許園園 譚世水 張玲 段少偉 郭玲霞 周鐵 李菲菲 韓健 李先信 王聰田 陳鵬
摘? ? 要:【目的】探究錦紅冰糖橙大果芽變的形成原因。【方法】以錦紅和大果芽變?yōu)樵嚥?,采用石蠟切片、HPLC-MS/MS和轉(zhuǎn)錄組測(cè)序技術(shù)對(duì)其在細(xì)胞形態(tài)、激素含量和基因表達(dá)方面進(jìn)行比較分析。【結(jié)果】與錦紅相比,大果芽變果肉內(nèi)汁胞數(shù)量增多,且汁胞變大。石蠟切片結(jié)果表明,大果芽變汁胞內(nèi)細(xì)胞數(shù)量多于錦紅。大果芽變內(nèi)生長(zhǎng)素和赤霉素含量在花后70和120 d均高于錦紅,玉米素含量在花后70、120和170 d均低于錦紅。對(duì)盛花后70、120和170 d的汁胞進(jìn)行轉(zhuǎn)錄組分析得到4597個(gè)差異基因,其中24個(gè)激素信號(hào)相關(guān)基因在兩個(gè)及以上時(shí)期差異表達(dá)。在大果芽變中有4個(gè)生長(zhǎng)素相關(guān)基因在花后70 d上調(diào)表達(dá)。細(xì)胞分裂素相關(guān)基因ARR2在大果芽變花后70和120 d均下調(diào)表達(dá)。細(xì)胞周期蛋白CycD3在大果芽變花后170 d上調(diào)表達(dá)?!窘Y(jié)論】錦紅冰糖橙大果芽變的變異可能與汁胞發(fā)育有關(guān),并且受激素水平影響。轉(zhuǎn)錄組分析為解析錦紅冰糖橙大果芽變的分子機(jī)制奠定了基礎(chǔ)。
關(guān)鍵詞:柑橘;芽變;果實(shí)大??;石蠟切片;激素
中圖分類號(hào):S666 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)04-0611-14
Anatomical structure, hormone change, and transcriptome analysis of the large-fruit mutant of Jinhong Bingtang Orange
XU Yuanyuan1, 3, TAN Shishui2#, ZHANG Ling2, DUAN Shaowei2, GUO Lingxia1, 3, ZHOU Tie1, 3, LI Fei-
fei1, 3, HAN Jian1, 3, LI Xianxin1, WANG Congtian1, 3, CHEN Peng1, 3*
(1Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences/Scientific Observation and Experiment Station of Fruit Trees in Central China, Ministry of Agriculture and Rural Affairs, Changsha 410125, Hunan, China; 2Citrus Industrialization Office of Mayang County, Mayang 419400, Hunan, China; 3Yuelu Mountain Laboratory, Changsha 410125, Hunan, China)
Abstract: 【Objective】 Fruit size is a major agronomic trait for evaluating fruit appearance quality. Therefore, it is important to analyze the molecular mechanism of fruit size for high-quality citrus breeding. Bud sport is one of the sources of fruit size mutation. A large-fruit mutant of Jinhong was found previously. In this research, we explored the mechanism of the mutation in order to provide target genes for citrus molecular design breeding. 【Methods】 Jinhong Bingtang orange and its large-fruit mutant as experimental material were sampled at 30, 50, 70, 90, 120, 150, 170, 190 and 250 days after bloom (DAB). Juice sacs at 70, 120 and 170 d were collected for RNA-seq. Young leaves of large-fruit mutant were collected for ploidy testing. Volume of juice sacs was determined using water replacement method. Paraffin section was used for cytological observation of juice sacs. The plant hormones were determined by liquid chromatography-mass spectrometry. Transcriptome analysis were performed on the above samples. Differentially expressed genes (DEGs) between the wild type and the mutant at same developmental stage were screened on the standard of FDR<0.05. Common DEGs of those three developmental stages were obtained using Venn analysis. GO and KEGG enrichments were mapped using TBtools, and GO and KEGG were used to analyze the DEGs between Jinhong and its large-fruit mutant. Genes related to plant hormones were shown with the heat maps, which were drawn based on FPKM of the DEGs. 【Results】 Flow cytometry analysis showed that the large-fruit mutant was a diploid. Jinhong and large-fruit mutant had the same number (11) of carpels. Compared with Jinhong, the number of juice sacs of the large-fruit mutant increased, and volume of juice sacs enlarged. Results of paraffin section showed that the cell number of the large-fruit mutant was larger than that of Jinhong. IAA content of the mutant was always higher than that of Jinhong at 70 and 120 DAB, but it was lower at 170 DAB. The GA3 content in the large-fruit mutant was always greater. ZT content was low, and the ZT content of the large-fruit mutant was always lower than that of Jinhong at the three developmental stages. Except at 70 DAB, JA content of the large-fruit mutant was lower than that of Jinhong. At 70 DAB, there were 3118 DEGs between the two materials, including 1549 up-regulated and 1569 down-regulated genes, which were enriched in plant hormone signal transduction, MAPK signaling pathway, plant-pathogen, etc. At 120 DAB, there were 1952 DEGs, with 377 up-regulated and 1575 down-regulated, which were enriched in photosynthesis - antenna proteins, plant-pathogen interaction and MAPK signaling pathway, etc. At 170 DAB, there were 611 DEGs, with 372 up-regulated and 239 down-regulated, enriched in photosynthesis - antenna proteins, phenylpropanoid biosynthesis, etc. Besides, 88 DEGs were identified in the three stages and KEGG analysis showed that the top five most significantly enriched pathway were fatty acid elongation, photosynthesis-antenna proteins, cutin, suberine and wax biosynthesis, phenylpropanoid biosynthesis and plant hormone signal transduction. Furthermore, DEGs encoding hormone signaling were further analyzed. 24 DEGs were found at least two periods, including 4 genes related to ABA, 6 related to IAA, 3 related to BR, 2 related to CTK, and other hormone-related genes. Among them, GH3.6 was up-regulated in the large-fruit mutant at 70 and 120 DAB. IAA27 was up-regulated in the large-fruit mutant at 120 and 170 DAB, and the difference gradually increased. GH3.1, SAUR36 and auxin-induced protein 22D were up-regulated in the large-fruit mutant at 70 DAB. ARR2, TIFY10A and TGA9 were down-regulated in large-fruit mutant at 70 and 120 DAB, and was up-regulated at 170 DAB. 【Conclusion】 the development of juice sacs was possibly the cause of large-fruit phenotype in the mutant, and hormone levels may influence fruit size. The transcriptome analysis provided a relatively complete molecular platform for future studies on the difference of citrus fruit size.
