn)標(biāo)識(shí)碼:A? ?文章編號(hào):1008-1542(2024)02-0131-10
Uncoupled braking energy recovery system based onproportional relay valve
HUANG Zhuangzhuang1,YANG Kun1,WANG Ge2,WANG Jie1, CHENG Zhaojun3
(1.School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo, Shandong 255000, China;2.Shandong Tangjun Ouling Automobile Manufacture Company Limited, Zibo, Shandong 255000, China;3.Shandong Institute of Metrology, Jinan, Shandong 250100, China)
Abstract:Aiming at the problem that during continuous braking of pure electric commercial vehicles, low air source pressure will lead to slower braking force response speed of drive axle coupling and affect braking energy recovery efficiency, a scheme of uncoupled braking energy recovery system (URBS) based on proportional relay valve was proposed. Firstly, based on the hysteresis characteristics of the proportional relay valve, the feed-forward-single neuron PID control method was adopted to realize the accurate output of braking air pressure. Secondly, taking the battery SOC and vehicle speed as the constraints, the pressure supply mode was determined according to the pressure signal of the air source, and the uncoupled braking energy recovery control strategy was formulated. Finally, a joint simulation platform was built based on AMESim, MATLAB/Simulink and TruckSim, and a single braking condition and cyclic conditions were selected to verify the effect of the braking force coupling and the braking energy recovery of the system. The results show that URBS based on proportional relay valve can achieve rapid response of coupled braking force, with the time of less than 0.1 second to reach 75% of steady-state pressure value. The effective braking energy recovery rates under CHTC-HT(China heary-duty commercial vehicle test cycle for heavy truck) and C-WTVC(China world transient vehicle cycle) conditions are 10.13% and 17.17%, respectively. The proposed URBS scheme can effectively improve the response speed and coupling accuracy of coupled braking force of the drive axle, and can provide reference for the design of pneumatic URBS schemes for pure electric commercial vehicles.
Keywords:vehicle engineering; uncoupled braking energy recovery system; proportional relay valve; single neuron PID; hysteresis compensation; joint simulation
