葉長(zhǎng)寧 徐夢(mèng)夢(mèng) 劉蘭蘭 付玉潔 葛曉霞
摘? ? 要:【目的】基于柑橘體細(xì)胞胚發(fā)生相關(guān)基因CsHB1的啟動(dòng)子篩選其上游轉(zhuǎn)錄因子,以期為柑橘體細(xì)胞胚發(fā)生分子機(jī)制研究提供可靠的候選基因。【方法】利用CsHB1啟動(dòng)子(-1018~-558 bp)進(jìn)行酵母單雜篩庫(kù)實(shí)驗(yàn),篩選出CsHB1上游轉(zhuǎn)錄因子CsAHL25;利用亞細(xì)胞定位實(shí)驗(yàn),確定CsAHL25在細(xì)胞中的位置;通過(guò)酵母單雜點(diǎn)對(duì)點(diǎn)、雙熒光素酶實(shí)驗(yàn)驗(yàn)證CsAHL25對(duì)CsHB1表達(dá)的影響;利用qRT-PCR探究CsAHL25基因在柑橘體細(xì)胞胚誘導(dǎo)過(guò)程中的表達(dá)模式;在柑橘愈傷組織中瞬時(shí)表達(dá)該基因,并檢測(cè)體細(xì)胞胚發(fā)生相關(guān)基因的表達(dá)變化?!窘Y(jié)果】CsAHL25在柑橘體細(xì)胞胚誘導(dǎo)過(guò)程中呈現(xiàn)先上升后下降的表達(dá)模式,該蛋白定位在細(xì)胞核中,能與CsHB1啟動(dòng)子結(jié)合并下調(diào)CsHB1的表達(dá)。瞬時(shí)表達(dá)CsAHL25會(huì)導(dǎo)致CsHB1表達(dá)量下調(diào),及CsABI3、CsFUS3、CsLEC1、CsL1L等促進(jìn)體細(xì)胞發(fā)生的LEC1/B3基因表達(dá)量上調(diào)?!窘Y(jié)論】CsAHL25能直接下調(diào)CsHB1的表達(dá),并使LEC1/B3基因表達(dá)量上升。CsAHL25可能通過(guò)調(diào)整CsHB1、LEC1/B3基因的表達(dá)促進(jìn)體細(xì)胞胚發(fā)生。
關(guān)鍵詞:柑橘:體細(xì)胞胚發(fā)生;HD-ZIP;AT-HOOK
中圖分類號(hào):S666 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)04-0579-11
CsAHL25 regulates citrus somatic embryogenesis by affecting the expression of CsHB1 and LEC1/B3 genes
YE Changning1, 3, XU Mengmeng1, 3, LIU Lanlan1, 3, FU Yujie1, 3, GE Xiaoxia2, 3*
(1College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China; 2Journal Center of Academy of Science and Technology Development, Huazhong Agricultural University, Wuhan 430070, Hubei, China; 3 Center of Applied Boitechnology, Wuhan Institute of Bioengineering, Wuhan 430415, Hubei, China)
Abstract: 【Objective】Somatic embryogenesis (SE) is widely used in the conservation and utilization of plant germplasm resources. However, there is significant variation in the somatic embryogenesis (SE) capacity of calls derived from different citrus varieties. Furthermore, their SE capacity gradually diminishes during culture, posing a significant hindrance to the conservation and utilization of citrus germplasm resources. CsHB1, an HD-ZIP II gene associated with enhancing SE, was isolated from a citrus variety exhibiting robust SE capabilities. In this study, we harnessed the promoter of CsHB1 (pCsHB1) to search for upstream transcription factors to provide reliable candidate genes for the study on plant somatic embryogenesis. 【Methods】 To identify the upstream transcription factors of CsHB1, we cloned pCsHB1 (-1018 to -558 bp) into pAbAi and utilized a yeast one-hybrid (Y1H) assay to obtain the candidate transcription factor CsAHL25 from a yeast library. Using SMART, candidate genes were analyzed for domains and named based on annotations in the Citrus Pangenome Breeding Database. The expression pattern of this gene was measured by qRT-PCR in various somatic embryo developmental stages of citrus, aiming to deduce the function of CsAHL25. The gene was cloned and inserted into pRI121, transferred into GV3101 and Marker mixed annotated Nicotiana benthamiana. After 2 d, the localization in the cells was observed using the laser scanning confocal microscopy. CsAHL25 was cloned and inserted into pGADT7 and transfected into Y1HGold with pCsHB1-AbAi for the Y1H assay. A Y1H assay was performed to determine whether the two were complementary or not based on the growth of the yeast cells in the screening medium. The gene was cloned and inserted into the overexpression vector pCMBAI1300-35S, and pCsHB1 (-2377-0 bp) was cloned and inserted into pGreenII 0800-LUC. The two vectors were then separately transferred into GV3101 and mixed to transiently transform N. benthamiana, with empty vector used as a control. After 2 d, the fluorescence of LUC was observed using an in vivo Plant Fluorescent Imaging System, and the LUC/REN ratio was calculated. This was followed by a comparison with the control to determine the role of this gene in the downstream gene regulation of pCsHB1. To explore the function of this gene, we transiently expressed the gene in the callus of Citrus sinensis ‘Next, and qRT-PCR was used to detect the expression of somatic embryogenesis-related genes. 【Results】 A candidate transcription factor, named CsAHL25, which is involved in the regulation of CsHB1 expression, was identified from the results of Y1H screening. Sequence analysis revealed that CsAHL25 possesses a typeⅠ AT-HOOK domain and a type A PPC domain and belongs to the AHL15-29 subfamily of AT-HOOK. Subcellular localization analysis demonstrated that, similar to other AHL transcription factors, CsAHL25 is a nucleus-localized transcription factor. CsAHL25 exhibited high expression levels at 60 d and 120 d of somatic cell embryo induction. The expression pattern of CsAHL25 suggested that this gene may play a role in SE. The Y1H results showed that yeast cells containing CsAHL25 and pCsHB1 were able to grow well in SD-Leu/ABA200, indicating that CsAHL25 was bound to pCsHB1. The results of plant fluorescent imaging indicated that 1300+pCsHB1-LUC exhibited higher LUC values than CsAHL25-1300+pCsHB1-LUC. The LUC/REN results were consistent with the Plant Fluorescent Imaging outcomes, with the strongest LUC-related activity observed in 1300+pCsHB1-LUC. These results showed that CsAHL25 was bound to the integral pCsHB1 and repressed its transcription. To further investigate the function of CsAHL25 during SE, we performed transient transfection of CsAHL25 in the callus of C. sinensis ‘Anliucheng, and then analyzed gene expression by using qRT-PCR. The results showed that the expression of CsHB1 was significantly downregulated, while the LEC1/B3 genes promoting somatic embryogenesis, such as CsLEC1, CsL1L, CsFUS3 and CsABI3, were significantly upregulated. 【Conclusion】 The results of this study indicated that CsAHL25 was an upstream transcription factor of CsHB1, which can inhibit CsHB1 expression, and transient expression of CsAHL25 can cause upregulation of the expression of LEC1/B3 genes. Based on the expression pattern of CsAHL25, we studied the functions of HD-ZIP, LEC1/B3 and AHL25 in relation to citrus somatic embryogenesis. Finally, we hypothesized that CsAHL25 regulated citrus somatic embryogenesis.