Key words: Citrus; Bud sport; Fruit size; Paraffin section; Hormone
果實(shí)大小是一種外觀品質(zhì),也是判定果實(shí)品級(jí)的重要農(nóng)藝性狀,直接影響果實(shí)的經(jīng)濟(jì)價(jià)值[1]。果實(shí)大小受自身遺傳背景、栽培條件和植物激素等因素的影響。生產(chǎn)上常采用環(huán)剝、疏花疏果等措施來增大果實(shí)[2-4],或者通過噴施生長(zhǎng)調(diào)節(jié)劑來達(dá)到疏花疏果的目的,激素調(diào)節(jié)劑還能配合環(huán)剝技術(shù)來改變果實(shí)大小[4-6]。此外,植物激素調(diào)節(jié)劑還能單獨(dú)用于果實(shí)發(fā)育早期來促進(jìn)果實(shí)膨大,如生長(zhǎng)素[7-11]、細(xì)胞分裂素[12-14]。
果實(shí)大小是受多個(gè)基因調(diào)控的數(shù)量性狀。研究表明,果實(shí)大小涉及多種植物激素的調(diào)控,尤其是生長(zhǎng)素和細(xì)胞分裂素。Su等[15]發(fā)現(xiàn),沉默SlIAA17后得到的果實(shí)變大,與野生型相比,沉默系番茄果皮內(nèi)細(xì)胞數(shù)量增多、果皮厚度增加。Peng等[16]的研究表明,EjSAUR22-TRV2植株果實(shí)變小,石蠟切片結(jié)果顯示EjSAUR22-TRV2果肉細(xì)胞變小。目前,生長(zhǎng)素調(diào)控果實(shí)大小的信號(hào)通路已有少量報(bào)道。Zhao等[17]研究認(rèn)為CsFUL1A通過結(jié)合PIN1和PIN7啟動(dòng)子來抑制他們的轉(zhuǎn)錄水平,使黃瓜果實(shí)內(nèi)生長(zhǎng)素的積累量減少,黃瓜變短。Zhang等[18]的研究表明,CsMYB77結(jié)合在PIN5啟動(dòng)子上并上調(diào)其表達(dá),通過降低游離IAA的含量來參與調(diào)控柑橘果實(shí)大小。細(xì)胞分裂素促進(jìn)細(xì)胞分裂,在果實(shí)發(fā)育早期起重要作用。細(xì)胞色素氧化酶(cytokinin oxidase,CKX)是細(xì)胞分裂素代謝通路上的關(guān)鍵酶。Gan等[19]研究表明,與野生型相比,AtCKX2超表達(dá)植株的番茄果實(shí)變小。除生長(zhǎng)素和細(xì)胞分裂素外,其他激素如赤霉素[20]、油菜素內(nèi)酯[21]均參與果實(shí)大小發(fā)育過程。這些激素相關(guān)基因多通過影響細(xì)胞數(shù)量和細(xì)胞大小來改變果實(shí)大小。
柑橘屬于蕓香科柑橘屬,在中國(guó)已有4000多年的栽培歷史,是中國(guó)南方種植面積最大、產(chǎn)量最高的經(jīng)濟(jì)果樹。柑橘銷售價(jià)格一方面受自身品種影響,另一方面也受果實(shí)大小調(diào)控。栽培管理技術(shù)的優(yōu)化是目前提升柑橘優(yōu)果率的主要措施,但存在著生產(chǎn)成本高、不受控因素多等問題。轉(zhuǎn)錄組測(cè)序技術(shù)在植物性狀控制基因挖掘方面具有重要作用[22-23]。筆者課題組前期發(fā)現(xiàn)錦紅冰糖橙的芽變材料,該芽變成熟果實(shí)的大小約是錦紅冰糖橙的1.5倍。筆者以錦紅冰糖橙大果芽變?yōu)椴牧希ㄟ^石蠟切片技術(shù)、植物激素含量測(cè)定和轉(zhuǎn)錄組測(cè)序來解釋大果芽變的形成機(jī)制,并篩選出冰糖橙果實(shí)大小相關(guān)基因,為柑橘果實(shí)大小分子設(shè)計(jì)育種提供理論基礎(chǔ)。
1 材料和方法
1.1 試驗(yàn)材料
供試材料是錦紅[C. sinensis (L.) Osbeck ‘Jinhong]及其大果芽變。每個(gè)材料各挑選3株樹齡一致、長(zhǎng)勢(shì)健壯的樣本樹。在盛花后30、50、70、90、120、150、170、190和250 d取樣。每次取樣均從樹冠中上部外圍隨機(jī)采摘10個(gè)果實(shí)。采集大果芽變的幼嫩葉片進(jìn)行染色體倍性檢測(cè)。并將盛花后70、120和170 d汁胞保存在-80 ℃冰箱中,以備植物激素測(cè)定和轉(zhuǎn)錄組測(cè)序。
1.2 果實(shí)質(zhì)量、囊瓣數(shù)、汁胞數(shù)及其體積測(cè)定
用分析天平測(cè)定錦紅和大果芽變成熟期的果實(shí)質(zhì)量。用游標(biāo)卡尺測(cè)量錦紅和大果芽變果實(shí)發(fā)育過程的果肉橫徑,并統(tǒng)計(jì)果實(shí)內(nèi)囊瓣數(shù)目和囊瓣內(nèi)汁胞數(shù)量。采用浸水法估算單個(gè)汁胞體積,即向容器中加入水,此時(shí)體積記為V1,再將已知數(shù)量(S)的汁胞放入容器內(nèi),并記下體積V2,則單個(gè)汁胞體積的計(jì)算方式是V汁胞=(V2-V1)/S。