“雙碳”背景下,電動(dòng)化已成為現(xiàn)階段商用車(chē)的主要發(fā)展方向之一,而制動(dòng)能量回收對(duì)提高整車(chē)能量利用率具有重要意義[1-3]。解耦式制動(dòng)能量回收系統(tǒng)(uncoupled braking energy recovery system, URBS)在原有制動(dòng)系統(tǒng)上加裝解耦裝置,即可實(shí)現(xiàn)再生制動(dòng)力與機(jī)械制動(dòng)力的精確耦合,同時(shí)可優(yōu)先采用電機(jī)制動(dòng)力,有效提高制動(dòng)能量回收效率[4-5]。在傳統(tǒng)氣壓制動(dòng)系統(tǒng)中,通過(guò)繼動(dòng)閥可有效縮短壓力建立時(shí)間,但其動(dòng)態(tài)特性復(fù)雜,且閥的開(kāi)閉依靠氣壓控制,響應(yīng)速度慢。而電控制動(dòng)系統(tǒng)(electronically controlled brake system, EBS)采用比例繼動(dòng)閥,在電控模式下能進(jìn)一步縮短壓力建立時(shí)間與制動(dòng)響應(yīng)時(shí)間[6-7],同時(shí)保留了氣控模式,可實(shí)現(xiàn)制動(dòng)備份功能。此外,理論上比例繼動(dòng)閥的輸入與輸出間存在線性關(guān)系,相較于開(kāi)關(guān)閥可準(zhǔn)確輸出制動(dòng)氣壓,若將其應(yīng)用于URBS,可提高制動(dòng)力耦合精度,同時(shí)具備制動(dòng)備份功能,保證了車(chē)輛的制動(dòng)安全性。實(shí)際中,比例繼動(dòng)閥會(huì)受到氣體的可壓縮性、閥體內(nèi)部結(jié)構(gòu)差異以及閥芯運(yùn)動(dòng)時(shí)的摩擦力等因素影響,存在明顯的遲滯特性,為實(shí)現(xiàn)比例繼動(dòng)閥的準(zhǔn)確控制,必須對(duì)其遲滯特性進(jìn)行補(bǔ)償。
針對(duì)比例繼動(dòng)閥遲滯特性的補(bǔ)償控制研究,韓正鐵等[8]和HAN等[9]建立了比例繼動(dòng)閥的數(shù)學(xué)模型,并提出一種結(jié)合滯環(huán)補(bǔ)償?shù)腜ID控制算法,可對(duì)比例繼動(dòng)閥的遲滯特性進(jìn)行有效補(bǔ)償;李靜等[10]提出一種基于神經(jīng)網(wǎng)絡(luò)和PID交互的控制算法,與傳統(tǒng)PID控制算法相比,可顯著提高比例繼動(dòng)閥的壓力響應(yīng)速度與控制精度。YOU等[11]采用前饋補(bǔ)償結(jié)合積分抗飽和的PI控制,有效消除了比例繼動(dòng)閥輸出氣壓的穩(wěn)態(tài)誤差。針對(duì)比例繼動(dòng)閥對(duì)整車(chē)性能影響的研究,游牟捷[12]將比例繼動(dòng)閥作為制動(dòng)能量回收系統(tǒng)的氣壓調(diào)節(jié)模塊,通過(guò)硬件在環(huán)試驗(yàn)研究了其對(duì)車(chē)輛制動(dòng)平順性及舒適性的影響。劉文濤等[13]、LI等[14]利用硬件在環(huán)試驗(yàn),對(duì)比例繼動(dòng)閥在不同制動(dòng)強(qiáng)度下的壓力控制效果及制動(dòng)平順性進(jìn)行了驗(yàn)證,發(fā)現(xiàn)相較于電磁開(kāi)關(guān)閥,比例繼動(dòng)閥在壓力調(diào)節(jié)及車(chē)輛制動(dòng)平順性方面更具優(yōu)勢(shì)。上述對(duì)整車(chē)性能影響的研究均基于前饋結(jié)合積分抗飽和PI控制,對(duì)比例繼動(dòng)閥應(yīng)用于制動(dòng)能量回收系統(tǒng)的優(yōu)勢(shì)進(jìn)行了研究,并未考慮純電動(dòng)商用車(chē)在連續(xù)制動(dòng)時(shí)因氣源壓力降低導(dǎo)致的耦合制動(dòng)力響應(yīng)速度慢、耦合精度低等問(wèn)題。
為解決現(xiàn)有URBS在連續(xù)制動(dòng)時(shí)因氣源壓力偏低造成驅(qū)動(dòng)軸耦合制動(dòng)力響應(yīng)速度慢的問(wèn)題,提出一種基于比例繼動(dòng)閥的URBS方案,并基于比例繼動(dòng)閥的遲滯特性,采用前饋-單神經(jīng)元PID實(shí)現(xiàn)對(duì)比例繼動(dòng)閥的準(zhǔn)確控制,以電池SOC、車(chē)速等為約束條件制定解耦式制動(dòng)能量回收控制策略,并通過(guò)AMESim,MATLAB/Simulink及TruckSim搭建聯(lián)合仿真平臺(tái),對(duì)基于比例繼動(dòng)閥的URBS的可行性及制動(dòng)能量回收的有效性進(jìn)行驗(yàn)證。
1 基于比例繼動(dòng)閥的URBS方案
比例繼動(dòng)閥作為EBS的關(guān)鍵部件,具有應(yīng)用于解耦式制動(dòng)能量回收系統(tǒng)的優(yōu)勢(shì),主要表現(xiàn)在:1)比例繼動(dòng)閥能有效縮短制動(dòng)壓力響應(yīng)時(shí)間;2)通過(guò)加裝壓力傳感器及制定相應(yīng)控制算法即可實(shí)現(xiàn)再生制動(dòng)力矩與機(jī)械制動(dòng)力矩的解耦,制動(dòng)系統(tǒng)的改動(dòng)難度較小。所提出的基于比例繼動(dòng)閥的URBS方案如圖1所示,該方案在原有氣壓ABS電磁閥的URBS上增加了副儲(chǔ)氣罐、開(kāi)關(guān)閥和疊加式單向閥等部件,并將前、后軸原有繼動(dòng)閥替換為比例繼動(dòng)閥,使得驅(qū)動(dòng)軸制動(dòng)氣路具有2個(gè)獨(dú)立的高壓氣源和雙回路結(jié)構(gòu),在制動(dòng)能量回收時(shí),可由較高氣壓的氣源為驅(qū)動(dòng)輪制動(dòng)氣室提供壓力,有效解決因氣源壓力低帶來(lái)的制動(dòng)壓力響應(yīng)速度慢等問(wèn)題,并可提高制動(dòng)力響應(yīng)速度與輸出精度。同時(shí),若比例繼動(dòng)閥的電控模式失效,其具備的傳統(tǒng)氣控模式仍可滿足車(chē)輛的制動(dòng)需求,能保證車(chē)輛的制動(dòng)安全性。
