国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

8份蘋果種質(zhì)資源的抗旱性評(píng)價(jià)

2024-04-30 04:30魏江彤馬孝穎李雪雯張志軍李超馬鋒旺
果樹學(xué)報(bào) 2024年4期
關(guān)鍵詞:種質(zhì)資源蘋果

魏江彤 馬孝穎 李雪雯 張志軍 李超 馬鋒旺

摘? ? 要:【目的】研究8份蘋果種質(zhì)資源的抗旱性,為蘋果種質(zhì)資源的利用及抗性育種提供參考。【方法】以1年生P5、L51、L37、LC36、L7、LC54、ZN18和C31為試驗(yàn)材料,選取富平楸子和新疆野蘋果作為對(duì)照,進(jìn)行自然干旱脅迫處理,通過測(cè)定凈光合速率(Pn)、抗氧化酶系統(tǒng)和脯氨酸(PRO)含量等相關(guān)指標(biāo),利用隸屬函數(shù)法分析各蘋果種質(zhì)資源的抗旱性?!窘Y(jié)果】在自然干旱脅迫后,各蘋果種質(zhì)資源葉片出現(xiàn)不同程度萎蔫,LC54的葉片萎蔫最為嚴(yán)重,LC36的葉片萎蔫程度最??;在干旱脅迫第9天,各種質(zhì)資源的Pn和葉綠素含量顯著降低,丙二醛(MDA)含量、PRO含量、脫落酸(ABA)含量、過氧化氫(H2O2)含量和超氧陰離子(O2-)含量顯著增高,超氧化物歧化酶(SOD)和過氧化物酶(POD)的活性也顯著增強(qiáng)?!窘Y(jié)論】各蘋果種質(zhì)資源的抗旱性依次為:LC36>L7>富平楸子>新疆野蘋果>L51>C31>P5>ZN18>L37>LC54。

關(guān)鍵詞:蘋果;種質(zhì)資源;抗旱評(píng)價(jià);隸屬函數(shù)

中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)04-0569-10

Evaluation of drought resistance of eight apple germplasm resources

WEI Jiangtong, MA Xiaoying, LI Xuewen, ZHANG Zhijun, LI Chao, MA Fengwang*

(College of Horticulture, Northwest A & F University/State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Yangling 712100, Shaanxi, China)

Abstract: 【Objective】 Drought is one of the main factors restricting agricultural production, which would cause a large scale yield reduction. The Loess Plateau is the largest apple producing area in China. However, the Loess Plateau is faced with perennial drought and water shortage, and most of the apple planting areas are located in mountainous areas short of irrigation conditions. Drought and water shortage are the main limiting factors for the development of apple industry in the Loess Plateau of China. Therefore, it is of great significance to breed rootstocks and varieties with strong drought resistance. In the previous study, 8 apple germplasm resources with utilization value were found in our laboratory. This study evaluated their drought resistance in order to provide reference for the utilization and resistance breeding. 【Methods】 In this study, P5 (Malus asiatica), L51 (M. robusta), L37 (M. hybrid ‘Dwarf Tree), LC36 (M. hybrid ‘Cranberry), L7 (M. soulardii), LC54 (M. domestica ‘Oekonomierat Echter-meyer), ZN18 (M. domestica, Sciros × Scifresh) and C31 (M. domestica ‘Trail) were used as experimental materials, and M. prunifolia and M. sieversii were used as controls. In the spring of 2022, the bud grafting method was used to graft them on the M. hupehensis Rehd. When the height of all test materials reached 70-80 cm, the plants with the same height were selected for experiment. The treatment group was watered thoroughly the day before the treatment and stopped watering until the 9th day of the treatment. The control group was watered normally every day, and the soil relative water content was maintained at 75%-85%. From the 0th day of treatment, the net photosynthetic rate, chlorophyll content, relative water content and relative conductivity of leaves were measured every other day. Completely mature leaves were collected from 7-15 leaves below the top of the stem, wrapped in the tin foil paper, immediately frozen in liquid nitrogen, and stored at ?80 ℃ for the determination of the malondialdehyde content, hydrogen peroxide content, superoxide anion (O2-) content, antioxidant enzyme activity, proline, ABA content and the expression of the synthesis-related genes of each apple germplasm resource. The drought resistance of each apple germplasm resource was evaluated by membership function method. 【Results】 (1) After natural drought stress, the leaves of the apple germplasm resources wilted to varying degrees. The leaves of LC54 wilted most seriously, and the leaves of LC36 wilted most lightly. After drought treatment, the leaf relative water content of each apple germplasm resource decreased significantly, and the leaf relative water content of LC54 decreased most apparently. (2) After drought treatment, the relative conductivity, MDA content and proline content of the leaves of the apple germplasm resources increased significantly. On the 9th day of the drought stress, the net photosynthetic rate and chlorophyll content of various germplasm resources decreased significantly. (3) The O2- content of the apple germplasm resources increased significantly after drought stress, and the increase range of the O2- content of the apple germplasm resources was between 84.31% and 197.97%. The content of H2O2 was lower on the 0th day of drought stress, and significantly increased on the 9th day of the drought stress. (4) The ABA content of the apple germplasm resources increased significantly after the drought stress. The gene expression of the MdNCED1 and MdNCED3 remained at a low level on the 0th day of the drought treatment, and increased significantly on the 9th day of the drought treatment, which was consistent with the change of the ABA content in the leaves. (5) The comprehensive net photosynthetic rate, chlorophyll content, leaf relative water content, relative conductivity, malondialdehyde content, hydrogen peroxide content, superoxide anion (O2- ) content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, proline, ABA content, a total of 11 indicators, were used to calculate the average membership function value of each apple germplasm resource. The results showed that the average membership function value of LC36 was the largest, indicating that the relative change degree of each index of LC36 was the smallest under the drought stress, and the drought resistance was the strongest among the 8 apple germplasm resources. The average membership function value of LC54 was the smallest, indicating that its drought resistance was the weakest. 【Conclusion】 The results of this study showed that under the drought stress, the net photosynthetic rate of plants decreased, the membrane integrity was destroyed, and the contents of ABA and proline increased significantly. However, due to the different resistance of the apple germplasm resources to drought, the changes of each index before and after the drought stress were also different. According to the membership function value, we concluded that the drought resistance of each apple germplasm resource is: LC36>L7>M. prunifolia>M. sieversii>L51>C31>P5>ZN18>L37>LC54. The drought resistance of LC36 and L7 germplasm resources is greater than that of M. prunifolia and M. sieversii, while the drought resistance of other resources is lower than that of M. prunifolia and M. sieversii. Therefore, LC36 and L7 are important resources for improvement of the drought resistance of apple.