Key words: Citrus; Somatic embryogenesis; HD-ZIP; AT-HOOK
植物體細(xì)胞胚發(fā)生是植物體細(xì)胞形成胚胎的過(guò)程,其發(fā)育過(guò)程與合子胚相似,均會(huì)經(jīng)歷球形胚、魚雷形胚、子葉形胚等發(fā)育階段[1]。隨著體細(xì)胞胚誘導(dǎo)技術(shù)的發(fā)展,該技術(shù)已經(jīng)成為植物種質(zhì)資源保存與創(chuàng)制、重要經(jīng)濟(jì)植物大規(guī)模生產(chǎn)的重要技術(shù)手段之一[2]。柑橘是中國(guó)的重要經(jīng)濟(jì)作物,近年來(lái),柑橘的種質(zhì)資源發(fā)掘和遺傳改良研究為中國(guó)柑橘產(chǎn)業(yè)發(fā)展提供了有力支持[3]。隨著誘導(dǎo)出來(lái)的柑橘品種的胚性愈傷越來(lái)越多,利用體細(xì)胞進(jìn)行柑橘種質(zhì)資源的保存和育種已成為柑橘種質(zhì)資源利用的重要手段 [3-4]。然而不同柑橘品種的體細(xì)胞胚發(fā)生能力有著巨大的差異,部分品種至今無(wú)法獲得胚性愈傷[5],這對(duì)柑橘種質(zhì)資源保存和育種造成阻礙,因此研究柑橘體細(xì)胞胚發(fā)生機(jī)制有著重要的生物學(xué)意義和應(yīng)用價(jià)值。
在體細(xì)胞胚發(fā)生的過(guò)程中,轉(zhuǎn)錄因子可以通過(guò)影響信號(hào)轉(zhuǎn)導(dǎo)調(diào)控體細(xì)胞胚發(fā)生[6]。前期研究表明,LEC[7-9]、FUS[10-12]、ABI[13]、HD-ZIP[14-16]轉(zhuǎn)錄因子在擬南芥、龍眼、冷杉、柑橘、油棕、紫花苜蓿等多種植物體細(xì)胞胚發(fā)生過(guò)程中起重要作用。其中HD-ZIP轉(zhuǎn)錄因子是一類植物特有的轉(zhuǎn)錄因子,具有亮氨酸拉鏈(ZIP)和與之緊密結(jié)合的同源結(jié)構(gòu)域,根據(jù)HD-ZIP結(jié)構(gòu)域的同源性、蛋白結(jié)構(gòu)和功能可以將HD-ZIP轉(zhuǎn)錄因子分為4類,其中存在CPSCE結(jié)構(gòu)域的HD-ZIP蛋白被歸類于Ⅱ型HD-ZIP蛋白[17]。在植物胚胎發(fā)育的過(guò)程中,Ⅱ型HD-ZIP具有調(diào)控生長(zhǎng)素轉(zhuǎn)運(yùn)、維持分生組織、保持植物細(xì)胞全能性和控制子葉發(fā)育的功能[18- 19]。
AT-HOOK是一類能與DNA序列中富含AT序列區(qū)域結(jié)合的轉(zhuǎn)錄因子[20]。其蛋白包含AT-HOOK結(jié)構(gòu)域與PPC結(jié)構(gòu)域兩種保守結(jié)構(gòu),根據(jù)保守結(jié)構(gòu)域的數(shù)量和種類可以將AT-HOOK轉(zhuǎn)錄因子分為兩個(gè)亞家族,其中Ⅰ型AT-HOOK蛋白(AHL15-29)包含一個(gè)Ⅰ型AHL結(jié)構(gòu)域和一個(gè)A型PPC結(jié)構(gòu)域[21-22]。該亞家族成員AHL15、AHL19、AHL20是作用在植物胚胎發(fā)生早期的重要轉(zhuǎn)錄因子,Ⅰ型AT-HOOK基因的表達(dá)受生長(zhǎng)素和BBM轉(zhuǎn)錄因子的調(diào)控,且具有促進(jìn)植物體細(xì)胞胚發(fā)生的功能[23]。雖然前人研究已證實(shí)Ⅰ型AT-HOOK轉(zhuǎn)錄因子具有促進(jìn)植物胚胎發(fā)生的作用,然而Ⅰ型AT-HOOK轉(zhuǎn)錄因子調(diào)控體細(xì)胞發(fā)生的分子機(jī)制仍未被報(bào)道。
在對(duì)柑橘體細(xì)胞胚發(fā)生的研究中,前人分離并鑒定出促進(jìn)柑橘體細(xì)胞胚發(fā)生的Ⅱ型HD-ZIP轉(zhuǎn)錄因子CsHB1[24-25]。為了探索柑橘體細(xì)胞胚發(fā)生相關(guān)基因CsHB1的上游調(diào)控網(wǎng)絡(luò),筆者對(duì)調(diào)控CsHB1基因表達(dá)的轉(zhuǎn)錄因子進(jìn)行挖掘,發(fā)現(xiàn)一個(gè)屬于Ⅰ型AT-HOOK亞家族的基因CsAHL25,并對(duì)其功能進(jìn)行初步驗(yàn)證,完善AT-HOOK轉(zhuǎn)錄因子的調(diào)控網(wǎng)絡(luò),為柑橘體細(xì)胞胚發(fā)生研究提供潛在的候選基因,以期推進(jìn)柑橘體細(xì)胞胚發(fā)生的分子機(jī)制研究。
1 材料和方法
1.1 試驗(yàn)材料
MT培養(yǎng)基繼代保存的紐荷爾臍橙(Citrus sinensis ‘Newhall)、暗柳橙(C. sinensis ‘Anliucheng)胚性愈傷組織。
1.2 CsHB1啟動(dòng)子片段誘餌菌株AbA表達(dá)水平檢測(cè)