1.3 汁胞組織切片
對(duì)錦紅和大果芽變成熟期的汁胞進(jìn)行石蠟切片。用FAA固定液固定囊瓣中部的汁胞后,依次在70%、80%、90%和100%乙醇溶液中脫水,每次10 min,再用二甲苯清洗1 h后包埋在石蠟中。使用Lei-ca RM2265切片機(jī)獲取薄切片。依次將切片放入環(huán)保型脫蠟液Ⅰ、Ⅱ中,各20 min。用無水乙醇Ⅰ、無水乙醇Ⅱ和75%乙醇依次清洗5 min后用蒸餾水清洗。將清洗好的切片依次放入番紅、固綠染色液中,并用95%乙醇清洗,經(jīng)脫水、透明、封片后進(jìn)行圖像采集。
1.4 植物激素測(cè)定
用液氮將樣品研磨成粉末,稱取1 g粉末放入10 mL乙腈溶液中,并加入8 μL內(nèi)標(biāo)母液,然后在4 ℃條件下提取過夜。4 ℃,12 000 r·min-1離心5 min,抽取上清液,隨后在沉淀中再次加入5 mL乙腈溶液,并過夜提取,2次重復(fù)后合并3次所得上清液。在上清液中加入適量C18和GCB凈化其中雜質(zhì)。4 ℃,12 000 r·min-1離心5 min,抽取上清液,并用氮?dú)獯蹈?,?00 μL甲醇復(fù)溶,過0.22 μm有機(jī)相濾膜,上機(jī)檢測(cè)。標(biāo)準(zhǔn)品為D-IAA、D-JA、D-GA4、D-Zeatin(Sigma)。使用終質(zhì)量濃度為0.1、0.2、0.5、2、5、20、50、200 ng·mL-1繪制標(biāo)準(zhǔn)曲線。
1.5 轉(zhuǎn)錄組測(cè)序和差異基因鑒定
利用Trizol方法提取錦紅冰糖橙和大果芽變汁胞的基因組總RNA。使用Nanodrop 2000檢測(cè)RNA的濃度和純度來評(píng)估RNA質(zhì)量,合格后進(jìn)行文庫(kù)構(gòu)建。用Oligo(dT)的磁珠富集有polyA尾巴的mRNA,用打斷buffer把獲得的RNA片段化后,再用隨機(jī)的N6引物進(jìn)行反轉(zhuǎn)錄,合成cDNA二鏈形成雙鏈DNA,把合成的雙鏈DNA末端補(bǔ)平并5端磷酸化,3端形成突出一個(gè)個(gè)“A”的黏末端,再連接一個(gè)3端有凸出“T”的鼓泡狀的接頭,連接產(chǎn)物通過特異的引物進(jìn)行PCR擴(kuò)增,PCR產(chǎn)物熱變性成單鏈,再用一段橋式引物將單鏈DNA環(huán)化,得到單鏈環(huán)狀DNA文庫(kù)。文庫(kù)檢測(cè)合格后,使用MGI高通量測(cè)序儀進(jìn)行測(cè)序。
對(duì)各樣本raw reads進(jìn)行過濾,得到clean reads,與甜橙參考基因組(http://citrus.hzau.edu.cn/download.php Citrus sinensis v3.0)比對(duì)。利用RSEM,調(diào)用bowtie2的比對(duì)結(jié)果進(jìn)行統(tǒng)計(jì),得到每個(gè)樣品比對(duì)到每個(gè)轉(zhuǎn)錄本上的reads數(shù)目,并將其換算為FPKM(Fragments Per Kilobase per Million bases),每個(gè)基因或轉(zhuǎn)錄本的表達(dá)水平用FPKM值來表示。以|log2(FoldChange)|>1 & FDR<0.05為篩選閾值獲得差異基因。使用Blast2GO程序和KOBAS軟件進(jìn)行GO和KEGG富集分析,使用維恩圖獲得不同發(fā)育時(shí)期共有的差異基因,使用GraphPad Prism 8軟件繪制表達(dá)熱圖。
1.6 數(shù)據(jù)分析
采用Microsoft Excel 2019軟件完成數(shù)據(jù)處理和繪圖,采用SPSS軟件進(jìn)行差異顯著性分析。
2 結(jié)果與分析
2.1 大果芽變的倍性鑒定
染色體數(shù)目加倍會(huì)引起果實(shí)變大。如圖1所示,流式細(xì)胞儀結(jié)果表明,該大果芽變是二倍體,同錦紅的倍性相同。說明大果型不是由染色體加倍造成的。
2.2 大果芽變的果實(shí)發(fā)育
如圖2所示,錦紅和大果芽變的果實(shí)逐漸增大。與錦紅相比,自盛花后70 d(70 DAB),大果芽變的果實(shí)更大、果肉更厚。為探究大果芽變果肉增厚的原因,統(tǒng)計(jì)并測(cè)量錦紅和大果芽變120 DAB、170 DAB和250 DAB時(shí)的囊瓣數(shù)量、汁胞數(shù)量和體積。結(jié)果表明,同一時(shí)期錦紅和大果芽變之間的囊瓣和汁胞數(shù)目沒有顯著差異,但大果芽變果實(shí)內(nèi)汁胞數(shù)目都略高于錦紅果實(shí)內(nèi)的汁胞數(shù)目,并且汁胞體積顯著大于錦紅的汁胞體積(表1)。石蠟切片的結(jié)果表明,大果芽變汁胞內(nèi)細(xì)胞數(shù)量多于錦紅(圖3)。
