孫志超 郭新淼 李蒙 張若彤 王曉萍 謝巖 王暉 李季生
摘? ? 要:【目的】有針對性地對桑葚品質(zhì)進(jìn)行遺傳改良,了解果實發(fā)育過程中營養(yǎng)物質(zhì)組成的動態(tài)變化。【方法】對桑葚鮮質(zhì)量進(jìn)行測量,使用滲透計測定果實硬度,采用便攜式糖度計測定桑葚可溶性固形物含量,采用NaOH滴定法測定可滴定酸含量,采用NaNO2-Al(NO3)3比色法測定總黃酮含量,采用福林-酚比色法測定總酚含量,采用氣相色譜串聯(lián)質(zhì)譜法測定可溶性糖和有機酸含量,使用熒光定量PCR分析糖代謝相關(guān)基因表達(dá)水平?!窘Y(jié)果】通過對安葚和桂花的形態(tài)及營養(yǎng)物質(zhì)分析發(fā)現(xiàn),與安葚相比,桂花的單果質(zhì)量較大,果實硬度較小。2個品種桑葚的總酚和總黃酮含量存在顯著差異,安葚的總酚和總黃酮含量不斷積累,桂花的積累量則較少。此外,葡萄糖和果糖在2個品種桑葚中具有相似的積累趨勢,但二者蔗糖的積累存在顯著差異。安葚和桂花桑葚中的有機酸主要為蘋果酸,其次是琥珀酸和酒石酸。隨著果實發(fā)育,2個品種桑葚糖酸比逐漸增大,糖酸比在7.99~81.06之間,且在各個不同發(fā)育時期,安葚糖酸比大于桂花。蔗糖代謝相關(guān)基因表達(dá)分析表明,中性轉(zhuǎn)化酶1(INV1)基因在10~30 DAP桂花中的表達(dá)量顯著高于安葚,桂花中蔗糖磷酸酶(SPP)基因表達(dá)量顯著高于安葚,蔗糖合酶2(SUS2)基因在安葚40~50 DAP間表達(dá)量較高且顯著高于桂花?!窘Y(jié)論】在河北承德的生長條件下,桂花果實的蔗糖、蘋果酸和可溶性固形物含量高于安葚,安葚果實的總黃酮、總酚和可滴定酸含量高于桂花。此外,INV1、SPP與SUS2基因在桑葚糖代謝中發(fā)揮重要的調(diào)控作用。研究結(jié)果為不同顏色桑葚成熟過程中營養(yǎng)成分動態(tài)變化的研究提供了信息,為桑葚果實品質(zhì)形成研究奠定了基礎(chǔ)。
關(guān)鍵詞:桑葚;安葚;桂花;總黃酮;總酚;可溶性糖;有機酸
中圖分類號:S663.2 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)04-0703-09
Nutrientional compound changes in fruits of 2 mulberries (Morus alba) varieties at different development stages
SUN Zhichao1, GUO Xinmiao2, LI Meng1, ZHANG Ruotong1, WANG Xiaoping1, XIE Yan1, WANG Hui1, LI Jisheng1*
(1Institute of Sericulture, Chengde Medical University, Chengde 067000, Hebei, China; 2Chengde College of Applied Technology, Chengde 067000, Hebei, China)
Abstract: 【Objective】 The study aimed to understand the dynamic changes in the composition and accumulation of nutritional compounds during fruit development and maturation in mulberry (Morus alba L.). 【Methods】 In this study, the fresh weight of mulberry was measured, the fruit hardness was measured by osmometer, the soluble solid content was measured by portable sugar meter, and the titratable acid content was determined by NaOH titration, the content of total flavonoids was determined by NaNO2-Al (NO3)3 colorimetry, the content of total phenols was determined by Hungarian forint-phenol colorimetry, and the contents of soluble sugars and organic acids were determined by gas chromatography-tandem mass spectrometry, qRT-PCR was used to analyze the expression of the genes related to sugar synthesis. 