根據(jù)距CsHB1基因-1018~-558 bp的啟動(dòng)子片段序列和pAbAi載體序列設(shè)計(jì)引物(表1),使用Phanta Max聚合酶(諾唯贊,南京)從暗柳橙DNA中擴(kuò)增目的片段,使用ClonExpress? Ⅱ同源重組試劑盒(諾唯贊,南京)將目的片段克隆到pAbAi載體中,用BstBⅠ限制性內(nèi)切酶(新景,杭州)酶切后,使用酵母轉(zhuǎn)化試劑盒(酷來(lái)搏,北京)將載體轉(zhuǎn)入Y1H Gold酵母細(xì)胞中,獲得含有pCsHB1-AbAi的酵母細(xì)胞。使用0.9%的NaCl 溶液懸浮酵母細(xì)胞(OD600=0.002),取100 μL懸浮菌液分別涂在0、50、100 ng·mL-1 AbA的培養(yǎng)基上,30 ℃倒置培養(yǎng)2?3 d,篩選最適濃度作為酵母單雜篩庫(kù)和酵母單雜點(diǎn)對(duì)點(diǎn)實(shí)驗(yàn)的AbA濃度。
1.3 酵母單雜篩選CsHB1的上游轉(zhuǎn)錄因子
使用酵母轉(zhuǎn)化試劑盒(酷來(lái)搏,北京)將各體細(xì)胞胚誘導(dǎo)時(shí)期的暗柳橙愈傷組織cDNA混合文庫(kù)質(zhì)粒轉(zhuǎn)入含有pCsHB1-AbAi的Y1H Gold酵母細(xì)胞中,使用SD/-Leu/AbA200培養(yǎng)基篩選陽(yáng)性克隆,使用Taq酶(翌圣,上海)進(jìn)行陽(yáng)性克隆鑒定,將鑒定片段大小500?2000 bp的PCR產(chǎn)物進(jìn)行測(cè)序后,使用CPBD數(shù)據(jù)庫(kù)(Citrus Pan-genome to Breeding Database,http://citrus.hzau.edu.cn/)進(jìn)行比對(duì),分析候選蛋白。
1.4 CsAHL25結(jié)構(gòu)域分析
參考CPBD數(shù)據(jù)庫(kù)中甜橙二代基因組注釋數(shù)據(jù)和使用SMART(SMART:Main page)工具分析CsAHL25蛋白的氨基酸序列以確定其結(jié)構(gòu)域。
1.5 CsAHL25系統(tǒng)發(fā)育樹建立
使用NCBI(https://ncbi.nlm.nih.gov/gene)下載擬南芥(Arabidopsis thaliana)、水稻(Oryza sativa)的Ⅰ型AT-HOOK氨基酸序列。使用MEGA X軟件將擬南芥、水稻的AT-HOOK和CsAHL25的氨基酸序列進(jìn)行多序列比對(duì),利用鄰接法構(gòu)建進(jìn)化樹,Bootstrapping參數(shù)值設(shè)置為1000次,使用iTOL網(wǎng)站(https://itol.embl.de/)進(jìn)行數(shù)據(jù)可視化分析。
1.6 RNA的提取以及cDNA合成
收集甘油培養(yǎng)基(20 mL·L-1)誘導(dǎo)0 d(ALC 0 d)、60 d(ALC 60 d)、120 d(ALC 120 d)的暗柳橙愈傷組織,使用RN38 EASY spin plus植物RNA提取試劑盒(艾德萊,北京)提取組織RNA后,用RT SuperMix反轉(zhuǎn)錄試劑盒(諾唯贊,南京)合成cDNA。
1.7 實(shí)時(shí)熒光定量PCR分析
使用Primer Premier 5軟件設(shè)計(jì)CsAHL25基因的定量引物(表1),以Actin基因作為內(nèi)參基因。使用LC480實(shí)時(shí)熒光定量?jī)x器(Roched,美國(guó))和qPCR Master Mix試劑盒(諾唯贊,南京)進(jìn)行qRT-PCR試驗(yàn)。
1.8 CsAHL25亞細(xì)胞定位分析
根據(jù)CsAHL25 CDS序列和pRI121載體序列設(shè)計(jì)引物(表1),從暗柳橙胚性愈傷組織cDNA中擴(kuò)增序列,將去除終止密碼子的CsAHL25 CDS序列克隆到pRI121載體中,獲得pRI121-CsAHL25-GFP重組蛋白質(zhì)粒后轉(zhuǎn)入GV3101農(nóng)桿菌中。將含有pRI121-CsAHL25-GFP 農(nóng)桿菌液和核定位marker H2B-RFP菌液混合后注射煙草葉片,2 d后利用TCS SP8激光共聚焦顯微鏡(Leica,德國(guó))觀察熒光信號(hào)并拍照。
1.9 酵母單雜驗(yàn)證CsAHL25與CsHB1啟動(dòng)子互作
將CsAHL25 CDS序列克隆到pGADT7載體中(引物見表1),獲得獵物載體pGADT7- CsAHL25并轉(zhuǎn)入含有pCsHB1-AbAi的酵母細(xì)胞中。以空載獵物載體為陰性對(duì)照、pAbAi-P53+pGADT7-P53為陽(yáng)性對(duì)照,將獲得的陽(yáng)性菌株按照10-1梯度稀釋并分別接種在SD/-Leu、SD/-Leu/AbA200培養(yǎng)基上,通過(guò)觀察酵母的生長(zhǎng)狀態(tài)判斷CsAHL25轉(zhuǎn)錄因子和CsHB1啟動(dòng)子的互作情況。
