国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

施氮量對(duì)不同茬口冬小麥生長(zhǎng)和產(chǎn)量的影響

2024-04-27 12:33:59朱員正董云杰姚麗茹賀崢崢普布倉決張光鑫韓娟
關(guān)鍵詞:施氮量茬口小麥

朱員正 董云杰 姚麗茹 賀崢崢 普布倉決 張光鑫 韓娟

摘 要 旨在研究施氮量對(duì)不同茬口冬小麥生長(zhǎng)和產(chǎn)量的影響,探明小麥合理輪作制度和氮肥管理?;诖蠖共缈诤陀衩撞缈?,設(shè)3個(gè)施氮量水平(N1:135 kg·hm-2;N2:180 kg·hm-2;N3:225 kg·hm-2),研究施氮量對(duì)不同茬口冬小麥莖蘗動(dòng)態(tài)、葉面積指數(shù)、干物質(zhì)積累、籽粒灌漿、產(chǎn)量及其構(gòu)成因素的影響。結(jié)果表明,同一施氮量下,大豆茬口下的冬小麥分蘗能力、葉面積指數(shù)、干物質(zhì)積累、強(qiáng)弱勢(shì)粒粒質(zhì)量和產(chǎn)量顯著高于玉米茬口。玉米茬口下,冬小麥的分蘗能力,葉面積指數(shù)和干物質(zhì)積累表現(xiàn)出N3 > N2 > N1處理;大豆茬口下,冬小麥上述指標(biāo)表現(xiàn)出N2 > N3 > N1處理,且產(chǎn)量在N2處理下表現(xiàn)最佳,較玉米茬口產(chǎn)量顯著提高? 18.29%。結(jié)合籽粒灌漿和產(chǎn)量構(gòu)成因素發(fā)現(xiàn),大豆茬口冬小麥千粒質(zhì)量?jī)?yōu)于玉米茬口是因?yàn)榇蠖共缈陲@著提高了弱勢(shì)粒的平均灌漿速率所導(dǎo)致的。通過產(chǎn)量與施氮量擬合曲線的分析,大豆茬口最高產(chǎn)量施氮量和最佳經(jīng)濟(jì)產(chǎn)量施氮量分別為203.60和199.11 kg·hm-2,玉米茬口為271.09和264.40 kg·hm-2。綜上,大豆茬口在冬小麥生長(zhǎng)和產(chǎn)量上優(yōu)于玉米茬口,適宜的施氮量為199.11~203.60 kg·hm-2。

關(guān)鍵詞 施氮量;茬口;小麥;產(chǎn)量

小麥作為三大糧食作物之一,其產(chǎn)量對(duì)于滿足日益增長(zhǎng)的糧食需求至關(guān)重要[1]。氮(N)是小麥生長(zhǎng)發(fā)育的必需元素之一,對(duì)小麥產(chǎn)量的貢獻(xiàn)超過45%[2]。外源添加的氮肥是小麥的重要氮源,氮肥的合理施用對(duì)小麥的生長(zhǎng)和產(chǎn)量至關(guān)重要。然而,在實(shí)際生產(chǎn)中,氮肥不合理施用現(xiàn)象廣泛存在,特別是過量施氮,這不僅導(dǎo)致氮肥利用率低、產(chǎn)量不穩(wěn)定,還會(huì)造成嚴(yán)重的面源污染[3]。因此,優(yōu)化小麥的施氮量,對(duì)保障中國糧食生產(chǎn)安全和實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)生產(chǎn)有著重要意義。

小麥-玉米復(fù)種是眾多糧食產(chǎn)區(qū)的主要種植制度。禾本科連年種植是影響小麥生產(chǎn)的另一關(guān)鍵因素,長(zhǎng)期的禾本科連作導(dǎo)致病蟲害加劇、土壤養(yǎng)分偏耗嚴(yán)重、土壤質(zhì)量下降,這使得小麥生長(zhǎng)發(fā)育不良,造成產(chǎn)量損失嚴(yán)重[4-5]。已有研究表明[6-7],將豆科作物融入種植體系能夠有效避免上述問題。例如,Jie等[8]研究發(fā)現(xiàn)豆科作物使后茬非豆科作物增產(chǎn)20%。Gan等[9]研究表明,將豆科作物加入輪作周期,在輪作周期內(nèi),籽粒產(chǎn)量增加了35.5%。另外,利用豆科作物的固氮效應(yīng),還可以減少氮肥投入。美國中西部地區(qū)通過豆科作物苜蓿與玉米輪作,每年可節(jié)約5 000~? 9 000萬美元的氮肥成本[10]。Plaza-Bonilla等[11]研究表明豌豆可為下茬小麥提供40~49 kg·hm-2的氮。同時(shí),豆科作物在固氮過程中產(chǎn)生的微環(huán)境,會(huì)促進(jìn)輪作作物的生長(zhǎng),有利于氮素等養(yǎng)分的利用[12-13]。因此,可以將豆科作物引入禾本科作物連作體系中,一方面可以防止連作障礙的產(chǎn)生,另一方面利用豆科作物的固氮效應(yīng),減少氮肥投入的同時(shí)保證產(chǎn)量,實(shí)現(xiàn)作物的可持續(xù)生產(chǎn)。