【Results】 The content of soluble solids in Anshen and Guihua increased with fruit development and ripening. There was no significant difference in the soluble solid content between Anshen and Guihua at the initial stage of fruit development, but the soluble solid content of Guihua was significantly higher than that of Anshen at the mature stage. The content of titratable acid decreased with the fruit development. At the mature stage, the titratable acid content of Anshen was significantly higher than that of Guihua. The total flavonoids and total phenolics content increased slowly in the early stage of fruit development, and there was no significant difference in total flavonoids and total phenolics content between Anshen and Guihua. After 20 days of development, the total flavonoids and total phenols content of Guihua gradually decreased, and the total flavonoids and total phenols content of mulberry increased significantly. During fruit development, the total flavonoids and phenols content of Guihua were lower than thaose of mulberry. In addition, the sucrose content of Guihua fruit, increased continuously with the fruit development, the sugar content of Anshen decreased in the early fruit development, showed an increasing trend after 30 DPA. The content of glucose and fructose increased gradually during the whole fruit development and ripening, and the content of glucose and fructose of Guihua was higher than those of Anshen, but the content of glucose and fructose of Guihua was higher than those of Anshen on 50 DAP, the fructose content of Anshen was higher than that in Guihua, and the difference was significant. Compared with the content of glucose and fructose, the accumulation level of sucrose was the lowest in the Anshen fruits. The malic acid content increased slowly in 2 cultivars, but the accumulation of malic acid in Guihua decreased after 30 DAP. The succinic acid content increased at first and then decreased during fruit development, and reached its peak on 30 DAP. The tartaric acid content showed a slow decline trend in 2 varieties, and it increased on 20 DAP in Anshen, and increased on 40 DAP in Guihua. With the development of fruit, the ratio of sugar to acid of the two varieties increased gradually, with a range of 7.99 to 81.06, and reached the maximum value at the mature stage (50 DAP), the ratio of Anshen was 81.06%, the ratio of Guihua was 57.17%, and