基于比例繼動(dòng)閥的URBS主要由制動(dòng)閥(1)、主儲(chǔ)氣罐(2)、副儲(chǔ)氣罐(3)、空氣壓縮機(jī)(4)、開(kāi)關(guān)閥(5)、疊加式單向閥(6)、比例繼動(dòng)閥(7, 26)、三通閥(8, 21)、ABS電磁閥(9, 16, 20, 25)、制動(dòng)氣室(10,15,19,24)、壓力傳感器(11, 14, 18, 23)、輪速傳感器(12, 13, 17, 22)、踏板位移傳感器(27)、制動(dòng)控制器、整車(chē)控制器(vehicle control unit, VCU)、電池系統(tǒng)及電機(jī)系統(tǒng)等組成,除比例繼動(dòng)閥、副儲(chǔ)氣罐、開(kāi)關(guān)閥、疊加式單向閥外,其余均為原車(chē)已有部件。壓力傳感器負(fù)責(zé)測(cè)量各制動(dòng)氣室的制動(dòng)壓力,以實(shí)現(xiàn)前后軸制動(dòng)力以及電機(jī)與后軸制動(dòng)力的分配,壓力信號(hào)通過(guò)低壓線束傳給VCU。輪速傳感器負(fù)責(zé)測(cè)量車(chē)輪的速度,輪速信號(hào)由低壓線束傳給制動(dòng)控制器;比例繼動(dòng)閥用于調(diào)節(jié)前、后軸的機(jī)械制動(dòng)力矩,ABS電磁閥可調(diào)節(jié)各輪的機(jī)械制動(dòng)力矩,二者均通過(guò)低壓線束與制動(dòng)控制器相連;制動(dòng)控制器根據(jù)制定的控制算法輸出相應(yīng)控制信號(hào),可分別控制比例繼動(dòng)閥與ABS電磁閥實(shí)現(xiàn)對(duì)制動(dòng)力矩的調(diào)節(jié)。電機(jī)控制器(motor control unit, MCU)、電池管理系統(tǒng)(battery management system, BMS)、制動(dòng)控制器與VCU之間通過(guò)CAN總線連接。
理論上比例繼動(dòng)閥的輸出與輸入呈線性關(guān)系,相較于ABS電磁開(kāi)關(guān)閥,比例繼動(dòng)閥的輸出氣壓更為精確,有利于機(jī)械制動(dòng)力與再生制動(dòng)力的耦合。因此在制動(dòng)能量回收時(shí),選擇比例繼動(dòng)閥作為調(diào)壓模塊,ABS電磁閥僅在緊急制動(dòng)時(shí)工作,可有效提高整車(chē)經(jīng)濟(jì)性與制動(dòng)安全性。
2 比例繼動(dòng)閥的前饋-單神經(jīng)元PID控制
AMESim是氣壓、液壓領(lǐng)域常用的仿真軟件,其采用鍵合圖的建模方法,可方便、準(zhǔn)確地建立出多學(xué)科領(lǐng)域的系統(tǒng)模型?;诒壤^動(dòng)閥的結(jié)構(gòu)及工作原理[8,10],利用AMESim建立的比例繼動(dòng)閥仿真模型如圖2所示。
比例繼動(dòng)閥因具有非線性、參數(shù)不確定的特點(diǎn),通常采用PID控制,但存在遲滯特性無(wú)法得到有效補(bǔ)償?shù)膯?wèn)題,結(jié)合前饋補(bǔ)償?shù)腜ID控制可實(shí)現(xiàn)對(duì)遲滯特性的有效補(bǔ)償,但其對(duì)于不同范圍氣壓的適應(yīng)性較差,存在較明顯的穩(wěn)態(tài)誤差。單神經(jīng)元PID具有自學(xué)習(xí)和自適應(yīng)能力,且該控制方法魯棒性強(qiáng)、結(jié)構(gòu)簡(jiǎn)單,能夠克服PID控制隨動(dòng)性差的缺點(diǎn)[15-16],可針對(duì)比例繼動(dòng)閥因系統(tǒng)非線性及參數(shù)不確定而難以準(zhǔn)確控制的問(wèn)題提供更好的解決方案。因此,本文采用前饋-單神經(jīng)元PID控制比例繼動(dòng)閥,對(duì)遲滯特性進(jìn)行補(bǔ)償,其原理見(jiàn)圖3。
圖3中,r(k)為目標(biāo)氣壓值,p(k)為實(shí)際輸出氣壓值,u(k)為電流信號(hào),狀態(tài)轉(zhuǎn)換輸出的x1(k),x2(k)和x3(k)為單神經(jīng)元學(xué)習(xí)所需的狀態(tài)量。
x1(k)=r(k)-p(k)=e(k),x2(k)=e(k)-e(k-1),x3(k)=e(k)-2e(k-1)+e(k-2)。(1)
單神經(jīng)元PID控制可通過(guò)調(diào)節(jié)權(quán)重系數(shù)完成PID參數(shù)的自適應(yīng)整定,采用有監(jiān)督的Hebb學(xué)習(xí)規(guī)則[17-18],其控制算法及學(xué)習(xí)規(guī)則為
u(k)=u(k-1)+K∑3i=1w′i(k)xi(k),(2)
w′i(k)=wi(k)∑3i=1|wi(k)|,(3)
w1(k)=w1(k-1)+ηIe(k)u(k)x1(k),w2(k)=w2(k-1)+ηPe(k)u(k)x2(k),w3(k)=w3(k-1)+ηDe(k)u(k)x3(k),(4)
式中:K為單神經(jīng)元比例系數(shù),K>0;wi(k)為xi(k)對(duì)應(yīng)的權(quán)重系數(shù),i=1,2,3;ηI,ηP和ηD分別為積分、比例、微分系數(shù)的學(xué)習(xí)速率。