1.10 LUC活體成像、雙熒光素酶驗(yàn)證CsAHL25對(duì)CsHB1啟動(dòng)子活性的影響
將CsHB1啟動(dòng)子(-2377~0 bp)克隆到pGreenⅡ 0800-LUC載體中(引物見表1),獲得報(bào)告子載體pGReenⅡ 0800-LUC-pCsHB1并轉(zhuǎn)入GV3101(pSoup)農(nóng)桿菌中,將CsAHL25 CDS序列克隆到pCAMBIA1300-35S載體中作效應(yīng)子(引物見表1),并轉(zhuǎn)入GV3103農(nóng)桿菌中。以報(bào)告子空載pGReen Ⅱ 0800-LUC、效應(yīng)子空載 pCAMBIA1300-35S作為對(duì)照,使用煙草瞬時(shí)注射將報(bào)告子、效應(yīng)子菌液按體積比1∶5混合后注射到煙草葉片中,2 d后使用熒光素鉀鹽試劑盒(翌圣,上海),通過(guò)NightSHADE LB 985植物活體成像系統(tǒng)(Berthold、德國(guó))觀察其LUC熒光強(qiáng)度并拍照,使用雙熒光素酶試劑盒(翌圣,上海),通過(guò)Infinite? 200多功能酶標(biāo)儀(TECAN,瑞士)檢測(cè)其雙熒光素酶活性,計(jì)算LUC/REN的比值,得到LUC的相對(duì)活性。通過(guò)LUC熒光強(qiáng)度和LUC/REN的相對(duì)比值判斷CsAHL25轉(zhuǎn)錄因子對(duì)CsHB1啟動(dòng)子活性的影響。
1.11 CsAHL25瞬時(shí)超量表達(dá)分析
參考張印[26]的方法使用農(nóng)桿菌介導(dǎo)法將pCAMBIA1300-35s-CsAHL25農(nóng)桿菌轉(zhuǎn)入紐荷爾臍橙的愈傷組織中,以轉(zhuǎn)pCAMBIA1300-35s載體的愈傷組織為空白對(duì)照,在含有AS的MT培養(yǎng)基上培養(yǎng)3 d后,提取愈傷組織的RNA進(jìn)行熒光定量試驗(yàn)(引物見表1)。
1.12 數(shù)據(jù)分析
利用GraphPad 8軟件、采用t-test進(jìn)行顯著性分析并作圖。
2 結(jié)果與分析
2.1 CsHB1上游轉(zhuǎn)錄因子的篩選
為了篩選調(diào)控CsHB1表達(dá)的轉(zhuǎn)錄因子,利用CsHB1啟動(dòng)子片段(-1018~-558 bp)作為誘餌進(jìn)行酵母單雜篩庫(kù)實(shí)驗(yàn)。酵母AbA本底表達(dá)水平檢測(cè)表明,在SD/-Ura/AbA100固體培養(yǎng)基上,含有pCsHB1-AbAi的Y1H Gold酵母細(xì)胞無(wú)法正常生長(zhǎng)(圖1),最終確定200 ng·mL-1作為酵母單雜篩庫(kù)的AbA質(zhì)量濃度值。酵母單雜篩庫(kù)結(jié)果表明,共獲得56個(gè)酵母克隆,使用PCR鑒定后得到39個(gè)插入片段大小在500~2000 bp之間,且條帶單一的cDNA片段。測(cè)序結(jié)果使用CPBD數(shù)據(jù)庫(kù)進(jìn)行Blastx比對(duì)分析,去除假陽(yáng)性克隆后,初步獲得21個(gè)可能與CsHB1啟動(dòng)子片段結(jié)合的蛋白(表2),包括含有AT-HOOK結(jié)構(gòu)域的核定位蛋白、含有RING指和CHY鋅指結(jié)構(gòu)的蛋白1、晚期胚胎發(fā)生豐富蛋白D-7等。
2.2 CsAHL25基因系統(tǒng)發(fā)育與表達(dá)模式分析
根據(jù)陽(yáng)性克隆出現(xiàn)次數(shù)和相關(guān)報(bào)道,選擇注釋為含有AT-HOOK結(jié)構(gòu)域的核定位蛋白Cs8g_pb000150進(jìn)行研究。Cs8g_pb000150基因CDS長(zhǎng)度為918 bp,編碼305個(gè)氨基酸,進(jìn)一步分析發(fā)現(xiàn)在其61~77 aa處存在一個(gè)Ⅰ型AHL結(jié)構(gòu)域、89~214 aa處存在一個(gè)A型PPC結(jié)構(gòu)域(圖2-A),其結(jié)構(gòu)域具有Ⅰ型AT-HOOK轉(zhuǎn)錄因子的特征。該蛋白與擬南芥、水稻Ⅰ型AT-HOOK轉(zhuǎn)錄因子進(jìn)化關(guān)系分析表明,該蛋白與AtAHL25、OsAHL25在同一個(gè)進(jìn)化支中(圖2-B)。根據(jù)CPBD數(shù)據(jù)庫(kù)注釋與進(jìn)化分析將該蛋白命名為CsAHL25。
qRT-PCR檢測(cè)CsAHL25基因在體細(xì)胞胚誘導(dǎo)過(guò)程中的表達(dá)模式,發(fā)現(xiàn)在暗柳橙愈傷生胚誘導(dǎo)過(guò)程中,CsAHL25的相對(duì)表達(dá)量隨著誘導(dǎo)時(shí)間的延長(zhǎng)呈先上升后下降的趨勢(shì)(圖2-C),其表達(dá)模式暗示CsAHL25基因可能在柑橘的體細(xì)胞誘導(dǎo)過(guò)程中發(fā)揮作用。