2.3 錦紅及其大果芽變汁胞內(nèi)源激素含量分析
對(duì)錦紅和大果芽變70 DAB、120 DAB和170 DAB的汁胞進(jìn)行內(nèi)源激素測(cè)定。結(jié)果如圖4所示,在70 DAB和120 DAB,大果芽變中IAA含量顯著高于錦紅,而在臨近轉(zhuǎn)色期的170 DAB,兩者IAA含量均下降,且大果芽變中IAA含量下降幅度高于錦紅(圖4-A)。在70 DAB、120 DAB 和170 DAB,錦紅和大果芽變中GA3含量均逐步下降,且大果芽變中GA3含量始終高于錦紅(圖4-B);兩者ZT含量(ρ)較低,不足0.5 ng·mL-1,在70 DAB、120 DAB和170 DAB,大果芽變中ZT含量都顯著低于錦紅(圖4-C);在70 DAB,大果芽變中JA含量顯著高于錦紅,隨后兩者JA含量均下降,到170 DAB,大果芽變中JA含量顯著低于錦紅(圖4-D)。綜上所述,大果芽變和錦紅之間汁胞發(fā)育差異是受多激素調(diào)控的,而且生長(zhǎng)素和赤霉素可能是引起兩者汁胞發(fā)育不同的關(guān)鍵激素。
2.4 錦紅及其大果芽變盛花后170 d內(nèi)汁胞轉(zhuǎn)錄組測(cè)序質(zhì)量評(píng)估
為了進(jìn)一步探究大果芽變形成的分子機(jī)制,對(duì)錦紅和大果芽變盛花后3個(gè)時(shí)間點(diǎn)的汁胞進(jìn)行轉(zhuǎn)錄組測(cè)序。錦紅記為WT,大果芽變記為MT。從表2可以看出,18個(gè)樣品的原始數(shù)據(jù)經(jīng)過嚴(yán)格的質(zhì)量過濾后共得到201.74×106個(gè)clean_reads,各樣品的Q20含量都高于97%,Q30含量高于91.5%,GC含量高于44%,說明測(cè)序結(jié)果真實(shí)可信。
2.5 差異基因分析
對(duì)WT與MT(WT vs MT)同一階段的差異表達(dá)基因(DEGs)(|log2(Fold Change)|>1,F(xiàn)DR<0.05)進(jìn)行統(tǒng)計(jì)。DEGs數(shù)量隨著汁胞發(fā)育而減少,其中70 DAB時(shí)的DEGs最多,有1549個(gè)上調(diào)基因,1569個(gè)下調(diào)基因;170 DAB時(shí)的DEGs最少,有372個(gè)上調(diào)基因,239個(gè)下調(diào)基因(圖5-A)。維恩圖結(jié)果表明,70 DAB、120 DAB和170 DAB三個(gè)時(shí)間點(diǎn)存在88個(gè)DEGs重疊(圖5-B)。
2.6 差異基因注釋
通常情況下,不同時(shí)期共有的差異基因可能為關(guān)鍵基因。對(duì)70 DAB、120 DAB和170 DAB的88個(gè)共有差異基因進(jìn)行GO和KEGG分析。GO注釋結(jié)果表明,差異基因參與的生物學(xué)過程為細(xì)胞和代謝過程,分子功能體現(xiàn)在結(jié)合和催化活性方面(圖6-A)。參與的KEGG通路是脂肪酸延長(zhǎng)、光合作用-天線蛋白、角質(zhì)、木栓質(zhì)和蠟質(zhì)生物合成、苯丙烷代謝和植物激素信號(hào)傳導(dǎo)(圖6-B)。
分別對(duì)同一階段下的DEGs進(jìn)行GO和KEGG分析。GO富集結(jié)果表明,在70 DAB、120 DAB和170 DAB,DEGs參與的生物學(xué)過程都是細(xì)胞和代謝過程,參與的細(xì)胞組分都是細(xì)胞解剖實(shí)體,參與的分子功能多集中在結(jié)合和催化活性兩方面(圖7-A~C)。KEGG分析結(jié)果表明,在70 DAB,DEGs主要富集在植物激素信號(hào)傳導(dǎo)、MAPK信號(hào)通路、植物-病原菌互作、色氨酸代謝以及苯丙烷代謝(圖7-D);在120 DAB,DEGs主要富集在光合作用-天線蛋白、植物-病原菌互作、MAPK信號(hào)通路、植物激素信號(hào)傳導(dǎo)、光合作用的碳固定和苯丙烷代謝(圖7-E);在170 DAB,DEGs主要富集在光合作用-天線蛋白、苯丙烷代謝、角質(zhì)、木栓質(zhì)和蠟質(zhì)生物合成、類黃酮生物合成和MAPK信號(hào)通路上(圖7-F)。三個(gè)時(shí)期的差異基因都富集到植物激素信號(hào)傳導(dǎo)、MAPK信號(hào)通路、苯丙烷代謝、光合作用-天線蛋白通路上,但富集到信號(hào)通路上的基因和顯著性存在差異。
2.7 植物激素信號(hào)傳導(dǎo)基因的表達(dá)分析