基于以上兩點(diǎn),本研究從施氮量和茬口兩方面出發(fā),明確施氮量對(duì)玉米和大豆茬口下冬小麥生長(zhǎng)和產(chǎn)量的影響,為冬小麥合理的茬口選擇和氮肥管理提供科學(xué)支撐。

1 材料與方法

1.1 試驗(yàn)地點(diǎn)

于2018-2019年陜西省涇陽縣的西北農(nóng)林科技大學(xué)斗口試驗(yàn)站(108°88′E,34°61′N)進(jìn)行,屬暖溫帶大陸性季風(fēng)氣候。試驗(yàn)開始時(shí)0~? 20 cm土層全氮 1.13 g·kg-1;有機(jī)質(zhì) 17.05?? g·kg-1;有效磷 14.12 mg·kg-1;速效鉀?? 286.00 mg·kg-1。

1.2 試驗(yàn)設(shè)計(jì)

試驗(yàn)采用雙因素隨機(jī)區(qū)組設(shè)計(jì),茬口設(shè)玉米茬口和大豆茬口;施氮量設(shè)N1(135 kg·hm-2)、N2(180 kg·hm-2)、N3(225 kg·hm-2)3個(gè)氮肥水平,氮肥按基肥∶拔節(jié)肥=1∶1施入。各處理磷肥、鉀肥播種全部基施,施用量分別為 120 kg·hm-2、90 kg·hm-2。每個(gè)處理設(shè)置3次重復(fù),共18個(gè)小區(qū),小區(qū)面積為45.5 m2(3.5 m×13 m)。

前茬玉米品種為‘陜單609,前茬大豆品種為‘中黃13。冬小麥品種為‘小偃22,于2018年10月7日播種,播量187.5 kg·hm-2,行距25 cm,播前進(jìn)行旋耕,冬小麥于2019年5月29日收獲。其余田間栽培管理措施同當(dāng)?shù)剞r(nóng)戶。

1.3 測(cè)定項(xiàng)目及方法

1.3.1 莖蘗動(dòng)態(tài) ?于小麥越冬期、拔節(jié)期、開花期和成熟期,每個(gè)小區(qū)選取3行1 m長(zhǎng),調(diào)查田間莖蘗數(shù),計(jì)算莖蘗成穗率。莖蘗成穗率=成熟期總莖數(shù)/拔節(jié)期總莖數(shù)×100%[14]

1.3.2 葉面積指數(shù) 于冬小麥越冬期、拔節(jié)期、開花期、灌漿期各小區(qū)選擇健康且長(zhǎng)勢(shì)均勻的30片葉片制作小葉樣,測(cè)得小葉面積,利用公式計(jì)算葉面積指數(shù),葉面積指數(shù)(LAI)=小葉面? 積(m2)×干物質(zhì)質(zhì)量(kg·m-2)/小葉干物質(zhì)質(zhì)量(kg)[15]

1.3.3 干物質(zhì)積累 于冬小麥越冬期、拔節(jié)期、開花期、灌漿期、成熟期于各小區(qū)取樣,分部位(莖、葉、穗等)后,在105 ℃下殺青30 min,80 ℃烘干至恒量后稱質(zhì)量。

1.3.4 籽粒灌漿特性

于冬小麥開花期,各小區(qū)標(biāo)記當(dāng)天開花且生長(zhǎng)均勻的200個(gè)穗,隨后每隔4 d取20個(gè)穗,直至成熟。每穗取中部5~12排小穗的第1、2小花的籽粒作為強(qiáng)勢(shì)粒,第3~4位小花作為弱勢(shì)粒,將穗摘下分為強(qiáng)勢(shì)粒和弱勢(shì)粒,105 ℃殺青30 min后50 ℃烘干至恒量,并稱質(zhì)量。采用Richards方程按照朱慶森等[16]方法對(duì)籽粒灌漿進(jìn)行擬合,并計(jì)算導(dǎo)出相關(guān)的灌漿特征參數(shù),公式如下:

W=A/(1+Be-Kt)1/N

式中,W為籽粒質(zhì)量,A為生長(zhǎng)終值,t為開花后的天數(shù),B、K、N為參數(shù)。

生長(zhǎng)速率(G):G=AKBe-Kt/N(1+BeKt)(N+1)/N

起始生長(zhǎng)勢(shì)(R0):R0=K/N

活躍生長(zhǎng)期(D):D=(2N+4)/K

1.3.5 測(cè)? 產(chǎn) 小麥成熟期在每個(gè)小區(qū)隨機(jī)選擇1 m2樣方進(jìn)行測(cè)產(chǎn),調(diào)查穗數(shù)和穗粒數(shù),脫粒后測(cè)定千粒質(zhì)量和含水量,計(jì)算14%水分含量下的產(chǎn)量。