Key words: Apple; Germplasm resources; Drought resistance evaluation; Membership function

干旱是制約農(nóng)業(yè)生產(chǎn)的主要因素之一,會(huì)造成作物大面積減產(chǎn)[1]。黃土高原地區(qū)是中國最大的蘋果優(yōu)勢(shì)產(chǎn)區(qū)[2],該地區(qū)適宜蘋果的生長,生產(chǎn)出的蘋果品質(zhì)好、風(fēng)味佳。但黃土高原地區(qū)常年干旱缺水,且大部分蘋果種植地位于山區(qū),缺乏灌溉條件。因此,干旱缺水是中國黃土高原地區(qū)蘋果產(chǎn)業(yè)發(fā)展的限制因素之一。水對(duì)植物的生存至關(guān)重要,缺水會(huì)限制植物的生長[3]。干旱脅迫會(huì)對(duì)植物的各種生物活動(dòng)產(chǎn)生影響,如種子萌發(fā)、繁殖和成熟。干旱脅迫會(huì)影響植物的形態(tài)、生理、生化和代謝途徑,并最終導(dǎo)致植物生產(chǎn)力的降低[4-5]。植物也進(jìn)化出相應(yīng)的耐旱策略以應(yīng)對(duì)水分脅迫,可通過對(duì)植物細(xì)胞、組織、器官及整個(gè)植株的調(diào)控維持生存。通過氣孔的調(diào)控和更大更深的根系來增加水分運(yùn)輸,從而減少水分的損失。通過抗氧化活性系統(tǒng)清除活性氧(ROS),保持膜的完整性,與脅迫相關(guān)的蛋白質(zhì)和水通道蛋白活性也有助于植物產(chǎn)生耐旱性。通過脯氨酸(PRO)等滲透物質(zhì)的積累維持細(xì)胞膨脹壓力。脫落酸(ABA)是植物適應(yīng)環(huán)境脅迫的重要信號(hào)分子,在干旱脅迫下,ABA可以調(diào)控植物的氣孔開放,從而減緩植物體內(nèi)水分的虧缺,增強(qiáng)植物抗旱性[6]。9-順式-環(huán)氧類胡蘿卜素雙加氧酶(NCED)是干旱引發(fā)誘導(dǎo)的ABA生物合成的關(guān)鍵酶,NCED基因?qū)儆谝粋€(gè)具有9個(gè)成員的多基因家族[7]。

在西北農(nóng)林科技大學(xué)洛川蘋果試驗(yàn)站種質(zhì)資源圃,筆者發(fā)現(xiàn)P5、L51、L37、LC36、L7、LC54、ZN18和C31的果實(shí)具有特異性,可作為品種資源選育抗逆優(yōu)質(zhì)的蘋果新品種。為探究其抗旱性,筆者在本研究中以這8份蘋果種質(zhì)資源為試驗(yàn)材料,以抗旱性較強(qiáng)的富平楸子和新疆野蘋果為對(duì)照,對(duì)各蘋果種質(zhì)資源的抗旱性進(jìn)行研究,測(cè)定各蘋果種質(zhì)資源的凈光合速率(Pn)、葉綠素含量、葉片相對(duì)含水量、相對(duì)電導(dǎo)率、丙二醛(MDA)含量、過氧化氫(H2O2)含量、超氧陰離子(O2-)含量、抗氧化酶活性、PRO含量、ABA含量及其合成相關(guān)基因的表達(dá)量,并利用隸屬函數(shù)法對(duì)各蘋果種質(zhì)資源的抗旱性進(jìn)行評(píng)價(jià)。

1 材料和方法

1.1 試驗(yàn)材料

以1年生P5(Malus asiatica)、L51(M. robusta)、L37(M. hybrid ‘Dwarf Tree)、LC36(M. hybrid ‘Cranberry)、L7(M. soulardii)、LC54(M. domestica ‘Oekonomierat Echter-meyer)、ZN18(M. domestica,Sciros×Scifresh)和C31(M. domestica ‘Trail)為試驗(yàn)材料,選取富平楸子(M. prunifolia)和新疆野蘋果(M. sieversii)為對(duì)照,于2022年春采用芽接法嫁接于平邑甜茶植株上,試驗(yàn)于2022年6月在西北農(nóng)林科技大學(xué)園藝場(chǎng)的避雨棚內(nèi)進(jìn)行。植株定植于塑料盆(30 cm×18 cm)中,栽植基質(zhì)為V黃土∶V沙∶V有機(jī)質(zhì)=5∶1∶1,放置于避雨棚中,定期進(jìn)行澆水、除草等生長管理工作。