為驗(yàn)證前饋-單神經(jīng)元PID對(duì)比例繼動(dòng)閥的靜態(tài)控制效果,在0.4和0.6 MPa階躍工況下,將前饋-單神經(jīng)元PID與傳統(tǒng)PID、前饋-PID、前饋-模糊PID控制進(jìn)行了對(duì)比,分別如圖4 a)、圖4 b)所示。在0.4 MPa階躍工況下,基于PID和前饋-PID控制的輸出氣壓具有明顯的超調(diào),且達(dá)到穩(wěn)態(tài)時(shí)輸出氣壓與目標(biāo)值間存在明顯誤差,分別為0.012和0.029 MPa;基于前饋-模糊PID控制下的輸出氣壓雖超調(diào)較小,但其在接近穩(wěn)態(tài)時(shí)與目標(biāo)值間存在誤差,如0.31 s時(shí)輸出氣壓為0.384 MPa,與目標(biāo)值間的誤差為0.016 MPa,而基于前饋-單神經(jīng)元PID控制的輸出氣壓達(dá)到穩(wěn)態(tài)時(shí)與目標(biāo)值間的誤差僅為0.003 MPa。在0.6 MPa階躍工況下,基于PID和前饋-PID控制的穩(wěn)態(tài)誤差分別為0.010和0.034 MPa;基于前饋-模糊PID控制下的輸出氣壓在接近穩(wěn)態(tài)時(shí)仍與目標(biāo)值間存在誤差,在0.55 s時(shí)誤差降至0.005 MPa,而基于前饋-單神經(jīng)元PID的輸出氣壓與目標(biāo)氣壓間的穩(wěn)態(tài)誤差為0.002 MPa,且達(dá)到穩(wěn)態(tài)的速度優(yōu)于其他控制。通過(guò)對(duì)比可以看出,基于前饋-單神經(jīng)元PID的控制效果相較于其他3種控制方法具有明顯優(yōu)勢(shì),穩(wěn)態(tài)誤差得到有效降低,且相較于靜態(tài)增壓特性達(dá)到穩(wěn)態(tài)壓力值75%的時(shí)間減小0.02 s,前饋-單神經(jīng)元PID控制可實(shí)現(xiàn)輸出壓力的準(zhǔn)確控制,并提高了輸出氣壓的響應(yīng)速度。
為驗(yàn)證前饋-單神經(jīng)元PID對(duì)比例繼動(dòng)閥的動(dòng)態(tài)控制效果,在連續(xù)階梯增減壓工況下,將前饋-單神經(jīng)元PID與前饋-PID、前饋-模糊PID控制效果進(jìn)行對(duì)比,如圖5所示。在前饋-PID控制下,輸出氣壓在0.8 MPa時(shí)可實(shí)現(xiàn)對(duì)目標(biāo)壓力值的準(zhǔn)確跟隨,但在低壓范圍內(nèi)對(duì)目標(biāo)壓力值的跟隨效果較差,目標(biāo)氣壓為0.1 MPa時(shí),增減壓過(guò)程中的最大穩(wěn)態(tài)誤差為0.036 MPa;在前饋-模糊PID控制下,目標(biāo)壓力的跟蹤效果良好,相較于前饋-PID,臺(tái)階處的穩(wěn)態(tài)誤差明顯降低,但在達(dá)到目標(biāo)壓力值初期,存在一定超調(diào),超調(diào)量最大為10%;而在前饋-單神經(jīng)元PID控制下,比例繼動(dòng)閥的輸出壓力可實(shí)現(xiàn)對(duì)目標(biāo)壓力變化趨勢(shì)及數(shù)值的準(zhǔn)確跟隨,差值最大為0.002 MPa,前饋-單神經(jīng)元PID可實(shí)現(xiàn)對(duì)比例繼動(dòng)閥的準(zhǔn)確控制。
3 解耦式制動(dòng)能量回收策略
前后軸制動(dòng)力的不合理分配會(huì)對(duì)車(chē)輛制動(dòng)時(shí)的方向穩(wěn)定性及路面附著系數(shù)的利用程度產(chǎn)生影響,可能會(huì)出現(xiàn)前輪先抱死、后輪先抱死或者前后輪同時(shí)抱死3種情況。前后輪同時(shí)抱死時(shí),既可保證車(chē)輛制動(dòng)時(shí)的方向穩(wěn)定性,又能提高路面附著系數(shù)的利用率,此時(shí)對(duì)應(yīng)的制動(dòng)力分配曲線為I曲線[19],可由式(5)表示。
Fbr=12Ghgb2+4hgLGFbf-(Gbhg+2Fbf),(5)
式中:Fbr為后軸制動(dòng)力;Fbf為前軸制動(dòng)力;G為車(chē)輛重力;hg為質(zhì)心高度;a,b分別為質(zhì)心到前、后軸的距離;L為軸距。
在保證車(chē)輛制動(dòng)安全的前提下,將更多的制動(dòng)力分配給驅(qū)動(dòng)軸可有效提高整車(chē)制動(dòng)能量回收效率[20-21]。前后軸制動(dòng)力分配曲線如圖6所示:當(dāng)z≤0.1時(shí),為回收更多的制動(dòng)能量,按OA線分配,即僅由后軸提供總需求制動(dòng)力;當(dāng)0.1<z≤0.2時(shí),按AB線分配制動(dòng)力,前軸制動(dòng)力占比逐漸增加;當(dāng)z>0.2時(shí),為確保整車(chē)的制動(dòng)安全性,前后軸按照I曲線分配制動(dòng)力。