Anshen sugar-acid ratio is greater than Guihua in each different development period. The expression analysis of the genes related to the sucrose metabolism showed that the expression of the neutral invertase 1 (INV1) gene increased with fruit development, while the highest level was reached on 30 DPA and then decreased on 40 DPA in Guihua. The expression level of the sucrose-phosphatase (SPP) gene in Guihua was significantly higher than that in Anshen. The sucrose synthase 1 (SUS1) gene was increased in both cultivars, while the sucrose synthase 2 (SUS2) gene was decreased on 30 and 50 DPA, the expression level of this gene in Guihua was higher at these two time points, and the expression trend of these sucrose metabolism related enzymes was consistent with the change of soluble sugar. 【Conclusion】 The phenotype and nutrition of mulberry changed with fruit development. Under the growing conditions in Chengde, Hebei province, the sugar, malic acid and soluble solid contents of Guihua fruits were higher than those of Anshen, the content of total flavone, total phenol and titratable acid of Anshen fruit was higher than those of Guihua, and the ripening time of Guihua fruit was about 10 days earlier than Anshen. In addition, the neutral invertase 1, sucrose phosphatase and sucrose synthase 2 could be used as candidate genes to regulate the sugar content of mulberry. The results of this study would provide information for the study of mulberry resources, and lay a foundation for the study of quality formation of mulberry fruits.
Key words: Mulberry; Anshen; Guihua; Total flavonoid; Total phenolic; Soluble sugar; Organic acids
桑樹是??疲∕oraceae)桑屬(Morus)多年生木本植物,廣泛分布于我國及世界各地[1-2]。桑葚為桑樹的聚合果,具有較高的營養(yǎng)價值。近年來,越來越多的研究報道了桑葚的營養(yǎng)價值,并證實了桑葚中富含多種生物活性化合物,如維生素C、酚酸(綠原酸、咖啡酸)、類黃酮化合物(蘆丁、槲皮素和山烯酚)、花青素(花青素-3-O-葡萄糖苷)等,在抗氧化、抗炎和治療糖尿病等方面具有重要的生理功能[3-7]。目前我國桑葚的品種,從外觀上主要分為白色、紅色和黑色3類,而這3類桑葚營養(yǎng)物質(zhì)及抗氧化活性存在顯著差異[8]。鑒于此,客觀、合理、科學(xué)地評價不同類別桑葚的品質(zhì),研究其品質(zhì)形成機制具有重要意義。
我國桑樹品種資源豐富,不同品種桑葚外觀特性與內(nèi)在成分存在顯著差異[9]。對河北試種的9個果桑品種(安椹、節(jié)曲、蒙桑、8632、物45、魯誘7號、桂花、白玉王、東光大白)的營養(yǎng)分析表明,不同品種表現(xiàn)出不同的特性,如桂花出汁率和含水率最高,總酸含量最低,安葚的總黃酮含量、總多酚含量、DPPH清除能力和ABTS清除能力顯著高于其他品種[10]。對中桑5801、大十和臺灣果桑等5種桑葚進(jìn)行研究發(fā)現(xiàn),黑色和紅色桑葚中可檢測到大量的花青素,而在白色桑葚中均未發(fā)現(xiàn)花青素[11]。對桑葚不同生長階段黃酮類化合物含量變化的研究發(fā)現(xiàn),桑葚在成熟后黃酮類化合物含量較高[12]。基于擬靶向代謝組學(xué)技術(shù)對紫色(大十)、白色(白玉王)和紅色(紅果72C001)桑葚不同生長期進(jìn)行代謝物品質(zhì)分析,發(fā)現(xiàn)不同品種桑葚中氨基酸和糖醇類物質(zhì)隨桑葚生育期而逐漸增加;紅色和紫色桑葚中類黃酮和酚酸類物質(zhì)隨生育期而逐漸累積,而白色桑葚累積不明顯;不同生長階段桑葚的總糖含量隨之上升;紫色桑葚總酚含量和抗氧化活性隨桑葚成熟不斷提高,而白色桑葚隨桑葚成熟下降,紅色桑葚則無明顯變化。此外,馬來酸、蘋果酸、奎尼酸、泛酸等有機酸含量在桑葚發(fā)育過程中不斷降低[13]。