1.2 試驗(yàn)方法

待所有試驗(yàn)材料高度為70~80 cm時(shí),挑選高度一致的植株分為對(duì)照組和處理組進(jìn)行試驗(yàn)處理。將處理組于處理前1 d澆透水后停止?jié)菜敝撂幚淼?天各蘋果種質(zhì)資源因極度缺水出現(xiàn)顯著差異后復(fù)水,對(duì)照組每天正常澆水。于處理的第0天開始,每隔1 d進(jìn)行Pn、葉綠素含量、葉片相對(duì)含水量、相對(duì)電導(dǎo)率的測(cè)定,并采集植株中部完全成熟的葉片,用錫箔紙包住后立即用液氮快速冷凍,并于-80 ℃下儲(chǔ)存。

1.3 生理指標(biāo)測(cè)定

葉片相對(duì)含水量測(cè)定,稱取葉片鮮質(zhì)量(FW)后,將葉片浸泡在蒸餾水中24 h,用吸水紙吸干表面水分后,測(cè)量葉片飽和質(zhì)量(TW),烘干至恒質(zhì)量后測(cè)量葉片干質(zhì)量(DW),計(jì)算葉片相對(duì)含水量,每個(gè)種質(zhì)資源5次重復(fù)。葉片相對(duì)含水量計(jì)算公式如下:

RWC/%=(FW-DW)/(TW-DW)×100。

相對(duì)電導(dǎo)率測(cè)定,利用打孔器在葉片上打20個(gè)圓片,避開葉脈,裝入15 mL離心管,加入10 mL純凈水,浸泡4 h后,混勻利用電導(dǎo)率儀測(cè)量電導(dǎo)率(S1),沸水浴20 min,冷卻至室溫后混勻再次測(cè)量電導(dǎo)率(S2),測(cè)量純凈水的電導(dǎo)率(S0),計(jì)算葉片相對(duì)電導(dǎo)率,每個(gè)種質(zhì)資源5次重復(fù)。相對(duì)電導(dǎo)率計(jì)算公式如下:

REL/%=(S1-S0)/(S2-S0)×100。

MDA、PRO含量測(cè)定,按照生產(chǎn)廠家說明書(蘇州科銘生物技術(shù)有限公司,江蘇蘇州),利用相應(yīng)試劑盒進(jìn)行測(cè)定。

1.4 Pn及葉綠素含量測(cè)定

在晴朗天氣的上午,利用CIRAS-3便攜式光合作用系統(tǒng)(CIRAS,Amesbury,MA,USA)測(cè)定各蘋果種質(zhì)資源的Pn。

將葉片剪碎成細(xì)條狀稱取0.1 g置于15 mL試管中,加入8 mL 80%丙酮,將葉片全部浸沒,避光浸泡24 h,其間每隔一定時(shí)間對(duì)試管進(jìn)行晃動(dòng),直至葉片上的綠色完全褪去。混勻吸取1 mL加入比色皿,利用UV-2600分光光度計(jì)(日本島津)分別在663 nm、645 nm、470 nm處測(cè)定吸光值,計(jì)算各蘋果種質(zhì)資源的總?cè)~綠素含量,每個(gè)種質(zhì)資源5次重復(fù)。

1.5 活性氧含量及抗氧化酶活性測(cè)定

按照生產(chǎn)廠家說明書(蘇州科銘生物技術(shù)有限公司,江蘇蘇州),利用相應(yīng)試劑盒測(cè)定H2O2含量、O2-含量、超氧化物歧化酶(SOD)活性和過氧化物酶(POD)活性。

1.6 ABA含量的測(cè)定

稱取0.1 g經(jīng)研磨的凍樣于2 mL離心管中,加入1 mL經(jīng)-20 ℃預(yù)冷的提取液(V異丙醇∶V甲醇∶V乙酸=79∶20∶1),渦旋震蕩混勻,4 ℃提取12 h,4 ℃條件下12 000 r·min-1離心10 min,用一次性注射器吸取上清液經(jīng)0.22 μm有機(jī)過濾器過濾后加入棕色進(jìn)樣瓶,利用液質(zhì)聯(lián)用儀測(cè)定[8]。

1.7 RNA提取及qRT-PCR分析

使用植物RNA分離試劑盒提取總RNA[Wolact,Vicband Life Sciences Company (HK) Limited],再利用PrimeScript第一鏈cDNA合成試劑盒(TaKaRa,日本)反轉(zhuǎn)錄合成cDNA。實(shí)時(shí)熒光定量PCR采用SYBR Premix Ex Taq Ⅱ Kit(TaKaRa,Tokyo,Japan),以MdMDH(MDP0000197620)作為內(nèi)參基因,試驗(yàn)所用引物序列見表1,使用2-△△CT方法計(jì)算相對(duì)表達(dá)量[9]。

1.8 隸屬函數(shù)的計(jì)算

考慮到試驗(yàn)材料遺傳背景不同,各項(xiàng)生理指標(biāo)存在較大差異,故利用短期干旱第0天和第9天各項(xiàng)指標(biāo)的相對(duì)變化率進(jìn)行隸屬函數(shù)的計(jì)算,以評(píng)價(jià)各蘋果種質(zhì)資源的抗旱性。