2.3 CsAHL25蛋白定位分析
為了檢測(cè)CsAHL25蛋白在細(xì)胞中的定位情況,在煙草葉片中瞬時(shí)表達(dá)CsAHL25-GFP熒光蛋白和H2B-RFP核marker蛋白,激光共聚焦觀察發(fā)現(xiàn)與空載對(duì)照組相比,CsAHL25-GFP熒光信號(hào)集中在細(xì)胞核中,并與核marker(H2B-RFP)熒光信號(hào)均重疊(圖3),結(jié)果表明CsAHL25蛋白定位于細(xì)胞核中,具有AT-HOOK轉(zhuǎn)錄因子的定位特征。
2.4 CsAHL25轉(zhuǎn)錄因子與CsHB1啟動(dòng)子互作分析
為了確認(rèn)CsAHL25轉(zhuǎn)錄因子與CsHB1啟動(dòng)子的結(jié)合,使用酵母單雜點(diǎn)對(duì)點(diǎn)實(shí)驗(yàn)對(duì)CsAHL25轉(zhuǎn)錄因子與pCsHB1啟動(dòng)子片段(-1018~-558 bp)的結(jié)合進(jìn)行驗(yàn)證,含有pGADT7-CsAHL25和pCsHB1-AbAi質(zhì)粒的酵母細(xì)胞和陽(yáng)性對(duì)照能在互作篩選培養(yǎng)基(SD/-Leu/AbA200)上正常生長(zhǎng),陰性對(duì)照無(wú)法正常生長(zhǎng)(圖4-A),結(jié)果表明在酵母細(xì)胞中,CsAHL25具有結(jié)合pCsHB1啟動(dòng)子片段的能力。
為了進(jìn)一步驗(yàn)證CsAHL25轉(zhuǎn)錄因子與pCsHB1啟動(dòng)子(-2377~0 bp)的互作,進(jìn)行植物活體成像實(shí)驗(yàn)和雙熒光素酶實(shí)驗(yàn),驗(yàn)證其互作關(guān)系。植物活體成像結(jié)果顯示,pCAMBIA1300-35S空載+pCsHB1-LUC組合的LUC熒光值顯著高于CsAHL25-1300+pCsHB1-LUC組合與陰性對(duì)照(圖4-B)。雙熒光素酶活性測(cè)定結(jié)果與植物活體成像結(jié)果相同,pCAMBIA1300-35S空載+pCsHB1-LUC組合的LUC相對(duì)活性顯著高于CsAHL25-1300+pCsHB1-LUC組合(圖4-C)。上述實(shí)驗(yàn)結(jié)果表明,CsAHL25轉(zhuǎn)錄因子能與pCsHB1啟動(dòng)子結(jié)合并抑制下游基因的表達(dá)。
2.5 CsAHL25瞬時(shí)表達(dá)愈傷系中體細(xì)胞胚發(fā)生相關(guān)基因表達(dá)分析
為了進(jìn)一步探索CsAHL25基因的功能,在紐荷爾臍橙的愈傷組織中瞬時(shí)表達(dá)CsAHL25。以轉(zhuǎn)pCAMBIA1300-35S空載的愈傷組織為對(duì)照,分析已報(bào)道的體細(xì)胞胚發(fā)生相關(guān)基因的表達(dá)量變化。結(jié)果表明,CsAHL25相對(duì)表達(dá)量均高于或極顯著高于對(duì)照組(圖5-A),且CsHB1表達(dá)量均極顯著低于對(duì)照組(圖5-B)。CsLEC1、CsL1L、CsFUS3、CsABI3等參與柑橘體細(xì)胞胚發(fā)生的LEC1/B3基因相對(duì)表達(dá)量相較對(duì)照組均顯著上升,且其表達(dá)量變化趨勢(shì)與CsAHL25基本一致(圖5-C~F)。以上結(jié)果表明,CsAHL25轉(zhuǎn)錄因子能下調(diào)CsHB1表達(dá),并影響LEC1/B3調(diào)控網(wǎng)絡(luò)相關(guān)基因表達(dá)。
3 討 論
筆者篩選并鑒定到一個(gè)直接調(diào)控柑橘體細(xì)胞發(fā)生相關(guān)基因CsHB1的Ⅰ型AT-HOOK轉(zhuǎn)錄因子CsAHL25。CsAHL25是經(jīng)過(guò)酵母單雜篩庫(kù)篩選得到的轉(zhuǎn)錄因子,是調(diào)控CsHB1表達(dá)的候選基因之一。經(jīng)過(guò)酵母單雜點(diǎn)對(duì)點(diǎn)和雙熒光素酶實(shí)驗(yàn)驗(yàn)證,發(fā)現(xiàn)CsAHL25可以直接與CsHB1啟動(dòng)子結(jié)合,進(jìn)而下調(diào)CsHB1的表達(dá)。前期研究發(fā)現(xiàn),Ⅰ型AT-HOOK轉(zhuǎn)錄因子具有調(diào)控植物體細(xì)胞胚胎發(fā)生的功能,通過(guò)過(guò)表達(dá)AHL15基因,可以誘導(dǎo)擬南芥幼苗直接形成體細(xì)胞胚胎,且ahl15 ahl19 amiRAHL20三重突變的擬南芥植株完全無(wú)法誘導(dǎo)出體細(xì)胞胚[22]。