激素分析結(jié)果表明,植物激素影響汁胞發(fā)育(圖4)。KEGG分析結(jié)果表明,在70 DAB、120 DAB和170 DAB,分別有61、38和12個(gè)DEGs富集到植物激素信號(hào)傳導(dǎo)途徑上。24個(gè)DEGs在兩個(gè)及以上時(shí)期差異表達(dá),包括19個(gè)已知功能的DEGs和5個(gè)未知功能的DEGs。筆者對(duì)19個(gè)DEGs進(jìn)行熱圖分析,結(jié)果表明,它們分布在生長(zhǎng)素(IAA)、脫落酸(ABA)、細(xì)胞分裂素(CTK)、油菜素內(nèi)酯(BR)等7種激素途徑上。
如圖8所示,在脫落酸信號(hào)中,蛋白磷酸酶基因PP2C56、PP2C24和PP2C8的表達(dá)模式相同,在70 DAB和120 DAB時(shí)上調(diào)表達(dá);脫落酸受體PYL2在70 DAB和170 DAB上調(diào)表達(dá)。在生長(zhǎng)素信號(hào)中,GH3.6、GH3.1和SAUR36及IAA27在生長(zhǎng)素生物合成途徑上起重要作用。其中,GH3.6在大果芽變果實(shí)發(fā)育早期上調(diào)表達(dá);IAA27在大果芽變果實(shí)發(fā)育過程中上調(diào)表達(dá),且呈上升趨勢(shì);SAUR36和GH3.1在70 DAB時(shí)上調(diào)表達(dá)。生長(zhǎng)素促進(jìn)蛋白6B和22D的表達(dá)模式不同,生長(zhǎng)素促進(jìn)蛋白6B在120 DAB上調(diào)表達(dá),而生長(zhǎng)素促進(jìn)蛋白22D在70 DAB上調(diào)表達(dá)。細(xì)胞分裂素信號(hào)上的差異基因是雙組分響應(yīng)調(diào)節(jié)基因ARR2和ARR5。這2個(gè)基因在70 DAB時(shí)的表達(dá)趨勢(shì)相反,但在120 DAB時(shí)均下調(diào)表達(dá);茉莉酸信號(hào)上的基因TIFY10A和水楊酸信號(hào)上的基因TGA9在大果芽變中下調(diào)表達(dá)。細(xì)胞周期D3和木葡聚糖內(nèi)轉(zhuǎn)葡萄糖基酶XTH23屬于油菜素內(nèi)酯信號(hào)途徑上的基因,細(xì)胞周期D3基因在120 DAB的大果芽變中顯著下調(diào)表達(dá),但在170 DAB時(shí)顯著上調(diào)表達(dá)。XTH23的2個(gè)成員在70 DAB時(shí)上調(diào)表達(dá),在120 DAB及170 DAB時(shí)下調(diào)表達(dá)。
3 討 論
3.1 大果芽變果實(shí)變大的因素
果實(shí)大小是評(píng)價(jià)果實(shí)外觀的重要性狀,直接影響果實(shí)的經(jīng)濟(jì)效益。果實(shí)大小變異的產(chǎn)生方式主要有兩種,一種是染色體加倍產(chǎn)生的大果型變異,另一種是體細(xì)胞變異產(chǎn)生的大果型芽變。在本研究中,流式細(xì)胞儀的鑒定結(jié)果表明,大果錦紅的倍性仍是二倍體,說明大果錦紅的產(chǎn)生不是由染色體數(shù)目加倍造成的。同時(shí),大果芽變的果實(shí)質(zhì)量是錦紅的1.7倍,且自盛花后70 d,大果芽變的果肉橫徑均顯著大于錦紅。對(duì)果肉進(jìn)一步分析發(fā)現(xiàn),與錦紅相比,大果芽變汁胞數(shù)量多且體積大,說明大果芽變的果實(shí)變大主要?dú)w于果肉厚度的變化,這與EI-Otmani等[10]的結(jié)果相一致。果實(shí)的最終大小受細(xì)胞分裂和細(xì)胞膨大控制。芽變產(chǎn)生的大果型基本是由果肉細(xì)胞變大和細(xì)胞數(shù)量增多所產(chǎn)生的。蔣爽等[24]的研究表明,大翠冠果實(shí)變大的原因是果肉細(xì)胞變大。舒莎珊等[25]的研究表明,潘莊大翠冠的果實(shí)增大是由細(xì)胞數(shù)量增多引起的。在本研究中,通過石蠟切片技術(shù)分析錦紅和大果芽變汁胞內(nèi)細(xì)胞形態(tài),結(jié)果發(fā)現(xiàn)大果芽變汁胞薄壁細(xì)胞層數(shù)多于錦紅,說明細(xì)胞數(shù)量增多導(dǎo)致大果芽變汁胞變大,從而使柑橘果肉增厚,果實(shí)變大。
在生產(chǎn)上,人們采用2, 4-DP[10,26]、3, 5, 6-TPA[9]等生長(zhǎng)素調(diào)節(jié)劑來增大柑橘果實(shí)。研究發(fā)現(xiàn)他們可通過細(xì)胞大小影響汁胞發(fā)育,從而改變果肉厚度[10]。本研究中,在70 DAB和120 DAB,大果芽變中生長(zhǎng)素含量顯著高于錦紅,說明生長(zhǎng)素可能是引起大果芽變和錦紅汁胞發(fā)育不同的重要激素。而在170 DAB時(shí)兩者體內(nèi)生長(zhǎng)素含量有所下降,這與馮貴芝[27]的研究結(jié)果相同,原因可能是此時(shí)果實(shí)膨大速率開始減慢,逐步進(jìn)入成熟期,果實(shí)體內(nèi)各激素水平發(fā)生改變。赤霉素控制細(xì)胞的伸長(zhǎng),并與果實(shí)大小和果實(shí)質(zhì)量呈正相關(guān)[28]。