若該指標(biāo)與抗旱性呈正相關(guān),該指標(biāo)的隸屬函數(shù)計(jì)算公式為:

U(X)=(X-Xmin)/(Xmax-Xmin)。

若該指標(biāo)與抗旱性呈負(fù)相關(guān),該指標(biāo)的隸屬函數(shù)計(jì)算公式為:

U(X)=1-(X-Xmin)/(Xmax-Xmin)。

式中,U(X)為隸屬函數(shù)值,X指某一指標(biāo)的相對(duì)變化率[(S第9天-S第0天)/S第0天×100%],S為某一指標(biāo)的測(cè)量數(shù)值;Xmax指某一指標(biāo)相對(duì)變化率的最大值,Xmin指某一指標(biāo)相對(duì)變化率的最小值。在測(cè)定的指標(biāo)中,與抗旱性負(fù)相關(guān)的有相對(duì)電導(dǎo)率、MDA含量、H2O2含量和O2-含量,其余指標(biāo)與抗旱性呈正相關(guān)。

1.9 數(shù)據(jù)分析

使用SPSS Statistics 26.0進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,并使用單因素分析和Tukey的多重比較(p<0.05)進(jìn)行顯著性分析。使用Origin 2022b繪圖。

2 結(jié)果與分析

2.1 自然干旱脅迫下各蘋果種質(zhì)資源的表型及生理指標(biāo)

在自然干旱脅迫后,各蘋果種質(zhì)資源的葉片均出現(xiàn)不同程度的失水萎蔫(圖1),干旱處理第9天各蘋果種質(zhì)資源間的差異最顯著,其中LC54葉片的萎蔫程度最為嚴(yán)重。在干旱處理后,各蘋果種質(zhì)資源的葉片相對(duì)含水量(w,后同)顯著降低(圖2-A),變化范圍為0.72%~30.3%,其中LC54的葉片相對(duì)含水量降幅最大。在干旱處理后,各蘋果種質(zhì)資源葉片的相對(duì)電導(dǎo)率顯著升高(圖2-B),變化范圍為14.16%~61.99%。在干旱脅迫下,各蘋果種質(zhì)資源葉片的MDA含量也顯著升高,變化范圍為9.42%~65.82%,在干旱處理第9天,LC54的MDA含量最高,LC36的MDA含量最低(圖2-C)。在干旱脅迫第0天,各蘋果種質(zhì)資源葉片的PRO含量維持在較低水平,分布范圍為9.81~17.11 μg·g-1,在干旱處理第9天,各蘋果種質(zhì)資源葉片的PRO含量顯著增加,分布范圍為67.8~152.66 μg·g-1,LC36的PRO含量在干旱處理后顯著高于其他種質(zhì)資源,LC54、L37、P5的PRO含量在干旱處理后顯著低于其他種質(zhì)資源(圖2-D)。

2.2 自然干旱脅迫下各蘋果種質(zhì)資源的Pn和葉綠素含量

在干旱處理第0天,各蘋果種質(zhì)資源葉片的Pn在12.3~19.06 μmol·m-2·s-1之間,在干旱處理第9天,各蘋果種質(zhì)資源葉片的Pn顯著降低,變化范圍為40.65%~68.03%,其中LC54的Pn顯著低于其他種質(zhì)資源,LC36、富平楸子和新疆野蘋果的Pn較高(圖3-A)。在干旱處理后,各蘋果種質(zhì)資源葉片的葉綠素含量也顯著降低(圖3-B),這些結(jié)果表明,在干旱處理后,各蘋果種質(zhì)資源均遭受到了不同程度的損傷,其中以LC54的損傷最嚴(yán)重,初步表明在各蘋果種質(zhì)資源中LC54的抗旱性最差。

2.3 自然干旱脅迫下各蘋果種質(zhì)資源的活性氧含量及抗氧化酶活性

植物在遭受到干旱脅迫時(shí)會(huì)產(chǎn)生大量的O2-等活性氧(ROS),以抵御外界環(huán)境的變化[10],然而過量的ROS積累會(huì)導(dǎo)致植物氧化損傷[11]。在干旱處理第0天,各蘋果種質(zhì)資源葉片的H2O2含量較低,在干旱脅迫第9天,各蘋果種質(zhì)資源的H2O2含量(b,后同)顯著增加,分布范圍為25.23~35.49 μmol·g-1,LC36的H2O2含量顯著低于其他種質(zhì)資源(圖4-A)。如圖4-B所示,在干旱處理第0天,各蘋果種質(zhì)資源葉片的O2-含量分布范圍為29.31~42.69 nmol·g-1,在干旱處理第9天,各蘋果種質(zhì)資源葉片的O2-含量顯著增加,LC54、P5和L37的O2-含量顯著高于其他種質(zhì)資源。為防止過量的ROS對(duì)植物的損傷,植物可通過相應(yīng)抗氧化酶系統(tǒng)清除植物體內(nèi)過量的ROS[12]。通過對(duì)各蘋果種質(zhì)資源SOD活性和POD活性測(cè)定可知,在干旱處理后,各蘋果種質(zhì)資源葉片內(nèi)的SOD活性和POD活性顯著升高。在干旱處理第9天,L7的POD活性最高,LC54的POD活性最低,LC36的SOD活性最高,LC54的SOD活性最低(圖4-C~D)。