本研究中鑒定出的柑橘Ⅰ型AT-HOOK轉(zhuǎn)錄因子CsAHL25,具有和柑橘體細(xì)胞胚發(fā)生相關(guān)的表達(dá)模式,該轉(zhuǎn)錄因子能夠調(diào)控體細(xì)胞胚發(fā)生相關(guān)基因的表達(dá),從而影響柑橘體細(xì)胞胚發(fā)生,與已報(bào)道的擬南芥Ⅰ型AT-HOOK轉(zhuǎn)錄因子功能相似。Ⅰ型AT-HOOK轉(zhuǎn)錄因子能夠通過(guò)調(diào)控GA3OX1基因表達(dá)影響GA的合成[27]、通過(guò)調(diào)控PFI基因表達(dá)影響下胚軸的伸長(zhǎng)[28]、通過(guò)調(diào)控SPL基因表達(dá)影響植物的壽命[29]。目前Ⅰ型AT-HOOK轉(zhuǎn)錄因子促進(jìn)植物體細(xì)胞胚胎發(fā)生的分子機(jī)制尚未明確,且暫無(wú)研究表明Ⅰ型AT-HOOK轉(zhuǎn)錄因子調(diào)控Ⅱ型HD-ZIP基因表達(dá),本研究中初步證明,Ⅰ型AT-HOOK轉(zhuǎn)錄因子調(diào)控Ⅱ型HD-ZIP基因的表達(dá),完善了Ⅰ型AT-HOOK轉(zhuǎn)錄因子的下游調(diào)控網(wǎng)絡(luò)。
此外,筆者利用瞬時(shí)表達(dá)實(shí)驗(yàn)發(fā)現(xiàn),除了直接下調(diào)CsHB1基因的表達(dá)外,CsAHL25還影響了LEC1/B3基因的表達(dá)。瞬時(shí)表達(dá)CsAHL25基因會(huì)導(dǎo)致CsLEC1、CsL1L、CsFUS3、CsABI3基因的表達(dá)量上升,對(duì)體細(xì)胞胚發(fā)生相關(guān)基因呈現(xiàn)不同的調(diào)控方式。LEC1-FUS3-LEC2-ABI3基因共同構(gòu)成一個(gè)LEC1/B3結(jié)構(gòu)域調(diào)控網(wǎng)絡(luò),該網(wǎng)絡(luò)通過(guò)調(diào)控體細(xì)胞胚的形態(tài)構(gòu)成,進(jìn)而影響植物體細(xì)胞胚的發(fā)生[30-32]。前人通過(guò)分析柑橘體細(xì)胞胚發(fā)生過(guò)程中基因的表達(dá)模式,明確LEC1、LEC1 Like、FUS3、ABI3等LEC1/B3調(diào)控網(wǎng)絡(luò)基因在保持柑橘愈傷胚性、促進(jìn)其胚胎發(fā)育中起到了重要的作用[33-34]。進(jìn)一步研究發(fā)現(xiàn),在柑橘愈傷組織分化的過(guò)程中,CsFUS3基因相對(duì)表達(dá)量逐漸上升,超表達(dá)CsFUS3會(huì)引起愈傷細(xì)胞形態(tài)變化、激活體細(xì)胞胚發(fā)生[35]。過(guò)表達(dá)CsL1L基因也能夠使柑橘的營(yíng)養(yǎng)組織產(chǎn)生體細(xì)胞胚[36]。本研究表明,瞬時(shí)表達(dá)CsAHL25上調(diào)LEC1、L1L、FUS3、ABI3基因的表達(dá)量,說(shuō)明CsAHL25可能通過(guò)影響LEC1/B3表達(dá),調(diào)控體細(xì)胞胚發(fā)生的功能。LEC1/B3調(diào)控網(wǎng)絡(luò)基因能夠具有細(xì)胞發(fā)生形態(tài)轉(zhuǎn)變、調(diào)控體細(xì)胞胚形態(tài)構(gòu)建的作用[32,35],而Ⅱ型HD-ZIP基因作用在植物胚胎發(fā)生前期,具有維持植物胚胎中干細(xì)胞存在的功能[19,37],二者作用在植物胚胎發(fā)生過(guò)程中的不同方面,其相互關(guān)系尚不明確,有待深入研究。此外,研究發(fā)現(xiàn)CsFUS3基因可以下調(diào)細(xì)胞中GA的含量,導(dǎo)致ABA/GA比例上升,從而促進(jìn)柑橘體細(xì)胞胚發(fā)育[35],且AHL25基因也具有下調(diào)植物中GA含量的功能[27],CsAHL25是否可以通過(guò)影響柑橘體內(nèi)ABA/GA比例來(lái)促進(jìn)柑橘體細(xì)胞胚發(fā)生還需進(jìn)一步探討。
4 結(jié) 論
筆者通過(guò)酵母單雜點(diǎn)對(duì)點(diǎn)實(shí)驗(yàn)、雙熒光素酶實(shí)驗(yàn)等篩選到柑橘體細(xì)胞胚發(fā)生相關(guān)基因CsHB1的上游抑制因子CsAHL25,通過(guò)瞬時(shí)表達(dá)CsAHL25確認(rèn)其能夠下調(diào)CsHB1表達(dá)量并上調(diào)LEC1、LEC1 Like、FUS3、ABI3等LEC1/B3基因相對(duì)表達(dá)量。筆者認(rèn)為該基因具有激活柑橘體細(xì)胞胚發(fā)生的功能,為柑橘體細(xì)胞胚發(fā)生研究提供了一個(gè)潛在的候選基因。
參考文獻(xiàn) References:
[1] MORDHORST A P,TOONEN M A J,DE VRIES S C,MEINKE D. Plant embryogenesis[J]. Critical Reviews in Plant Sciences,1997,16(6):535-576.