水果的品質(zhì)分外觀品質(zhì)和內(nèi)在品質(zhì)兩個方面,其中單果質(zhì)量、果形指數(shù)、色澤等為果實外觀品質(zhì),決定著果實的商品價值;而可溶性糖、有機酸、多酚、黃酮等為果實的內(nèi)在品質(zhì),決定著果實的營養(yǎng)及口感,且不同品種和不同發(fā)育時期對桑葚的理化品質(zhì)和營養(yǎng)物質(zhì)有顯著影響。筆者對河北省主栽的2個不同顏色桑葚品種(安葚和桂花)的單果質(zhì)量、果實硬度2項外觀品質(zhì)和可溶性固形物、可滴定酸、總黃酮、總酚、葡萄糖、蔗糖、果糖、蘋果酸、琥珀酸和酒石酸等10項內(nèi)在營養(yǎng)物質(zhì)進(jìn)行測定和評價,研究2個品種間桑葚有效成分的含量差異,并對差異較大的蔗糖合成與代謝關(guān)鍵酶基因進(jìn)行表達(dá)分析,以期為桑葚資源的營養(yǎng)價值評價及桑葚產(chǎn)品的開發(fā)和深加工奠定基礎(chǔ)。
1 材料和方法
1.1 試驗材料
選擇河北省承德市承德醫(yī)學(xué)院蠶業(yè)研究所桑園為試驗區(qū),選取生長勢基本一致、栽培管理措施基本相同的7年生穩(wěn)定結(jié)果的安葚(As)和桂花(Gh)品種為試材,安葚屬白桑(Morus alba L.),由承德醫(yī)學(xué)院蠶業(yè)研究所培育,果實顏色呈紫黑色;桂花屬白桑(M. alba L.),為河北省遵化市農(nóng)家品種,果實顏色呈白色。對2個品種分別進(jìn)行套袋授粉,在授粉后(DAP)10、20、30、40、50 d依據(jù)果實顏色進(jìn)行取樣,每個品種采集500 g,鮮樣用于測定單果質(zhì)量、果實硬度、可溶性固形物與可滴定酸含量;其他樣品用液氮冷凍后分別于?80 ℃超低溫冰箱儲存及真空冷凍干燥后備用。
1.2 單果質(zhì)量、果實硬度、可溶性固形物與可滴定酸含量的測定
采用千分之一天平進(jìn)行果實質(zhì)量測量,每時期測定20個單果。采用配有5 mm柱塞的滲透計(SMTT50,東京,日本)測量果實硬度。采用便攜式糖度計測定可溶性固形物(TSS)含量,每時期測定20個單果。采用NaOH滴定法測定可滴定酸(TA)含量,取10.0 g桑葚冷凍干燥樣品研磨,勻漿,過濾后用0.1 mol·L-1 NaOH標(biāo)準(zhǔn)溶液滴定。
1.3 總黃酮和總酚含量的測定
采用NaNO2-Al(NO3)3比色法測定總黃酮含量[14],將桑葚樣本凍干粉碎后過60目篩,稱取干樣50 mg,加入1.5 mL 60%的乙醇,震蕩均勻,6000 r·min-1離心10 min,取上清液,測定樣品提取液的總黃酮濃度。取1 mg蘆丁,溶于10 mL 60%乙醇中,即為0.1 mg·mL-1的標(biāo)準(zhǔn)液。采用福林-酚比色法測定總酚含量[15],稱取0.1 g上述粉碎的樣品,加入1.0 mL 60%的乙醇溶液,震蕩均勻,在超聲波提取器中75 ℃提取30 min。提取液以4000 r·min-1離心10 min,取上清液,測定樣品提取液的總多酚濃度。稱取沒食子酸5 mg,溶于10 mL蒸餾水中,即為0.5 mg·mL-1的標(biāo)準(zhǔn)液(50 ℃加熱溶解)。測定分別設(shè)定3個生物學(xué)重復(fù)。
1.4 可溶性糖含量的測定
稱取20 mg的凍干樣品粉末,加入500 μL甲醇、異丙醇、水體積比為3∶3∶2的提取液,渦旋3 min,將混合物在冰水中超聲30 min,在4 ℃、14 000 r·min-1下離心5 min后收集上清液。上清液通過0.45 ?m醋酸纖維素過濾器過濾,使用安捷倫1260儀器(安捷倫科技有限公司,美國)進(jìn)行高效液相色譜分析。在Agilent DB-5MS (30 m × 0.25 mm × 0.25 μm)上,以1.0 mL·min-1的流速在35 ℃分離樣品,使用每種糖(葡萄糖,果糖和蔗糖)的標(biāo)準(zhǔn)曲線進(jìn)行分析,測定設(shè)定3個生物學(xué)重復(fù)。
1.5 有機酸含量的測定
稱量50 mg凍干樣品粉末,立即加入500 μL的
-20 ℃預(yù)冷的70%甲醇水提取液,渦旋3 min,在4 ℃、12 000 r·min-1下離心10 min后收集上清液。上清液通過0.45 ?m醋酸纖維素過濾器過濾,然后使用安捷倫1260儀器(安捷倫科技有限公司,美國)進(jìn)行高效液相色譜分析。洗脫體系由40 mmol·L-1 KH2PO4-H3PO4緩沖液(pH 2.4)組成,流速為0.35 mL·min-1。在ACQUITY HSS T3柱(1.8 ?m,100 mm×2.1 mm)上分離有機酸,使用每種有機酸(蘋果酸,琥珀酸和酒石酸)的標(biāo)準(zhǔn)曲線進(jìn)行分析,測定設(shè)定3個生物學(xué)重復(fù)。