制定的解耦式制動(dòng)能量回收控制策略流程如圖7所示,圖中:PedalB_S為制動(dòng)踏板位移,該信號(hào)由踏板位移傳感器輸出;ABS_active為ABS觸發(fā)標(biāo)志位;Switch_active為開(kāi)關(guān)閥觸發(fā)標(biāo)志位;SOC為電池荷電狀態(tài);v為車(chē)速;Fbra為總需求制動(dòng)力;Fbf為前軸需求制動(dòng)力;Fbr為后軸需求制動(dòng)力;Fmor為再生制動(dòng)力;Fm_max為最大再生制動(dòng)力;Fbr_me為后軸機(jī)械制動(dòng)力;F0為z=0.1時(shí)的后軸制動(dòng)力閾值。當(dāng)PedalB_S≤0時(shí),URBS退出;當(dāng)ABS_active為1時(shí),表明ABS功能被觸發(fā),考慮到車(chē)輛的制動(dòng)安全此時(shí)退出制動(dòng)能量回收模式。當(dāng)SOC<90%且v>10 km/h時(shí),允許開(kāi)啟制動(dòng)能量回收模式。當(dāng)z<0.7時(shí),若主儲(chǔ)氣罐壓力信號(hào)小于需求壓力信號(hào)時(shí),Switch_active=1,此時(shí)開(kāi)關(guān)閥為導(dǎo)通狀態(tài),驅(qū)動(dòng)軸制動(dòng)氣路此時(shí)變?yōu)殡p回路供壓,Switch_active=0時(shí),開(kāi)關(guān)閥為關(guān)閉狀態(tài);電機(jī)輸出最大再生制動(dòng)力,若其無(wú)法滿足后軸需求制動(dòng)力,則不足部分由后軸機(jī)械制動(dòng)力補(bǔ)充;當(dāng)z≥0.7時(shí),為保證汽車(chē)的制動(dòng)安全,制動(dòng)能量回收模式關(guān)閉,僅由機(jī)械制動(dòng)力提供總需求制動(dòng)力。
為衡量解耦式制動(dòng)能量回收系統(tǒng)的制動(dòng)能量回收效果,采用有效制動(dòng)能量回收率λ作為制動(dòng)能量回收效果的評(píng)價(jià)指標(biāo)[22],見(jiàn)式(6)。
λ=EbEz ,(6)
式中:Eb為制動(dòng)過(guò)程中回收的能量;Ez為整車(chē)消耗的能量。
制動(dòng)氣室輸出氣壓與制動(dòng)力矩之間的關(guān)系[23]如下:
Tp=kpP ,(7)
式中:Tp為氣壓制動(dòng)力矩;kp為比例系數(shù),由試驗(yàn)標(biāo)定得到;P為制動(dòng)氣室中的氣體壓力。
4 仿真結(jié)果分析
為驗(yàn)證基于比例繼動(dòng)閥的URBS方案的可行性及經(jīng)濟(jì)性,電池初始SOC設(shè)為90%,路面附著系數(shù)設(shè)為0.8。車(chē)輛及主要部件參數(shù)如表1所示?;贏MESim,MATLAB/Simulink及TruckSim搭建聯(lián)合仿真平臺(tái),其原理如圖8所示。
考慮到中國(guó)重型商用車(chē)行駛工況(China heavy-duty commercial vehicle test cycle for heavy truck,CHTC-HT)、中國(guó)重型商用車(chē)瞬態(tài)工況(China world transient vehicle cycle,C-WTVC)中制動(dòng)強(qiáng)度大于0.1的工況區(qū)間較少,為驗(yàn)證制動(dòng)強(qiáng)度大于0.2時(shí)基于比例繼動(dòng)閥的URBS可行性及控制策略的有效性,選取初始車(chē)速為65 km/h的單次制動(dòng)工況和CHTC-HT與C-WTVC工況進(jìn)行驗(yàn)證。
4.1 單次制動(dòng)工況下的制動(dòng)能量回收效果驗(yàn)證
為驗(yàn)證解耦式制動(dòng)能量回收控制策略的有效性及制動(dòng)力的耦合效果,選擇制動(dòng)強(qiáng)度為0.5的單次制動(dòng)工況,車(chē)速變化如圖9所示。
當(dāng)制動(dòng)強(qiáng)度大于0.2時(shí),前后軸制動(dòng)力按照I曲線分配。在1.0 s時(shí)車(chē)輛開(kāi)始減速,前、后軸輸出氣壓及制動(dòng)力矩變化分別如圖10、圖11所示。通過(guò)安裝比例繼動(dòng)閥,前軸能準(zhǔn)確跟蹤目標(biāo)氣壓值,達(dá)到穩(wěn)態(tài)壓力值75%的時(shí)間為0.09 s;減壓過(guò)程中輸出氣壓在4.90 s降至0,滯后時(shí)間小于0.19 s。后軸制動(dòng)力矩由再生制動(dòng)力矩與機(jī)械制動(dòng)力矩共同提供。在3.61 s時(shí)。SOC達(dá)到閾值,制動(dòng)能量回收模式關(guān)閉,再生制動(dòng)力矩變?yōu)?,此時(shí)由前、后軸機(jī)械制動(dòng)力矩提供需求制動(dòng)力矩。
單次制動(dòng)工況下有、無(wú)制動(dòng)能量回收時(shí)的電池SOC變化如圖12所示,初始車(chē)速為65 km/h,SOC由90%逐漸降低,在1.0 s時(shí),車(chē)輛開(kāi)始減速,無(wú)制動(dòng)能量回收時(shí)的電池SOC保持為89.995%不再變化;有制動(dòng)能量回收時(shí)的電池SOC逐漸增加,至3.61 s時(shí)達(dá)到SOC閾值90.000%,此時(shí)關(guān)閉制動(dòng)能量回收,在制動(dòng)強(qiáng)度為0.5的單次制動(dòng)工況下,基于比例繼動(dòng)閥的URBS可實(shí)現(xiàn)制動(dòng)能量的有效回收。
4.2 循環(huán)工況下的制動(dòng)能量回收效果驗(yàn)證
為驗(yàn)證基于比例繼動(dòng)閥的URBS可行性及控制策略的有效性,選取CHTC-HT與C-WTVC工況進(jìn)行驗(yàn)證。以CHTC-HT工況為例,對(duì)工況過(guò)程進(jìn)行具體分析。在CHTC-HT工況中,制動(dòng)強(qiáng)度大于0.1的工況區(qū)間較少,因此車(chē)輛制動(dòng)時(shí)多處于制動(dòng)能量回收模式,車(chē)速變化如圖13所示,實(shí)際車(chē)速可準(zhǔn)確跟隨目標(biāo)車(chē)速,這表明基于比例繼動(dòng)閥的URBS可滿足車(chē)輛對(duì)制動(dòng)壓力的調(diào)節(jié)需求。