2.4 自然干旱脅迫下各蘋果種質(zhì)資源的ABA含量

ABA在植物應(yīng)對(duì)干旱等脅迫時(shí)具有重要作用[13],因此測(cè)量了各蘋果種質(zhì)資源葉片的ABA含量(圖5-A)。在干旱處理第0天,各蘋果種質(zhì)資源葉片的ABA含量有顯著差異,但均維持在相對(duì)較低水平,分布范圍為14.60~45.97 ng·g-1,在干旱處理第9天,各蘋果種質(zhì)資源葉片的ABA含量顯著增高,分布范圍為117.52~526.48 ng·g-1,LC54的ABA含量顯著高于其他種質(zhì)資源。通過測(cè)定各蘋果種質(zhì)資源與ABA生物合成有關(guān)的2個(gè)基因發(fā)現(xiàn),MdNCED1和MdNCED3基因相對(duì)表達(dá)量均在干旱處理第0天維持在較低水平,在干旱處理第9天顯著升高,與葉片內(nèi)ABA含量的變化趨勢(shì)相一致(圖5-B、C)。

2.5 利用隸屬函數(shù)法評(píng)價(jià)各蘋果種質(zhì)資源的抗旱性

以各蘋果種質(zhì)資源干旱脅迫第0天和第9天各指標(biāo)的相對(duì)變化率計(jì)算隸屬函數(shù)值,以各蘋果種質(zhì)資源隸屬函數(shù)值的平均值為依據(jù)進(jìn)行抗旱性的評(píng)價(jià),平均隸屬函數(shù)值越高說明對(duì)干旱的敏感度越低,則愈抗旱。綜合Pn、葉綠素含量、葉片相對(duì)含水量、相對(duì)電導(dǎo)率、MDA含量、H2O2含量、O2-含量、SOD活性、POD活性、PRO含量、ABA含量共計(jì)11項(xiàng)指標(biāo),計(jì)算出各蘋果種質(zhì)資源的平均隸屬函數(shù)值,結(jié)果(表2)表明,LC36的平均隸屬函數(shù)值最大,表明在干旱脅迫下LC36各指標(biāo)的相對(duì)變化程度最小,與其他種質(zhì)資源相比抗旱性最強(qiáng)。平均隸屬函數(shù)值最小的是LC54,表明其抗旱性最弱。由此筆者得出各蘋果種質(zhì)資源的抗旱性依次為:LC36>L7>富平楸子>新疆野蘋果>L51>C31>P5>ZN18>L37>LC54。

3 討 論

干旱嚴(yán)重制約了農(nóng)業(yè)的發(fā)展,在生產(chǎn)上每年造成重大損失[14]。干旱脅迫會(huì)影響植物的生長發(fā)育,在植物中表現(xiàn)出不同的形態(tài)、生理、生化和分子變化[4-5]。光合作用是植物碳同化最重要的代謝過程[15],植物在遭受干旱脅迫后會(huì)對(duì)光合器官造成損傷,導(dǎo)致植物光合能力的下降[16]。在本研究中,干旱脅迫后各蘋果種質(zhì)資源葉片的Pn顯著降低,這與前人研究結(jié)果一致[17-18]。葉綠素是植物主要的光合色素,在光合色素獲取光方面起著重要作用[19]。Zhao等[20]研究發(fā)現(xiàn),長期水分脅迫下植株的葉綠素含量均降低,梁博文[21]研究發(fā)現(xiàn),自然干旱脅迫下植株的葉綠素濃度顯著降低,這與筆者在本研究中的結(jié)果一致。本研究中,短期干旱處理后各蘋果種質(zhì)資源的葉綠素含量顯著降低。研究表明,在干旱脅迫下,植物葉綠素的降解主要與活性氧(ROS)的過量產(chǎn)生有關(guān)[22-23]。這些研究結(jié)果表明,植物在干旱脅迫中Pn的降低可能與葉綠素含量的降低有關(guān)。

植物在進(jìn)行光合作用時(shí)會(huì)產(chǎn)生大量活性氧(ROS)[24-25],活性氧(ROS)會(huì)引起膜脂質(zhì)的過氧化和去酯化,并導(dǎo)致蛋白質(zhì)變性,從而進(jìn)一步損傷植物細(xì)胞[26]。前人研究表明,植物在干旱脅迫下,體內(nèi)的活性氧(ROS)水平會(huì)顯著增加[27-29]。在本研究中,干旱脅迫后各蘋果種質(zhì)資源的O2-含量顯著增加,各蘋果種質(zhì)資源O2-含量的增長范圍在84.31%~197.97%之間。H2O2含量在干旱脅迫第0天的含量較低,在干旱脅迫第9天顯著增高,這與前人研究結(jié)果相同[14,30]。此外,筆者在本研究中測(cè)定了各蘋果種質(zhì)資源的POD、SOD活性,結(jié)果表明,干旱脅迫后,各蘋果種質(zhì)資源的POD、SOD活性顯著增強(qiáng),且抗旱性越強(qiáng)的種質(zhì)資源抗氧化酶活性越強(qiáng)。這些研究結(jié)果表明,各蘋果種質(zhì)資源在干旱脅迫下,植株體內(nèi)的活性氧(ROS)因脅迫顯著增加,同時(shí)植株產(chǎn)生大量抗氧化酶抑制活性氧(ROS)的產(chǎn)生,但LC36等種質(zhì)資源的抗氧化酶SOD、POD活性較高,因此積累的活性氧(ROS)較少,表現(xiàn)出更強(qiáng)的抗旱能力。