1.6 糖合成相關(guān)基因熒光定量PCR分析
使用大連寶生物工程有限公司生產(chǎn)的TaKaRa MiniBEST Universal RNA Extraction Kit試劑盒提取桑樹10、20、30、40、50 DAP果實總RNA,反轉(zhuǎn)錄使用大連寶生物工程有限公司生產(chǎn)的PrimeScript? RT reagent Kit試劑盒合成cDNA,實時熒光定量PCR(qRT-PCR)使用大連寶生物工程有限公司生產(chǎn)的SYBR Premix Ex TaqTM Ⅱ?;蛐蛄性诖ㄉ;蚪M數(shù)據(jù)庫中獲取(https://morus.biodb.org/),以桑樹Ribosomal protein L15為內(nèi)參基因(表1)。qRT-PCR反應(yīng)體系組成:SYBR Premix Ex TaqTM Ⅱ 5 μL,cDNA 0.5 μL,正向引物0.4 μL,反向引物0.4 μL,加水至10 μL。反應(yīng)程序:95 ℃預(yù)變性30 s;95 ℃變性5 s,60 ℃退火20 s,72 ℃延伸40 s,共40個循環(huán)。PCR擴(kuò)增反應(yīng)在CF×96 TM Real-Time PCR Detection System(Applied Biosystems,F(xiàn)orter City,CA,美國)儀器上進(jìn)行,每個樣品3次生物學(xué)重復(fù),3次技術(shù)重復(fù),反應(yīng)結(jié)束后應(yīng)用2-△△CT算法[16]進(jìn)行分析。
1.7 數(shù)據(jù)分析
使用SPSS 27.0軟件進(jìn)行統(tǒng)計分析,使用單因素方差分析計算樣品之間的差異性,在0.05水平進(jìn)行Duncans檢驗(p≤0.05),數(shù)據(jù)表示為平均值± SD(標(biāo)準(zhǔn)差),每個樣本3個獨立重復(fù)。
2 結(jié)果與分析
2.1 果實發(fā)育時期形態(tài)特征變化
圖1-A為安葚(As)和桂花(Gh)不同發(fā)育時期果實形態(tài)特征。通過果實質(zhì)量測定發(fā)現(xiàn),在整個發(fā)育時期桂花單果質(zhì)量較安葚大,在成熟期(50 DAP)桂花單果質(zhì)量為8.13 g,安葚單果質(zhì)量為6.89 g(圖1-B);桂花單果質(zhì)量從青果期到轉(zhuǎn)色期(20~30 DAP)增幅較大,其中在青果期單果質(zhì)量為5.67 g,轉(zhuǎn)色期達(dá)到7.32 g(圖1-B)。硬度測定結(jié)果表明,安葚在整個發(fā)育時期(10 DAP除外)硬度顯著高于桂花;安葚的果實硬度在20 DAP時下降,而桂花的果實硬度在10 DAP時開始下降,且從青果期到轉(zhuǎn)色期(20~30 DAP)降低幅度較大(圖1-C)。結(jié)果表明,桂花果實快速生長期在20~30 DPA,在此期間果實質(zhì)量和硬度發(fā)生顯著變化(圖1-B~C)。
2.2 果實發(fā)育過程中的物質(zhì)成分分析
安葚和桂花中可溶性固形物含量隨著果實發(fā)育和成熟呈現(xiàn)增加趨勢,在果實發(fā)育初始階段二者無顯著差異,在成熟期,桂花的可溶性固形物含量顯著高于安葚(圖2-A)??傻味ㄋ岷侩S著果實發(fā)育呈現(xiàn)下降趨勢,在成熟期,安葚的可滴定酸含量顯著高于桂花(圖2-B)。測定總黃酮和總酚結(jié)果表明,安葚和桂花的總黃酮和總酚含量在果實發(fā)育初期差異不顯著(圖2-C~D)。在發(fā)育20 d以后,桂花的總黃酮和總酚含量逐漸降低,安葚的總黃酮和總酚含量顯著增加,且均顯著高于桂花。直至果實成熟,桂花和安葚總黃酮含量(w,后同)分別是0.03 mg·g-1、9.68 mg·g-1,總酚含量分別是20.13 mg·g-1、84.89 mg·g-1(圖2-C~D)。
2.3 果實發(fā)育過程中可溶性糖與有機酸含量分析
在桂花果實中,蔗糖含量隨著果實發(fā)育持續(xù)上升,在50 DPA時含量達(dá)到156.32 mg·g-1,安葚在果實發(fā)育初期蔗糖含量下降,在30 DPA以后呈現(xiàn)增加趨勢,在50 DAP時含量達(dá)到37.56 mg·g-1(圖3-A)。葡萄糖和果糖含量在整個果實發(fā)育和成熟過程中逐漸增加,且桂花中葡萄糖和果糖含量顯著高于安葚(圖3-B~C);但在50 DAP時,安葚果實中果糖含量顯著高于桂花(圖3-C)。在安葚果實中,與葡萄糖和果糖含量相比,蔗糖的積累水平最低(圖3-A~C)。
蘋果酸含量在2個品種中呈現(xiàn)緩慢增加的模式,但在30 DAP以后,桂花中蘋果酸積累呈現(xiàn)下降的趨勢(圖3-D)。琥珀酸含量在果實發(fā)育過程中呈現(xiàn)先升高后降低的趨勢,在30 DAP時含量最高,安葚為58.15 mg·g-1,桂花為63.12 mg·g-1(圖3-E)。而酒石酸含量在2個品種中的變化趨勢相反,安葚在20 DAP時酒石酸含量上升,桂花則在40 DAP時呈現(xiàn)上升的趨勢(圖3-F)。琥珀酸和酒石酸在安葚和桂花果實中積累量差異不大,而蘋果酸含量在桂花中較高。