在本研究中,大果芽變內(nèi)GA3含量在各發(fā)育時(shí)期均高于錦紅,這表明大果芽變果實(shí)大小的變異可能與赤霉素有關(guān)。玉米素是一種嘌呤類的細(xì)胞分裂素。Gan等[19]研究表明,細(xì)胞分裂素參與調(diào)控番茄果皮厚度和果實(shí)大小。在本研究中,大果芽變中玉米素含量始終顯著低于錦紅,同石蠟切片的結(jié)果相矛盾,原因可能有兩個(gè),一是玉米素只是細(xì)胞分裂素的一種,不能代表汁胞內(nèi)細(xì)胞分裂素含量;二是采樣時(shí)間不對(duì),細(xì)胞分裂素大多在果實(shí)發(fā)育早期起作用,而70 DAB及之后兩個(gè)時(shí)期已進(jìn)入膨大階段。
3.2 大果芽變汁胞的轉(zhuǎn)錄組分析
本研究中對(duì)錦紅和大果芽變70 DAB、120 DAB和170 DAB汁胞進(jìn)行轉(zhuǎn)錄組分析,發(fā)現(xiàn)3個(gè)時(shí)期的差異基因數(shù)量相差較大,其中70 DAB時(shí)差異基因最多,170 DAB時(shí)差異基因最少,說明在70 DAB錦紅和大果芽變之間的基因表達(dá)差異性更顯著,該時(shí)期可能是引起兩者最終果實(shí)大小差異的重要時(shí)期。KEGG結(jié)果表明,差異基因富集在植物激素信號(hào)傳導(dǎo)途徑,并且24個(gè)差異基因在兩個(gè)及以上時(shí)期差異表達(dá),其中19個(gè)已知功能的差異基因多是花后70和120 d時(shí)在錦紅和大果芽變汁胞內(nèi)差異顯著。19個(gè)基因中,生長(zhǎng)素類的差異基因數(shù)目最多,同時(shí)激素測(cè)定結(jié)果也顯示生長(zhǎng)素在幾種激素內(nèi)含量偏高,說明生長(zhǎng)素合成相關(guān)基因在錦紅和大果芽變汁胞發(fā)育過程中表達(dá)活躍并存在顯著差異,造成兩者汁胞內(nèi)生長(zhǎng)素含量不同,使他們汁胞發(fā)育存在差異,從而導(dǎo)致果實(shí)大小不同。GH3.6和IAA27在大果芽變中的表達(dá)量均顯著高于錦紅,Su等[15]的研究表明,SlIAA17通過影響細(xì)胞大小來參與調(diào)控果實(shí)大小。Yang等[29]發(fā)現(xiàn),茉莉酸可能是影響藍(lán)莓果實(shí)發(fā)育早期大小的關(guān)鍵植物激素,并協(xié)調(diào)其他植物激素共同促進(jìn)果實(shí)生長(zhǎng)發(fā)育,并指出茉莉酸信號(hào)相關(guān)基因TIFY9、TIFY10A表達(dá)量顯著高于其他激素信號(hào)上的基因。這一發(fā)現(xiàn)同本研究結(jié)果類似。
此外,本研究中還發(fā)現(xiàn)油菜素內(nèi)酯、細(xì)胞分裂素等激素相關(guān)基因在錦紅和大果芽變汁胞內(nèi)差異表達(dá)。雙組分響應(yīng)調(diào)節(jié)基因ARR能被細(xì)胞分裂素誘導(dǎo)并調(diào)節(jié)生長(zhǎng)發(fā)育。在本研究中,ARR基因在錦紅和大果芽變中表達(dá)水平存在差異,且汁胞內(nèi)玉米素含量不同,說明他們可能受到細(xì)胞分裂素的誘導(dǎo)參與調(diào)控果實(shí)大小。CycD3是細(xì)胞周期蛋白基因,通過參與BR激素信號(hào)傳導(dǎo)刺激細(xì)胞分裂[30]。在本研究中,錦紅和大果芽變的CycD3表達(dá)量在花后70 d時(shí)差異不顯著,而在花后120 d和170 d差異顯著。同時(shí),XTH23作為BR信號(hào)傳導(dǎo)途徑上的另一個(gè)重要基因,在錦紅和大果芽變間表達(dá)量差異顯著,說明油菜素內(nèi)酯可能也參與柑橘果實(shí)大小的發(fā)育,但其基因功能還需進(jìn)一步驗(yàn)證。
4 結(jié) 論
筆者通過對(duì)錦紅和大果芽變果實(shí)內(nèi)囊瓣數(shù)量、汁胞數(shù)量及體積進(jìn)行測(cè)量和統(tǒng)計(jì),初步明確汁胞發(fā)育是大果芽變的變異原因,石蠟切片進(jìn)一步表明,細(xì)胞數(shù)量可能是引起汁胞變大的細(xì)胞學(xué)因子。通過對(duì)兩者間激素含量的比較分析,認(rèn)為植物激素能影響汁胞發(fā)育。通過分析錦紅和大果芽變?cè)谑⒒ê?0、120和170 d的轉(zhuǎn)錄組數(shù)據(jù),篩選出IAA27、TIFY10A、CycD3等激素合成相關(guān)基因。
參考文獻(xiàn) References:
[1] 常平凡,宗穎生,李玉萍,解曉悅,劉永蘭. 不同等級(jí)富士蘋果價(jià)格差別分析[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2002,1(1):27-28.