植物在干旱脅迫下ABA含量會(huì)顯著增加[31],ABA可維持植物水分狀態(tài)、增強(qiáng)光合作用從而減弱干旱的影響[32]。在本研究中,干旱脅迫后各蘋果種質(zhì)資源的ABA含量顯著升高,且LC36的ABA含量增幅最大,這與前人研究結(jié)果相同。9-順式-環(huán)氧類胡蘿卜素雙加氧酶(NCED)是ABA合成的關(guān)鍵酶[33]。在本研究中,筆者檢測(cè)了MdNCED1和MdNCED3的基因表達(dá)量,結(jié)果表明,MdNCED1和MdNCED3的基因表達(dá)量在干旱處理第0天維持在較低水平,在干旱處理第9天顯著升高,與葉片內(nèi)ABA含量的變化相一致。前人研究表明,在干旱脅迫下,PRO等滲透保護(hù)劑可降低活性氧(ROS)對(duì)植物細(xì)胞膜的損傷[34],同時(shí)它們不會(huì)干擾細(xì)胞水平的正常代謝過程[35]。在本研究中,在干旱脅迫第9天,各蘋果種質(zhì)資源的PRO含量顯著增加,這與前人研究結(jié)果相同[36-37]。

隸屬函數(shù)值是從隸屬度的角度出發(fā),運(yùn)用模糊數(shù)學(xué)的基本理論,采用隸屬度函數(shù)法計(jì)算得到的綜合評(píng)估值[38-39]。目前,隸屬函數(shù)法在作物抗性評(píng)價(jià)方面廣泛應(yīng)用。馮琛等[40]利用隸屬函數(shù)法對(duì)不同蘋果矮化砧穗組合的抗旱性進(jìn)行研究,發(fā)現(xiàn)宮藤富士/SH6組合的抗旱性比宮藤富士/G935、宮藤富士/M9-T337的強(qiáng)。王健強(qiáng)等[41]利用隸屬函數(shù)法對(duì)7種矮化砧木進(jìn)行了抗旱性評(píng)價(jià),研究結(jié)果表明冀砧1號(hào)和SH40的抗旱性較其他砧木更強(qiáng)。在本研究中,利用11種測(cè)定指標(biāo)進(jìn)行了隸屬函數(shù)分析,對(duì)各蘋果種質(zhì)資源的抗旱性進(jìn)行評(píng)價(jià),研究發(fā)現(xiàn)各蘋果種質(zhì)資源的抗旱性依次為:LC36>L7>富平楸子>新疆野蘋果>L51>C31>P5>ZN18>L37>LC54。

4 結(jié) 論

在干旱脅迫下植物的Pn降低、膜完整性被破壞、ABA和PRO含量顯著增加,但由于各蘋果種質(zhì)資源對(duì)干旱的抗性不同,干旱脅迫前后各指標(biāo)的變化幅度也不同,根據(jù)隸屬函數(shù)值得出各蘋果種質(zhì)資源的抗旱性依次為:LC36>L7>富平楸子>新疆野蘋果>L51>C31>P5>ZN18>L37>LC54。LC36、L7兩份種質(zhì)資源的抗旱性高于普遍認(rèn)為抗旱性強(qiáng)的富平楸子和新疆野蘋果,而其他資源的抗旱性則低于富平楸子和新疆野蘋果,因此,LC36和L7是改善蘋果抗旱性的重要資源。

參考文獻(xiàn) References:

[1] KHAN M A,IQBAL M,AKRAM M,AHMAD M,HASSAN M W,JAMIL M. Recent advances in molecular tool development for drought tolerance breeding in cereal crops:A review[J]. Zemdirbyste-Agriculture,2013,100(3):325-334.

[2] 劉璐,王景紅,柏秦鳳,張維敏,張燾. 氣候變化對(duì)黃土高原蘋果主產(chǎn)地物候期的影響[J]. 果樹學(xué)報(bào),2020,37(3):330-338.

LIU Lu,WANG Jinghong,BAI Qinfeng,ZHANG Weimin,ZHANG Tao. Impact of climate changes on apples phenophases in the main producing areas of the Loess Plateau in China[J]. Journal of Fruit Science,2020,37(3):330-338.

[3] GUPTA A,RICO-MEDINA A,CA?O-DELGADO A I. The physiology of plant responses to drought[J]. Science,2020,368(6488):266-269.

[4] GONZ?LEZ-VILLAGRA J,OMENA-GARCIA R P,RODRIGUES-SALVADOR A,NUNES-NESI A,COHEN J D,REYES-D?AZ M M. Differential physiological and metabolic responses in young and fully expanded leaves of Aristotelia chilensis plants subjected to drought stress[J]. Environmental and Experimental Botany,2022,196:104814.

[5] ZANDALINAS S I,MITTLER R,BALFAG?N D,ARBONA V,G?MEZ-CADENAS A. Plant adaptations to the combination of drought and high temperatures[J]. Physiologia Plantarum,2018,162(1):2-12.

[6] WANG X,ZHANG J,SONG J,HUANG M,CAI J,ZHOU Q,DAI T,JIANG D. Abscisic acid and hydrogen peroxide are involved in drought priming-induced drought tolerance in wheat (Triticum aestivum L.)[J]. Plant Biology,2020,22(6):1113-1122.

[7] SU Z J,LI X H,HAO Z F,XIE C X,LI M S,WENG J F,ZHANG D G,LIANG X L,WANG Z G,GAO J L,ZHANG S H. Association analysis of the nced and rab28 genes with phenotypic traits under water stress in maize[J]. Plant Molecular Biology Reporter,2011,29(3):714-722.