2.4 果實發(fā)育過程中可溶性總糖、有機酸含量和糖酸比分析
隨著果實發(fā)育,2個品種桑葚糖酸比逐漸增大,糖酸比在7.99~81.06之間,到成熟期(50 DAP)時,達(dá)到最大值,安葚為81.06,桂花為57.17,且在各個不同發(fā)育時期,除10 DAP外,安葚糖酸比顯著大于桂花(圖4)。
2.5 果實發(fā)育過程中糖代謝相關(guān)基因的表達(dá)分析
為探討2個品種果實發(fā)育過程中差異最大物質(zhì)蔗糖代謝的分子機制,筆者采用qRT-PCR檢測了相關(guān)關(guān)鍵基因的表達(dá)水平。結(jié)果表明,安葚中的中性轉(zhuǎn)化酶1(Neutral Invertase 1,INV1)基因表達(dá)量隨著果實發(fā)育呈現(xiàn)上升趨勢,而桂花中,在30 DPA時達(dá)到最高水平,而后在40 DPA時表達(dá)量出現(xiàn)下降(圖5-A)。蔗糖磷酸酶(Sucrose-phosphatase,SPP)基因在桂花整個發(fā)育時期表達(dá)量均顯著高于安葚(圖5-B)。蔗糖合酶1(Sucrose Synthase 1,SUS1)基因在2個品種中均呈現(xiàn)上升的表達(dá)趨勢(圖5-C),而安葚中的蔗糖合酶2(SUS2)基因表達(dá)量在30 DPA和50 DPA時出現(xiàn)下降。相反,桂花中該基因表達(dá)量在這2個時間點呈現(xiàn)升高趨勢(圖5-D)。以上結(jié)果表明2個品種中關(guān)鍵基因的表達(dá)模式存在差異,這些基因與蔗糖的代謝相關(guān)。
3 討 論
桑葚是中國最具價值的天然產(chǎn)物之一,富含豐富的次生代謝產(chǎn)物,如黃酮類、多糖類化合物[3-4]。筆者研究的安葚和桂花2個桑葚品種在河北承德栽培較為廣泛,目前為止,關(guān)于他們在發(fā)育時期的物理及營養(yǎng)物質(zhì)變化的信息很少。果長、單果質(zhì)量、硬度、可溶性固形物和可滴定酸含量是果實的外觀形態(tài)和物理化學(xué)特征,可以用來指示果實成熟度、采收時間和保質(zhì)期[17]。果實成熟表現(xiàn)為硬度降低、可滴定酸含量減少和可溶性固形物含量增加[18]。筆者研究發(fā)現(xiàn),從20 DPA開始,桂花的果實大小顯著增加,果實硬度顯著下降,而安葚果實的這些變化從30 DPA開始,表明桂花發(fā)育速度較安葚更快。此外,可溶性固形物和可滴定酸含量可以反映水果的口感,2個品種的可溶性固形物含量增加幅度相似,而安葚的可滴定酸含量在40 DPA時出現(xiàn)上升。
總黃酮和總酚是抗氧化劑中最重要的抗氧化化合物。不同桑葚基因型成熟期的總黃酮和總酚含量存在顯著差異[19]。本研究結(jié)果表明,安葚果實的總黃酮和總酚含量顯著高于桂花,表明安葚果實的抗氧化能力高于桂花。前期研究表明,相對于深色品種,白色品種的總黃酮和總酚含量較低,且抗氧化活性呈現(xiàn)一致的趨勢[10]。糖和有機酸之間的平衡影響著果實的口感[19],前期研究表明,桑葚中主要可溶性糖是葡萄糖和果糖,蔗糖含量較少[20]。在成熟期,桂花和安葚的葡萄糖和果糖含量均存在較高水平,而2個品種在果實發(fā)育過程中蔗糖含量的變化差異較大。對于桂花,蔗糖積累發(fā)生在整個發(fā)育時期,而安葚在30~50 DPA之間出現(xiàn)蔗糖積累(圖3-A),這可能是2個品種口感差異的主要原因。蘋果酸是桑葚中重要的有機酸之一,有機酸中蘋果酸含量的高低對桑葚的口感發(fā)揮重要作用[21]。研究表明,安葚和桂花中的優(yōu)勢酸是蘋果酸,其次是琥珀酸和酒石酸。在整個果實發(fā)育和成熟期間,桂花中蘋果酸含量顯著高于安葚。2個桑葚品種的糖酸比在7.99~81.06之間,其中在成熟期桂花的糖酸比為57.17,安葚的糖酸比顯著大于桂花,為81.06,風(fēng)味最佳。
甜度是桑樹栽培育種最重要的品質(zhì)性狀之一。蔗糖、果糖和葡萄糖是植物中的重要成分,影響果實品質(zhì)與口感[22]。本研究對2個桑葚品種可溶性糖測定,發(fā)現(xiàn)二者蔗糖含量差異顯著。本研究對蔗糖代謝關(guān)鍵酶基因進(jìn)行表達(dá)分析,結(jié)果表明,中性轉(zhuǎn)化酶1在桂花中10~30 DAP表達(dá)量顯著高于安葚,中性轉(zhuǎn)化酶主要功能為催化蔗糖不可逆地降解為葡萄糖和果糖,是蔗糖代謝的關(guān)鍵酶[23]。筆者在本研究中共分析兩個蔗糖合成酶,表達(dá)分析表明,蔗糖合成酶1基因在2個桑葚品種中表達(dá)量隨著果實發(fā)育呈上升趨勢,而蔗糖合酶2基因在安葚40~50 DAP間表達(dá)量較高且顯著高于桂花。蔗糖合酶在尿苷二磷酸(UDP)存在下,可催化蔗糖裂解為尿苷二磷酸葡萄糖(UDPG)和果糖[24],這與安葚在成熟期(50 DAP)果糖含量高于桂花的結(jié)果一致。植物的蔗糖是由蔗糖磷酸合酶(sucrose phosphate synthase)催化尿苷二磷酸葡萄糖和6-磷酸果糖形成蔗糖-6-磷酸,再由磷酸蔗糖磷酸酶進(jìn)一步水解蔗糖-6-磷酸形成的[25]。本研究表明,桂花中磷酸蔗糖磷酸酶基因表達(dá)量顯著高于安葚,這可能是桂花中蔗糖含量顯著高于安葚的原因。