制動(dòng)能量回收過(guò)程中,后軸實(shí)際制動(dòng)力矩由機(jī)械制動(dòng)力矩與再生制動(dòng)力矩耦合組成。圖14為1 752~1 759 s時(shí)的后軸制動(dòng)力矩變化曲線,由圖14可知,實(shí)際制動(dòng)力矩可準(zhǔn)確跟蹤需求制動(dòng)力矩的變化。在1 752.6 s出現(xiàn)超調(diào),超調(diào)量為509.9 N·m,超調(diào)時(shí)間小于0.1 s;在1 752.5~1 755.9 s,1 757.0~1 757.7 s內(nèi)再生制動(dòng)力矩?zé)o法獨(dú)自滿足制動(dòng)力矩需求,由機(jī)械制動(dòng)力矩與再生制動(dòng)力矩耦合滿足制動(dòng)力矩需求;1 757.7 s后,再生制動(dòng)力矩可獨(dú)自滿足需求制動(dòng)力矩,后軸制動(dòng)力矩僅由電機(jī)提供。
安裝于后軸的比例繼動(dòng)閥輸出氣壓變化如圖15所示,輸出壓力可準(zhǔn)確跟隨目標(biāo)壓力的變化。制動(dòng)氣壓滯后會(huì)導(dǎo)致制動(dòng)拖滯,若滯后時(shí)間過(guò)長(zhǎng),會(huì)造成制動(dòng)盤(pán)過(guò)熱,影響制動(dòng)效能。在1 755.9 ~1 756.1 s,輸出壓力由0.052 MPa降至0 MPa,滯后時(shí)間小于0.3 s,可滿足車(chē)輛制動(dòng)需求。前饋-單神經(jīng)元PID控制下的比例繼動(dòng)閥可準(zhǔn)確輸出制動(dòng)壓力,滿足解耦式制動(dòng)能量回收系統(tǒng)的壓力調(diào)節(jié)需求。
CHTC-HT,C-WTVC工況下的電池SOC變化分別如圖16 a)、圖16 b)所示,在1 800 s時(shí),CHTC-HT工況下有制動(dòng)能量回收時(shí)的電池SOC為85.29%,無(wú)制動(dòng)能量回收時(shí)的電池SOC為84.76%;在C-WTVC工況下有制動(dòng)能量回收時(shí)的電池SOC為84.79%,無(wú)制動(dòng)能量回收時(shí)的電池SOC為83.71%。
2種行駛工況的能量變化如圖17所示。在CHTC-HT工況中整車(chē)消耗總能量為41.18 MJ,制動(dòng)過(guò)程中電池回收的能量為4.17 MJ,有效制動(dòng)能量回收率為10.13%;在C-WTVC工況中整車(chē)消耗總能量為49.45 MJ,制動(dòng)過(guò)程中電池回收的能量為8.49 MJ,有效制動(dòng)能量回收率為17.17%。
通過(guò)初始車(chē)速為65 km/h的單次制動(dòng)工況與CHTC-HT,C-WTVC工況的驗(yàn)證,基于比例繼動(dòng)閥的URBS方案可提高耦合制動(dòng)力的響應(yīng)速度,制動(dòng)壓力達(dá)到穩(wěn)態(tài)壓力值75%的時(shí)間小于0.1 s,同時(shí)采用前饋-單神經(jīng)元PID控制的比例繼動(dòng)閥可準(zhǔn)確輸出氣壓制動(dòng)力,且能滿足解耦式制動(dòng)能量回收系統(tǒng)的壓力調(diào)節(jié)需求。在制定的解耦式制動(dòng)能量回收控制策略下,該系統(tǒng)能實(shí)現(xiàn)制動(dòng)能量的有效回收,可提高純電動(dòng)商用車(chē)的能量利用率。
5 結(jié) 語(yǔ)
為解決純電動(dòng)商用車(chē)在連續(xù)制動(dòng)時(shí)因氣源壓力過(guò)低造成耦合制動(dòng)力響應(yīng)速度慢、影響制動(dòng)能量回收效率的問(wèn)題,針對(duì)基于比例繼動(dòng)閥的純電動(dòng)商用車(chē)URBS方案進(jìn)行了研究,主要結(jié)論如下。
1)在基于ABS電磁閥的URBS基礎(chǔ)上提出了一種基于比例繼動(dòng)閥的URBS方案,通過(guò)對(duì)原有氣路的改裝,使驅(qū)動(dòng)軸制動(dòng)氣路具備2個(gè)獨(dú)立高壓氣源以及雙回路結(jié)構(gòu),能有效提高耦合制動(dòng)力的響應(yīng)速度與耦合精度,并可使系統(tǒng)具備制動(dòng)備份功能。
2)遲滯特性會(huì)造成比例繼動(dòng)閥響應(yīng)滯后、輸出氣壓存在穩(wěn)態(tài)誤差等問(wèn)題,影響整車(chē)經(jīng)濟(jì)性及制動(dòng)舒適性,通過(guò)采用前饋-單神經(jīng)元PID控制,自適應(yīng)調(diào)整權(quán)重系數(shù),可實(shí)現(xiàn)輸出氣壓的準(zhǔn)確控制,有效補(bǔ)償了系統(tǒng)的遲滯特性。
3)在電池SOC、車(chē)速等約束條件下,以氣源壓力信號(hào)確定供壓模式,制定了解耦式制動(dòng)能量回收控制策略,并對(duì)基于比例繼動(dòng)閥的URBS方案的可行性及經(jīng)濟(jì)性進(jìn)行仿真驗(yàn)證。結(jié)果表明,基于比例繼動(dòng)閥的URBS方案可有效提高耦合制動(dòng)力的響應(yīng)速度與耦合精度,能夠?qū)崿F(xiàn)制動(dòng)能量的有效回收,在CHTC-HT與C-WTVC工況下,有效制動(dòng)能量回收效率分別為10.13%和17.17%。