[8] 敬媛媛. 蘋果FERONIA類受體激酶MdMRLK2響應(yīng)干旱、低溫及腐爛病菌侵染的功能分析[D]. 楊凌:西北農(nóng)林科技大學(xué),2022.

JING Yuanyuan. Characterization of FERONIA receptor-like kinase MdMRLK2 in response to drought,cold and Valsa mali infection in Malus[D]. Yangling:Northwest A & F University,2022.

[9] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method[J]. Methods,2001,25(4):402-408.

[10] KOCSY G,TARI I,VANKOV? R,ZECHMANN B,GULY?S Z,PO?R P,GALIBA G. Redox control of plant growth and development[J]. Plant Science,2013,211:77-91.

[11] MUKARRAM M,CHOUDHARY S,KURJAK D,PETEK A,KHAN M M A. Drought:Sensing,signalling,effects and tolerance in higher plants[J]. Physiologia Plantarum,2021,172(2):1291-1300.

[12] CHAPMAN J M,MUHLEMANN J K,GAYOMBA S R,MUDAY G K. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses[J]. Chemical Research in Toxicology,2019,32(3):370-396.

[13] LEE S C,LIM C W,LAN W Z,HE K,LUAN S. ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels[J]. Molecular Plant,2013,6(2):528-538.

[14] YANG J,WANG M,ZHOU S S,XU B Y,CHEN P H,MA F W,MAO K. The ABA receptor gene MdPYL9 confers tolerance to drought stress in transgenic apple (Malus domestica)[J]. Environmental and Experimental Botany,2022,194:104695.

[15] MA X S,XIA H,LIU Y H,WEI H B,ZHENG X G,SONG C Z,CHEN L,LIU H Y,LUO L J. Transcriptomic and metabolomic studies disclose key metabolism pathways contributing to well-maintained photosynthesis under the drought and the consequent drought-tolerance in rice[J]. Frontiers in Plant Science,2016,7:1886.

[16] SONG X Y,ZHOU G S,HE Q J. Critical leaf water content for maize photosynthesis under drought stress and its response to rewatering[J]. Sustainability,2021,13(13):7218.

[17] ZHAO S,GAO H B,JIA X M,WANG H B,KE M,MA F W. The HD-Zip I transcription factor MdHB-7 regulates drought tolerance in transgenic apple (Malus domestica)[J]. Environmental and Experimental Botany,2020,180:104246.

[18] JING Y Y,LIU C H,LIU B B,PEI T T,ZHAN M H,LI C R,WANG D N,LI P M,MA F W. Overexpression of the FERONIA receptor kinase MdMRLK2 confers apple drought tolerance by regulating energy metabolism and free amino acids production[J]. Tree Physiology,2023,43(1):154-168.

[19] SAGLAM A,TERZI R,DEMIRALAY M. Effect of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance[J]. Acta Biologica Hungarica,2014,65(2):178-188.

[20] ZHAO S,GAO H B,JIA X M,WEI J T,MAO K,MA F W. MdHB-7 regulates water use efficiency in transgenic apple (Malus domestica) under long-term moderate water deficit[J]. Frontiers in Plant Science,2021,12:740492.

[21] 梁博文. 多巴胺和褪黑素對(duì)干旱和養(yǎng)分脅迫下蘋果礦質(zhì)養(yǎng)分吸收的調(diào)控研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2018.

LIANG Bowen. Regulatory function of dopamine and melatonin on mineral nutrient uptake in Malus under drought and nutrient stresses[D]. Yangling:Northwest A & F University,2018.

[22] GHOBADI M,TAHERABADI S,GHOBADI M E,MOHAMMADI G R,JALALI-HONARMAND S. Antioxidant capacity,photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress[J]. Industrial Crops and Products,2013,50:29-38.

[23] JIANG Y W,HUANG B R. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation[J]. Crop Science,2001,41(2):436-442.

[24] SAIBO N J M,LOUREN?O T,OLIVEIRA M M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses[J]. Annals of Botany,2009,103(4):609-623.

[25] CHAVES M M,F(xiàn)LEXAS J,PINHEIRO C. Photosynthesis under drought and salt stress:Regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560.

[26] BOWLER C,MONTAGU M V,INZE D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116.

[27] JIA D F,JIANG Q,VAN NOCKER S,GONG X Q,MA F W. An apple (Malus domestica) NAC transcription factor enhances drought tolerance in transgenic apple plants[J]. Plant Physiology and Biochemistry,2019,139:504-512.

[28] REN Y R,YANG Y Y,ZHANG R,YOU C X,ZHAO Q,HAO Y J. MdGRF11,an apple 14-3-3 protein,acts as a positive regulator of drought and salt tolerance[J]. Plant Science,2019,288:110219.

[29] WANG Y P,CHEN Q,ZHENG J Z,ZHANG Z J,GAO T T,LI C,MA F W. Overexpression of the tyrosine decarboxylase gene MdTyDC in apple enhances long-term moderate drought tolerance and WUE[J]. Plant Science,2021,313:111064.

[30] 王允,張逸,劉燦玉,張志煥,曹逼力,徐坤. 干旱脅迫下外源ABA對(duì)姜葉片活性氧代謝的影響[J]. 園藝學(xué)報(bào),2016,43(3):587-594.

WANG Yun,ZHANG Yi,LIU Canyu,ZHANG Zhihuan,CAO Bili,XU Kun. Effects of exogenous abscisic acid on active oxygen metabolism in ginger leaves under drought stress[J]. Acta Horticulturae Sinica,2016,43(3):587-594.