4 結(jié) 論
綜上,桂花果實的蔗糖、蘋果酸和可溶性固形物含量高于安葚,安葚果實的總黃酮、總酚和可滴定酸含量高于桂花,而桂花果實的發(fā)育速度比安葚快。此外,中性轉(zhuǎn)化酶1、蔗糖磷酸酶與蔗糖合酶2基因可以作為調(diào)控桑葚糖含量的候選基因。研究結(jié)果有助于更好地了解桑葚果實發(fā)育過程中營養(yǎng)成分的變化動態(tài),為桑葚果實品質(zhì)形成研究奠定基礎(chǔ)。
參考文獻(xiàn)References:
[1] KIM I,LEE J. Variations in anthocyanin profiles and antioxidant activity of 12 genotypes of mulberry (Morus spp.) fruits and their changes during processing[J]. Antioxidants,2020,9(3):242.
[2] SHREELAKSHMI S V,NAZARETH M S,KUMAR S S,GIRIDHAR P, PRASHANTH K V H,SHETTY N P. Physicochemical composition and characterization of bioactive compounds of mulberry (Morus indica L.) fruit during ontogeny[J]. Plant Foods for Human Nutrition,2021,76(3):304-310.
[3] 楊婉媛,陳曉維,羅文珊,余元善,陳樹鵬,郭冬玲,卜智斌. 桑葚的功效成分及加工利用研究進(jìn)展[J]. 中國果菜,2022,42(12):48-53.
YANG Wanyuan,CHEN Xiaowei,LUO Wenshan,YU Yuanshan,CHEN Shupeng,GUO Dongling,BU Zhibin. Research progress of functional components and processing and utilization of mulberry[J]. China Fruit & Vegetable,2022,42(12):48-53.
[4] LIN C Y,LAY H L. Characteristics of fruit growth,component analysis and antioxidant activity of mulberry (Morus spp.)[J]. Scientia Horticulturae,2013,162:285-292.
[5] WANG R S,DONG P H,SHUAI X X,CHEN M S. Evaluation of different black mulberry fruits (Morus nigra L.) based on phenolic compounds and antioxidant activity[J]. Foods,2022,11(9):1252.
[6] CHUMROENPHAT T,SOMBOONWATTHANAKUL I,SAENSOUK S,SIRIAMORNPUN S. The diversity of biologically active compounds in the rhizomes of recently discovered Zingiberaceae plants native to north eastern Thailand[J]. Pharmacognosy Journal,2019,11(5):1014-1022.
[7] 竇子微,楊璐,程平,張志剛,李宏. 不同品種桑葚營養(yǎng)品質(zhì)分析及綜合評價[J]. 新疆農(nóng)業(yè)科學(xué),2023,60(1):127-139.
DOU Ziwei,YANG Lu,CHENG Ping,ZHANG Zhigang,LI Hong. Analysis and comprehensive evaluation of nutritional quality of different mulberry varieties[J]. Xinjiang Agricultural Sciences,2023,60(1):127-139.
[8] IQBAL S,YOUNAS U,UDDIN S,CHAN K W,SARFRAZ R A,UDDIN M K. Proximate composition and antioxidant potential of leaves from three varieties of mulberry (Morus sp.):A comparative study[J]. International Journal of Molecular Sciences,2012,13(6):6651-6664.
[9] LEE Y,HWANG K T. Changes in physicochemical properties of mulberry fruits (Morus alba L.) during ripening[J]. Scientia Horticulturae,2017,217:189-196.