[2] SIDDIQUI Z H,ABBAS Z K,ANSARI M W,KHAN M N. The role of miRNA in somatic embryogenesis[J]. Genomics,2019,111(5):1026-1033.
[3] 郭文武,葉俊麗,鄧秀新. 新中國(guó)果樹科學(xué)研究70年:柑橘[J]. 果樹學(xué)報(bào),2019,36(10):1264-1272.
GUO Wenwu,YE Junli,DENG Xiuxin. Fruit scientific research in New China in the past 70 years:Citrus[J]. Journal of Fruit Science,2019,36(10):1264-1272.
[4] 鄧秀新. 中國(guó)柑橘育種60年回顧與展望[J]. 園藝學(xué)報(bào),2022,49(10):2063-2074.
DENG Xiuxin. A review and perspective for citrus breeding in China during the last six decades[J]. Acta Horticulturae Sinica,2022,49(10):2063-2074.
[5] 劉丹. 柑橘優(yōu)異資源胚性愈傷組織誘導(dǎo)及體細(xì)胞雜種創(chuàng)制[D]. 武漢:華中農(nóng)業(yè)大學(xué),2019.
LIU Dan. Induction of nucellar embryogenic callus and generation of somatic hybrid by protoplast fusion in citrus[D]. Wuhan:Huazhong Agricultural University,2019.
[6] ELHITI M,STASOLLA C. Transduction of signals during somatic embryogenesis[J]. Plants,2022,11(2):178.
[7] 蔡英卿,賴鐘雄,陳義挺,林玉玲,李惠華,張妙霞. 龍眼胚性愈傷組織LEC1基因cDNA克隆以及在體胚發(fā)生過(guò)程中的表達(dá)分析[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,40(5):494-500.
CAI Yingqing,LAI Zhongxiong,CHEN Yiting,LIN Yuling,LI Huihua,ZHANG Miaoxia. Cloning of LEC1 gene from embryogenic callus and its expression analysis during somatic embryogenesis in longan[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2011,40(5):494-500.
[8] VETRICI M A,YEVTUSHENKO D P,MISRA S. Overexpression of douglas-fir LEAFY COTYLEDON1 (PmLEC1) in Arabidopsis induces embryonic programs and embryo-like structures in the lec1-1 mutant but not in wild type plants[J]. Plants,2021,10(8):1526.
[9] KIM H U,JUNG S J,LEE K R,KIM E H,LEE S M,ROH K H,KIM J B. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues[J]. FEBS Open Bio,2013,4:25-32.
[10] LEDWO? A,GAJ M D. LEAFY COTYLEDON1,F(xiàn)USCA3 expression and auxin treatment in relation to somatic embryogenesis induction in Arabidopsis[J]. Plant Growth Regulation,2011,65(1):157-167.
[11] WANG F F,PERRY S E. Identification of direct targets of FUSCA3,a key regulator of Arabidopsis seed development[J]. Plant Physiology,2013,161(3):1251-1264.
[12] LIU Z,GE X X,QIU W M,LONG J M,JIA H H,YANG W,DUTT M,WU X M,GUO W W. Overexpression of the CsFUS3 gene encoding a B3 transcription factor promotes somatic embryogenesis in Citrus[J]. Plant Science,2018,277:121-131.
[13] CHEN B J,F(xiàn)IERS M,DEKKERS B J W,MAAS L,VAN ESSE G W,ANGENENT G C,ZHAO Y,BOUTILIER K. ABA signalling promotes cell totipotency in the shoot apex of germinating embryos[J]. Journal of Experimental Botany,2021,72(18):6418-6436.
[14] KHIANCHAIKHAN K,AROONLUK S,VUTTIPONGCHAIKIJ S,JANTASURIYARAT C. Genome-wide identification of homeodomain leucine zipper (HD-ZIP) transcription factor,expression analysis,and protein interaction of HD-ZIP IV in oil palm somatic embryogenesis[J]. International Journal of Molecular Sciences,2023,24(5):5000.
[15] GE X X,LIU Z,WU X M,CHAI L J,GUO W W. Genome-wide identification,classification and analysis of HD-ZIP gene family in citrus,and its potential roles in somatic embryogenesis regulation[J]. Gene,2015,574(1):61-68.
[16] HU X,ZHANG C R,XIE H,HUANG X,CHEN Y F,HUANG X L. The expression of a new HD-Zip Ⅱ gene,MSHB1,involving the inhibitory effect of thidiazuron on somatic embryogenic competence in alfalfa (Medicago sativa L. cv. Jinnan) callus[J]. Acta Physiologiae Plantarum,2012,34(3):1067-1074.
[17] TRON A E,BERTONCINI C W,CHAN R L,GONZALEZ D H. Redox regulation of plant homeodomain transcription factors[J]. The Journal of Biological Chemistry,2002,277(38):34800-34807.