本文僅是以整車(chē)固定載荷制定前后軸制動(dòng)力分配規(guī)則,為保證車(chē)輛在不同載荷條件下的安全性,未來(lái)應(yīng)考慮車(chē)輛載荷識(shí)別以及車(chē)輛發(fā)生側(cè)滑等情況。
參考文獻(xiàn)/References:
[1]?馬建,李學(xué)博,趙軒,等.電動(dòng)汽車(chē)復(fù)合制動(dòng)控制研究現(xiàn)狀綜述[J].中國(guó)公路學(xué)報(bào),2022,35(11):271-294.MA Jian,LI Xuebo,ZHAO Xuan,et al.Review of electro-mechanical composite braking control for electric vehicles[J].China Journal of Highway and Transport,2022,35(11):271-294.
[2] HAMADA A T,ORHAN M F.An overview of regenerative braking systems[J].Journal of Energy Storage,2022,52.DOI: 10.1016/j.est.2022.105033.
[3] ZHANG Xudong,GHLICH D,LI Jiayuan.Energy-Efficient toque allocation design of traction and regenerative braking for distributed drive electric vehicles[J].IEEE Transactions on Vehicular Technology,2018,67(1):285-295.
[4] 楊坤,王杰,郭棟,等.基于氣壓ABS電磁閥的解耦式制動(dòng)能量回收[J].北京工業(yè)大學(xué)學(xué)報(bào),2020,46(3):227-235.YANG Kun,WANG Jie,GUO Dong,et al.Uncoupled braking energy recovery system based on pneumatic ABS solenoid valve[J].Journal of Beijing University of Technology,2020,46(3):227-235.
[5] 楊坤,高松,王杰,等.基于EMB的解耦式制動(dòng)能量回收系統(tǒng)研究[J].汽車(chē)工程,2016,38(9):1072-1079.YANG Kun,GAO Song,WANG Jie,et al.A study of decoupled brake energy recovery system based on electro-mechanical brake[J].Automotive Engineering,2016,38(9):1072-1079.
[6] BAO Hanwei,WANG Zaiyu,LIU Zihao,et al.Study on pressure change rate of the automatic pressure regulating valve in the electronic-controlled pneumatic braking system of commercial vehicle[J].Processes,2021,9(6).DOI: 10.3390/pr9060938.
[7] ZHENG Hongyu,MA Shenao,LIU Yahui.Vehicle braking force distribution with electronic pneumatic braking and hierarchical structure for commercial vehicle[J].Journal of Systems and Control Engineering,2018,232(4):481-493.
[8] 韓正鐵,宗長(zhǎng)富,趙偉強(qiáng),等.商用車(chē)EBS系統(tǒng)比例繼動(dòng)閥特性與控制方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):1-6.HAN Zhengtie,ZONG Changfu,ZHAO Weiqiang,et al.Characteristics and control method of proportional relay valve for commercial vehicle EBS[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(10):1-6.
[9] HAN J,ZHAO Weiqiang,ZONG Changfu,et al.Research on characteristics of proportional relay valve for commercial vehicle pneumatic EBS[C]//SAEINDIA International Mobility Conference and Exposition.Chennai:[s.n.],2013:21997-22003.
[10]李靜,戶亞威,石求軍,等.電動(dòng)大客車(chē)比例繼動(dòng)閥仿真控制研究[J].機(jī)械設(shè)計(jì)與制造,2017(9):1-4.LI Jing,HU Yawei,SHI Qiujun,et al.Research on simulation control of proportional relay valve in electric bus[J].Machinery Design & Manufacture,2017(9):1-4.