[10] 賈漫麗,李娜,王彬彬,范偉,夏愛華,李季生. 9個品種桑果營養(yǎng)、香氣成分與抗氧化活性評價[J]. 果樹學(xué)報,2022,39(2):221-231.
JIA Manli,LI Na,WANG Binbin,F(xiàn)AN Wei,XIA Aihua,LI Jisheng. Evaluation of nutrition,aroma components and antioxidant activity of mulberry fruits from nine varieties[J]. Journal of Fruit Science,2022,39(2):221-231.
[11] CHEN H J,CHEN J Y,YANG H L,CHEN W X,GAO H Y,LU W J. Variation in total anthocyanin,phenolic contents,antioxidant enzyme and antioxidant capacity among different mulberry (Morus sp.) cultivars in China[J]. Scientia Horticulturae,2016,213:186-192.
[12] HU L,WANG C,GUO X,CHEN D K,ZHOU W,CHEN X Y,ZHANG Q. Flavonoid levels and antioxidant capacity of mulberry leaves:Effects of growth period and drying methods[J]. Frontiers in Plant Science,2021,12:684974.
[13] 劉晴晴. 基于擬靶向代謝組學(xué)研究不同品種及生長期桑葚品質(zhì)差異[D]. 鎮(zhèn)江:江蘇科技大學(xué),2022.
LIU Qingqing. Quality difference of mulberry in various types and growing stages based on pseudo-targeted metabolomics[D]. Zhenjiang:Jiangsu University of Science and Technology,2022.
[14] LI X C,CHEN D F,MAI Y,WEN B,WANG X Z. Concordance between antioxidant activities in vitro and chemical components of Radix astragali (Huangqi)[J]. Natural Product Research,2012,26(11):1050-1053.
[15] LI X C,HU Q P,JIANG S X,LI F,LIN J,HAN L,HONG Y L,LU W B,GAO Y X,CHEN D F. Flos Chrysanthemi Indici protects against hydroxyl-induced damages to DNA and MSCs via antioxidant mechanism[J]. Journal of Saudi Chemical Society,2015,19(4):454-460.
[16] ZHOU X R,KHARE T,KUMAR V. Recent trends and advances in identification and functional characterization of plant miRNAs[J]. Acta Physiologiae Plantarum,2020,42(2):25.
[17] MITALO O W,ASICHE W O,KASAHARA Y,TOSA Y,TOKIWA S,USHIJIMA K,NAKANO R,KUBO Y. Comparative analysis of fruit ripening and associated genes in two kiwifruit cultivars (‘Sanuki Gold and ‘Hayward) at various storage temperatures[J]. Postharvest Biology and Technology,2019,147:20-28.
[18] WANG S N,QIU Y,ZHU F. Kiwifruit (Actinidia spp.):A review of chemical diversity and biological activities[J]. Food Chemistry,2021,350:128469.
[19] 喬健,李國鵬,杜麗清,魏長賓,李甜子,馬智玲. 桑葚果實不同發(fā)育期品質(zhì)測定及其相關(guān)性分析[J]. 食品工業(yè)科技,2021,42(17):24-29.
QIAO Jian,LI Guopeng,DU Liqing,WEI Changbin,LI Tianzi,MA Zhiling. Quality determination and correlation analysis of mulberry fruits during different development stages[J]. Science and Technology of Food Industry,2021,42(17):24-29.
[20] WOJDY?O A,NOWICKA P. Anticholinergic effects of Actinidia arguta fruits and their polyphenol content determined by liquid chromatography-photodiode array detector-quadrupole/time of flight-mass spectrometry (LC-MS-PDA-Q/TOF)[J]. Food Chemistry,2019,271:216-223.
[21] KOYUNCU F. Organic acid composition of native black mulberry fruit[J]. Chemistry of Natural Compounds,2004,40(4):367-369.
[22] SMEEKENS S,MA J K,HANSON J,ROLLAND F. Sugar signals and molecular networks controlling plant growth[J]. Current Opinion in Plant Biology,2010,13(3):274-279.
[23] RUAN Y L. Sucrose metabolism:Gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology,2014,65:33-67.
[24] BARRATT D H,DERBYSHIRE P,F(xiàn)INDLAY K,PIKE M,WELLNER N,LUNN J,F(xiàn)EIL R,SIMPSON C,MAULE A J,SMITH A M. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(31):13124-13129.
[25] PARTIDA V G S,DIAS H M,CORCINO D S M,VAN SLUYS M A. Sucrose-phosphate phosphatase from sugarcane reveals an ancestral tandem duplication[J]. BMC Plant Biology,2021,21(1):23.