CHANG Pingfan,ZONG Yingsheng,LI Yuping,XIE Xiaoyue,LIU Yonglan. Analysis of the price difference of Fuji apple of various varying grade[J]. Journal of Shanxi Agricultural University (Society Science Edition),2002,1(1):27-28.
[2] GOFFINET M C,ROBINSON T L,LAKSO A N. A comparison of ‘Empire apple fruit size and anatomy in unthinned and hand-thinned trees[J]. Journal of Horticultural Science,1995,70(3):375-387.
[3] GUARDIOLA J L,GARC?A-LUIS A. Increasing fruit size in Citrus. Thinning and stimulation of fruit growth[J]. Plant Growth Regulation,2000,31(1):121-132.
[4] MOSTAFA E,SALEH M. Response of balady mandarin trees to girdling and potassium sprays under sandy soil conditions[J]. Research Journal of Agriculture and Biological Sciences,2006,2(3):137-141.
[5] AS?N L,VILARDELL P,BONANY J,ALEGRE S. Effect of 6-BA,NAA and their mixtures on fruit thinning and fruit yield in ‘Conference and ‘Blanquilla pear cultivars[J]. Acta Horticulturae,2010,884:379-382.
[6] STERN R A,BEN-ARIE R. GA3 inhibits flowering,reduces hand-thinning,and increases fruit size in peach and nectarine[J]. The Journal of Horticultural Science and Biotechnology,2009,84(2):119-124.
[7] AGUSTI M,ALMELA V,ANDREU I,JUAN M,ZACARIAS L. Synthetic auxin 3,5,6-TPA promotes fruit development and climacteric in Prunus persica L. Batsch[J]. The Journal of Horticultural Science and Biotechnology,1999,74(5):556-560.
[8] AGUST? M,GARIGLIO N,CASTILLO A,JUAN M,ALMELA V,MART?NEZ-FUENTES A,MESEJO C. Effect of the synthetic auxin 2,4-DP on fruit development of loquat[J]. Plant Growth Regulation,2003,41(2):129-132.
[9] AGUST? M,ZARAGOZA S,IGLESIAS D J,ALMELA V,PRIMO-MILLO E,TAL?N M. The synthetic auxin 3,5,6-TPA stimulates carbohydrate accumulation and growth in citrus fruit[J]. Plant Growth Regulation,2002,36(2):141-147.
[10] EL-OTMANI M,AGUST? M,AZNAR M,ALMELA V. Improving the size of ‘Fortune? mandarin fruits by the auxin 2,4-DP[J]. Scientia Horticulturae,1993,55(3/4):283-290.
[11] STERN R A,F(xiàn)LAISHMAN M,APPLEBAUM S,BEN-ARIE R. Effect of synthetic auxins on fruit development of ‘Bing cherry (Prunus avium L.)[J]. Scientia Horticulturae,2007,114(4):275-280.
[12] STERN A R,BEN-ARIE R,APPLEBAUM S,F(xiàn)LAISHMAN M. Cytokinins increase fruit size of ‘Delicious and ‘Golden Delicious (Malus domestica) apple in a warm climate[J]. The Journal of Horticultural Science and Biotechnology,2006,81(1):51-56.
[13] 陳雙雙,鐘嶸,黃春輝,徐小彪,賈東峰,陶俊杰. 不同濃度氯吡脲對(duì)‘東紅獼猴桃果實(shí)品質(zhì)的影響[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2022,44(3):549-559.
CHEN Shuangshuang,ZHONG Rong,HUANG Chunhui,XU Xiaobiao,JIA Dongfeng,TAO Junjie. Effects of different concentrations of chlorfenuron on fruit quality of ‘Donghong kiwifruit[J]. Acta Agriculturae Universitatis Jiangxiensis,2022,44(3):549-559.
[14] 郭淑萍,楊順林,楊玉皎,張永輝,孟富宣,何建軍,張俊松,金杰. GA3和CPPU對(duì)無核翠寶葡萄果實(shí)品質(zhì)的影響[J]. 果樹學(xué)報(bào),2022,39(10):1834-1844.