[31] 趙東黎,鮑茹雪,李夢(mèng)桃,陳新,王文泉. 木薯ABA受體MePYL4a在擬南芥中過表達(dá)增強(qiáng)其耐旱性[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2022,30(12):2290-2300.

ZHAO Dongli,BAO Ruxue,LI Mengtao,CHEN Xin,WANG Wenquan. Overexpression of cassava (Manihot esculenta) ABA receptor MePYL4a in Arabidopsis thaliana enhances its drought tolerance[J]. Journal of Agricultural Biotechnology,2022,30(12):2290-2300.

[32] DE SOUZA T C,MAGALHAES P C,DE CASTRO E M,DE ALBUQUERQUE P E P,MARABESI M A. The influence of ABA on water relation,photosynthesis parameters,and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance[J]. Acta Physiologiae Plantarum,2013,35(2):515-527.

[33] CHEN K,LI G J,BRESSAN R A,SONG C P,ZHU J K,ZHAO Y. Abscisic acid dynamics,signaling,and functions in plants[J]. Journal of Integrative Plant Biology,2020,62(1):25-54.

[34] BANDURSKA H. Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injury? Ⅰ. Free proline accumulation and membrane injury index in drought and osmotically stressed plants[J]. Acta Physiologiae Plantarum,2000,22(4):409-415.

[35] SINGH M,KUMAR J,SINGH S,SINGH V P,PRASAD S M. Roles of osmoprotectants in improving salinity and drought tolerance in plants:A review[J]. Reviews in Environmental Science and Bio/Technology,2015,14(3):407-426.

[36] 高傳彩,惠基運(yùn),魏玉蘭,張蕊,劉建廷,肖偉,李玲. 干旱及復(fù)水對(duì)‘紅富士蘋果生長及果實(shí)品質(zhì)和產(chǎn)量的影響[J]. 山東農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,52(2):194-200.

GAO Chuancai,HUI Jiyun,WEI Yulan,ZHANG Rui,LIU Jian-

ting,XIAO Wei,LI Ling. Effects of drought and rehydration on the growth,fruit quality and yield of ‘Red Fuji apple[J]. Journal of Shandong Agricultural University (Natural Science Edition),2021,52(2):194-200.

[37] 單皓,羅海婧,張松,張久剛,張虎,崔愛民,薛超,張永清. 不同抗旱性小豆根系對(duì)干旱-復(fù)水的生理生態(tài)響應(yīng)[J]. 干旱地區(qū)農(nóng)業(yè)研究,2023,41(1):94-100.

SHAN Hao,LUO Haijing,ZHANG Song,ZHANG Jiugang,ZHANG Hu,CUI Aimin,XUE Chao,ZHANG Yongqing. Physiological and ecological response of different drought-tolerant adzuki beans root system to drought-rehydration[J]. Agricultural Research in the Arid Areas,2023,41(1):94-100.

[38] 孟雨. 干旱脅迫對(duì)小麥生長的影響及品種抗旱性鑒定方法研究[D]. 鄭州:河南農(nóng)業(yè)大學(xué),2022.

MENG Yu. Effects of drought stress on wheat growth and identification methods of drought resistance of varieties[D]. Zhengzhou:Henan Agricultural University,2022.

[39] 武新娟,唐貴,隋冬華,張冬雪,孫晶,張靜華,張鹍,宋鵬慧,吳雨蹊. 20個(gè)馬鈴薯品種抗旱性鑒定及評(píng)價(jià)指標(biāo)篩選[J]. 中國瓜菜,2021,34(3):47-51.

WU Xinjuan,TANG Gui,SUI Donghua,ZHANG Dongxue,SUN Jing,ZHANG Jinghua,ZHANG Kun,SONG Penghui,WU Yuxi. Evaluation index selection and drought resistance identification of 20 potato varieties[J]. China Cucurbits and Vegetables,2021,34(3):47-51.

[40] 馮琛,黃學(xué)旺,李興亮,周佳,李天紅. 不同蘋果矮化砧穗組合的抗旱性比較研究[J]. 園藝學(xué)報(bào),2022,49(5):945-957.

FENG Chen,HUANG Xuewang,LI Xingliang,ZHOU Jia,LI Tianhong. Comparative study on drought resistance of different apple dwarfing rootstock and scion combinations[J]. Acta Horticulturae Sinica,2022,49(5):945-957.

[41] 王健強(qiáng),李佳,蘇怡,郝奕樊,左家樂,石濛,李中勇,張學(xué)英,徐繼忠. 7種蘋果矮化砧木的抗旱性評(píng)價(jià)[J]. 中國果樹,2019(6):38-41.

WANG Jianqiang,LI Jia,SU Yi,HAO Yifan,ZUO Jiale,SHI Meng,LI Zhongyong,ZHANG Xueying,XU Jizhong. Evaluation analysis of different apple dwarfing stocks on drought resistance[J]. China Fruits,2019(6):38-41.

猜你喜歡
種質(zhì)資源蘋果
第一個(gè)大蘋果
云南德宏羊奶果資源收集和評(píng)價(jià)簡報(bào)
綠肥作物紫云英研究進(jìn)展
大白菜種質(zhì)資源抗根腫病基因CRa和CRb的分子標(biāo)記鑒定與分析
茄子種質(zhì)資源農(nóng)藝性狀遺傳多樣性分析
玉米種質(zhì)資源抗旱性鑒定研究進(jìn)展
收獲蘋果
拿蘋果
楊梅種質(zhì)資源遺傳多樣性研究進(jìn)展
會(huì)說話的蘋果