[18] TURCHI L,CARABELLI M,RUZZA V,POSSENTI M,SASSI M,PE?ALOSA A,SESSA G,SALVI S,F(xiàn)ORTE V,MORELLI G,RUBERTI I. Arabidopsis HD-Zip Ⅱ transcription factors control apical embryo development and meristem function[J]. Development,2013,140(10):2118-2129.
[19] ROODBARKELARI F,GROOT E P. Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins during embryogenesis[J]. The New Phytologist,2017,213(1):95-104.
[20] PRAVEEN S,PAWAR V,AHLAWAT Y S. Somatic embryogenesis and plant regeneration in Kinnow mandarin[J]. Journal of Plant Biochemistry and Biotechnology,2003,12(2):163-165.
[21] ARAVIND L,LANDSMAN D. AT-hook motifs identified in a wide variety of DNA-binding proteins[J]. Nucleic Acids Research,1998,26(19):4413-4421.
[22] ZHAO J F,F(xiàn)AVERO D S,PENG H,NEFF M M. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(48):E4688-E4697.
[23] KARAMI O,RAHIMI A,MAK P,HORSTMAN A,BOUTILIER K,COMPIER M,VAN DER ZAAL B,OFFRINGA R. An Arabidopsis AT-hook motif nuclear protein mediates somatic embryogenesis and coinciding genome duplication[J]. Nature Communications,2021,12:2508.
[24] 謝幸男,賴曉娜,戰(zhàn)爽,程來(lái)超,許全全,葛曉霞. 柑橘體細(xì)胞胚發(fā)生基因CsHB1特異肽段多克隆抗體的制備及其蛋白動(dòng)態(tài)檢測(cè)[J]. 果樹學(xué)報(bào),2017,34(9):1069-1075.
XIE Xingnan,LAI Xiaona,ZHAN Shuang,CHENG Laichao,XU Quanquan,GE Xiaoxia. Preparation of CsHB1 polyclonal antibody and its protein dynamic changes during somatic embryogenesis in Citrus[J]. Journal of Fruit Science,2017,34(9):1069-1075.
[25] 劉娉婷. 基于柑橘?gòu)?qiáng)胚性材料開展CsHB1促體細(xì)胞胚發(fā)生方式的研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2022.
LIU Pingting. Study the CsHB1 promotion of somatic embryogenesis uasing citrus strong embryogenic materials[D]. Wuhan:Huazhong Agricultural University,2022.
[26] 張印. 柑橘原花青素積累及ABA代謝的調(diào)控機(jī)制研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2021.
ZHANG Yin. Research on the regulation mechanism of proanthocyanidin accumulation and ABA metabolism in citrus[D]. Wuhan:Huazhong Agricultural University,2021.
[27] MATSUSHITA A,F(xiàn)URUMOTO T,ISHIDA S,TAKAHASHI Y. AGF1,an AT-hook protein,is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase[J]. Plant Physiology,2007,143(3):1152-1162.
[28] XIAO C W,CHEN F L,YU X H,LIN C T,F(xiàn)U Y F. Over-expression of an AT-hook gene,AHL22,delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana[J]. Plant Molecular Biology,2009,71(1):39-50.
[29] RAHIMI A,KARAMI O,BALAZADEH S,OFFRINGA R. miR156-independent repression of the ageing pathway by longevity-promoting AHL proteins in Arabidopsis[J]. The New Phytologist,2022,235(6):2424-2438.
[30] HORSTMAN A,LI M F,HEIDMANN I,WEEMEN M,CHEN B J,MUINO J M,ANGENENT G C,BOUTILIER K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis[J]. Plant Physiology,2017,175(2):848-857.
[31] LOTAN T,OHTO M A,YEE K M,WEST M A L,LO R,KWONG R W,YAMAGISHI K,F(xiàn)ISCHER R L,GOLDBERG R B,HARADA J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells[J]. Cell,1998,93(7):1195-1205.
[32] KWONG R W,BUI A Q,LEE H,KWONG L W,F(xiàn)ISCHER R L,GOLDBERG R B,HARADA J J. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development[J]. The Plant Cell,2003,15(1):5-18.
[33] GE X X,CHAI L J,LIU Z,WU X M,DENG X X,GUO W W. Transcriptional profiling of genes involved in embryogenic,non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray[J]. Planta,2012,236(4):1107-1124.
[34] 繆星辰. 椪柑體細(xì)胞胚胎發(fā)生關(guān)鍵基因的挖掘與鑒定[D]. 揚(yáng)州:揚(yáng)州大學(xué),2023.
MIAO Xingchen. Mining and identification of key genes involved in somatic embryogenesis in ponkan[D]. Yangzhou:Yangzhou University,2023.
[35] 劉政. 柑橘珠心胚起始轉(zhuǎn)錄組分析及體細(xì)胞胚發(fā)生相關(guān)基因CsFUS3功能鑒定[D]. 武漢:華中農(nóng)業(yè)大學(xué),2015.
LIU Zheng. Transcriptional analysis of citrus nucellar embryo initiation and functional characterization of CsFUS3 gene preferentially expressed during somatic embryogenesis[D]. Wuhan:Huazhong Agricultural University,2015.
[36] ZHU S P,WANG J,YE J L,ZHU A D,GUO W W,DENG X X. Isolation and characterization of LEAFY COTYLEDON 1-LIKE gene related to embryogenic competence in Citrus sinensis[J]. Plant Cell,Tissue and Organ Culture,2014,119(1):1-13.
[37] TURCHI L,BAIMA S,MORELLI G,RUBERTI I. Interplay of HD-Zip Ⅱ and Ⅲ transcription factors in auxin-regulated plant development[J]. Journal of Experimental Botany,2015,66(16):5043-5053.