GUO Shuping,YANG Shunlin,YANG Yujiao,ZHANG Yonghui,MENG Fuxuan,HE Jianjun,ZHANG Junsong,JIN Jie. Effect of GA3 and CPPU treatments on fruit quality of Wuhe Cuibao grape[J]. Journal of Fruit Science,2022,39(10):1834-1844.
[15] SU L Y,BASSA C,AUDRAN C,MILA I,CHENICLET C,CHEVALIER C,BOUZAYEN M,ROUSTAN J P,CHERVIN C. The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion[J]. Plant and Cell Physiology,2014,55(11):1969-1976.
[16] PENG Z,LI W X,GAN X Q,ZHAO C B,PAUDEL D,SU W B,LV J,LIN S Q,LIU Z L,YANG X H. Genome-wide analysis of SAUR gene family identifies a candidate associated with fruit size in loquat (Eriobotrya japonica Lindl.)[J]. International Journal of Molecular Sciences,2022,23(21):13271.
[17] ZHAO J Y,JIANG L,CHE G,PAN Y P,LI Y Q,HOU Y,ZHAO W S,ZHONG Y T,DING L,YAN S S,SUN C Z,LIU R Y,YAN L Y,WU T,LI X X,WENG Y Q,ZHANG X L. A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber[J]. The Plant Cell,2019,31(6):1289-1307.
[18] ZHANG L,XU Y,LI Y T,ZHENG S S,ZHAO Z M,CHEN M L,YANG H J,YI H L,WU J X. Transcription factor CsMYB77 negatively regulates fruit ripening and fruit size in citrus[J]. Plant Physiology,2024,194(2):867-883.
[19] GAN L J,SONG M Y,WANG X C,YANG N,LI H,LIU X X,LI Y. Cytokinins are involved in regulation of tomato pericarp thickness and fruit size[J]. Horticulture Research,2022,9:uhab041.
[20] WANG X C,ZHAO M Z,WU W M,KORIR N K,QIAN Y M,WANG Z W. Comparative transcriptome analysis of berry-sizing effects of gibberellin (GA3) on seedless Vitis vinifera L.[J]. Genes & Genomics,2017,39(5):493-507.
[21] SU W B,SHAO Z K,WANG M,GAN X Q,YANG X H,LIN S Q. EjBZR1 represses fruit enlargement by binding to the EjCYP90 promoter in loquat[J]. Horticulture Research,2021,8:152.
[22] 朱凱杰. 臍橙果皮色澤變異及番茄紅素β-環(huán)化酶的調(diào)控研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2020.
ZHU Kaijie. Color variation of navel orange flavedo and regulatory analysis of lycopene β-cyclase[D]. Wuhan:Huazhong Agricultural University,2020.
[23] 卜海東. ‘龍豐蘋果大果變異形成機(jī)制解析[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2021.
BU Haidong. Formation mechanism analysis of the ‘Longfeng apple large fruit variation[D]. Shenyang:Shenyang Agricultural University,2021.
[24] 蔣爽,駱軍,王曉慶,李水根,周博強(qiáng). 翠冠梨大果芽變果實(shí)組織切片、激素變化及轉(zhuǎn)錄組分析[J]. 果樹學(xué)報(bào),2022,39(10):1737-1747.
JIANG Shuang,LUO Jun,WANG Xiaoqing,LI Shuigen,ZHOU Boqiang. Tissue sections,hormone changes,and transcriptomes analysis of the large-fruited bud mutation of Pyrus pyrifolia ‘Cuiguan[J]. Journal of Fruit Science,2022,39(10):1737-1747.
[25] 舒莎珊,李鑫,駱軍,白松齡,滕元文. ‘翠冠梨大果型芽變的細(xì)胞學(xué)及相關(guān)基因表達(dá)研究[J]. 果樹學(xué)報(bào),2017,34(6):660-669.
SHU Shashan,LI Xin,LUO Jun,BAI Songling,TENG Yuanwen. Studies on cytology and related gene expression pattern of a large-fruited bud mutant from ‘Cuiguan pear (Pyrus pyrifolia)[J]. Journal of Fruit Science,2017,34(6):660-669.
[26] YILDIRIM B,YE?ILO?LU T,?NCESU M,KAMILO?LU M U,?IMEN B,TAMER ?. Effects of 2,4-DP (2,4-dichlorophenoxypropionic acid) plant growth regulator on fruit size and yield of Valencia oranges (Citrus sinensis Osb.)[J]. New Zealand Journal of Crop and Horticultural Science,2012,40(1):55-64.
[27] 馮貴芝. 基于時(shí)空轉(zhuǎn)錄組的臍橙果實(shí)發(fā)育和成熟調(diào)控機(jī)理的研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2021.
FENG Guizhi. Research on regulating mechanism of navel orange development and maturation based on spatiotemporal transcriptome[D]. Wuhan:Huazhong Agricultural University,2021.
[28] ROKAYA P R,BARAL D R,GAUTAM D M,SHRESTHA A K,PAUDYAL K P. Effect of pre-harvest application of gibberellic acid on fruit quality and shelf life of mandarin (Citrus reticulata Blanco)[J]. American Journal of Plant Sciences,2016,7(7):1033-1039.
[29] YANG L,LIU L M,WANG Z Y,ZONG Y,YU L,LI Y Q,LIAO F L,CHEN M M,CAI K L,GUO W D. Comparative anatomical and transcriptomic insights into Vaccinium corymbosum flower bud and fruit throughout development[J]. BMC Plant Biology,2021,21(1):289.
[30] HU Y X,BAO F,LI J Y. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis[J]. The Plant Journal,2000,24(5):693-701.