[11]YOU Mujie,ZHANG Junzhi,SUN Dongsheng,et al.Characteristics analysis and control study of a pneumatic proportional valve[C]//2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC).Chongqing:[s.n.],2015:242-247.
[12]游牟捷.電驅(qū)動(dòng)客車(chē)制動(dòng)能量回收系統(tǒng)氣壓調(diào)節(jié)模塊研究[D].北京:清華大學(xué),2016.YOU Moujie.Research on Pneumatic Modulating Actuators of Regenerative Braking Systemin Electric Bus[D].Beijing:Tsinghua University,2016.
[13]劉文濤,于濤,張俊智.電驅(qū)動(dòng)客車(chē)制動(dòng)能量回收氣壓調(diào)節(jié)模塊研究[J].液壓與氣動(dòng),2017(3):6-16.LIU Wentao,YU Tao,ZHANG Junzhi.Pressure regulating module of regenerative braking in electric bus[J].Chinese Hydraulics & Pneumatics,2017(3):6-16.
[14]LI Ning,HE Chengkun,ZHANG Junzhi,et al.Research on the influence of the proportional relay valve on the economy and safety of the electric bus through the braking energy recovery system[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2023,45(3):8896-8914.
[15]趙芃沛,孟衛(wèi)鋒,史永杰,等.基于單神經(jīng)元自整定PID的穩(wěn)定平臺(tái)調(diào)平控制[J].兵器裝備工程學(xué)報(bào),2023,44(1):183-187.ZHAO Pengpei,MENG Weifeng,SHI Yongjie,et al.Leveling control of an inertial platform based on single neuron self-tuning PID[J].Journal of Ordnance Equipment Engineering,2023,44(1):183-187.
[16]LIU Xiaofeng,XIE Xinhua.Based on single neuron PID control of vehicle active suspension system[J].Applied Mechanics and Materials,2013,380/381/382/383/384:528-531.
[17]QIN Yanding,DUAN Heng.Single-Neuron adaptive hysteresis compensation of piezoelectric actuator based on Hebb learning rules[J].Micromachines,2020,11(1).DOI: 10.3390/mi11010084.
[18]聶松林,李芹,尹方龍,等.直驅(qū)泵系統(tǒng)的單神經(jīng)元PID+前饋控制策略[J].北京工業(yè)大學(xué)學(xué)報(bào),2019,45(9):821-830.NIE Songlin,LI Qin,YIN Fanglong,et al.Single neuron PID+ feedforward controller of a direct drive pump system[J].Journal of Beijing University of Technology,2019,45(9):821-830.
[19]LI Shengqin,YU Bo,F(xiàn)ENG Xinyuan.Research on braking energy recovery strategy of electric vehicle based on ECE regulation and I curve[J].Science Progress,2020,103(1).DOI: 10.1177/0036850419877762.
[20]許世維,唐自強(qiáng),王棟梁,等.電動(dòng)商用車(chē)的串聯(lián)制動(dòng)控制策略[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,51(4):113-120.XU Shiwei,TANG Ziqiang,WANG Dongliang,et al.Series braking control strategy of electric commercial vehicle[J].Journal of Gansu Agricultural University,2016,51(4):113-120.
[21]ZHOU Shilei,WALKER P,ZHANG Nong.Parametric design and regenerative braking control of a parallel hydraulic hybrid vehicle[J].Mechanism and Machine Theory,2020,146.DOI: 10.1016/j.mechmachtheory.2019.103714.
[22]智東敏,武志斐.純電動(dòng)輕型物流車(chē)制動(dòng)能量回收控制策略研究[J].科學(xué)技術(shù)與工程,2016,16(25):311-316.ZHI Dongmin,WU Zhifei.Study on braking energy recovery control strategy of pure electric light logistics vehicle[J].Science Technology and Engineering,2016,16(25):311-316.
[23]張淵博,王偉達(dá),張華,等.基于新型改進(jìn)遺傳算法的混合動(dòng)力客車(chē)高效制動(dòng)能量回收預(yù)測(cè)控制策略研究[J].機(jī)械工程學(xué)報(bào),2020,56(18):105-115.ZHANG Yuanbo,WANG Weida,ZHANG Hua,et al.Research on modified genetic algorithm-based high efficiency predictive regenerative braking control strategy for hybrid electric bus[J].Journal of Mechanical Engineering,2020,56(18):105-115.
責(zé)任編輯:馮民
基金項(xiàng)目:國(guó)家自然科學(xué)基金(51605265);山東省重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2018GGX105010)
第一作者簡(jiǎn)介:黃壯壯(1998—),男,山東德州人,碩士研究生,主要從事新能源汽車(chē)關(guān)鍵技術(shù)及動(dòng)力學(xué)控制方面的研究。
通信作者:楊坤,教授。E-mail:yangkun_sdut@163.com黃壯壯,楊坤,王戈,等.基于比例繼動(dòng)閥的解耦式制動(dòng)能量回收[J].河北科技大學(xué)學(xué)報(bào),2024,45(2):131-140.HUANG Zhuangzhuang,YANG Kun,WANG Ge,et al.Uncoupled braking energy recovery system based on proportional relay valve[J].Journal of Hebei University of Science and Technology,2024,45(2):131-140.