1.3.6 最佳經(jīng)濟(jì)產(chǎn)量施氮量 通過回歸分析方法[17]擬合小麥產(chǎn)量與施氮量方程,確定最佳施氮量,其中,氮肥成本價(jià)格為1.8元·kg-1,冬小麥價(jià)格為2.4元·kg-1。

1.4 數(shù)據(jù)分析

采用 Excel 2016進(jìn)行數(shù)據(jù)整理和圖表繪制,采用 SPSS 22.0進(jìn)行統(tǒng)計(jì)分析。

2 結(jié)果與分析

2.1 施氮量對(duì)不同茬口下冬小麥莖蘗動(dòng)態(tài)的? 影響

由表1可以看出,莖蘗數(shù)呈現(xiàn)出先升后降的趨勢(shì),在拔節(jié)期達(dá)到最高。玉米茬口下,與N1相比,N2和N3處理于拔節(jié)期分別顯著提高莖蘗數(shù)5.78%和15.44%;于成熟期分別顯著提高莖蘗數(shù)5.74%和15.71%(P<0.05)。大豆茬口下,與N1相比,N2和N3處理于拔節(jié)期分別顯著提高莖蘗數(shù)12.19%和3.27%,于成熟期分別顯著提高莖蘗數(shù)4.21%和10.56%。在同一施氮量下,莖蘗數(shù)表現(xiàn)為大豆茬口顯著高于玉米茬口。在N3處理下,大豆茬口相較于玉米茬口在拔節(jié)期和成熟期莖蘗數(shù)分別提高了18.92%和? 16.16%。

同一茬口下,莖蘗成穗率隨施氮量的增加而提高,但無顯著性差異(P>0.05),玉米茬口莖蘗成穗率整體顯著高于大豆茬口。同一施氮量下,N2處理大豆茬口的莖蘗成穗率顯著低于玉米茬口(P<0.05)。

2.2 施氮量對(duì)不同茬口冬小麥葉面積指數(shù)的? 影響

由圖1所示,冬小麥葉面積指數(shù)(LAI)在整個(gè)生育期呈現(xiàn)出先升后降的趨勢(shì),開花期最高。玉米茬口下,整體上,LAI隨著施氮量的增加而增加,以開花期為例,相比N1處理,N2和N3處理分提高了10.57%和19.87%。大豆茬口下,越冬期和開花期的LAI隨著施氮量的增加而增加,越冬期N3較N1處理顯著提高了21.18%;拔節(jié)期和灌漿期LAI在N2處理下最高,但與N1和N3處理無顯著性差異。同一施氮量下,大豆茬口的LAI顯著高于玉米茬口。在越冬期,同一施氮量下,大豆茬口較玉米茬口顯著提高了42.66%~52.40%;拔節(jié)期提高了13.83%~52.60%;開花期顯著提高了27.82%~43.16%;灌漿期顯著提高了57.71%~141.13%。

2.3 施氮量對(duì)不同茬口冬小麥干物質(zhì)積累的? 影響

如圖2所示,同一茬口下,冬小麥干物質(zhì)量從拔節(jié)期到灌漿期迅速增加,到成熟期增速減緩。玉米茬口下,各生育時(shí)期冬小麥干物質(zhì)量均呈?? N3>N2>N1處理,以成熟期為例,相比N1處理,N2和N3處理分顯著提高了9.11%和25.70%。大豆茬口下,灌漿期之前各施氮量下冬小麥干物質(zhì)量無顯著差異,成熟期呈N2>N3>N1處理,且N3處理較N1處理顯著提高了4.59%。同一施氮量下,各生育時(shí)期冬小麥干物質(zhì)量均呈大豆茬口>玉米茬口。在N3處理下,大豆茬口較玉米茬口在灌漿期和成熟期干物質(zhì)分別顯著增加了19.79%和14.77%。在N2處理下,大豆茬口較玉米茬口在灌漿期和成熟期干物質(zhì)分別顯著增加了35.10%和35.74%。

2.4 施氮量對(duì)不同茬口冬小麥灌漿的影響

2.4.1 強(qiáng)勢(shì)粒和弱勢(shì)粒粒質(zhì)量 如圖3所示,各處理下冬小麥強(qiáng)勢(shì)粒和弱勢(shì)粒粒質(zhì)量均呈現(xiàn)出“慢-快-慢”的S型曲線變化趨勢(shì)?;ê?~10 d強(qiáng)、弱勢(shì)籽粒干質(zhì)量呈現(xiàn)緩慢增加趨勢(shì)。10~30 d強(qiáng)、弱勢(shì)籽粒干質(zhì)量呈現(xiàn)急劇增加趨勢(shì),之后開始下降。同一施氮量下,大豆茬口強(qiáng)、弱勢(shì)粒最終粒質(zhì)量高于玉米茬口;不同茬口下,強(qiáng)、弱勢(shì)粒最終粒質(zhì)量均表現(xiàn)為N3>N1>N2處理。進(jìn)一步分析發(fā)現(xiàn),茬口對(duì)粒質(zhì)量的可調(diào)控程度表現(xiàn)為弱勢(shì)粒大于強(qiáng)勢(shì)粒,以玉米茬口為對(duì)照,同一施氮量下,強(qiáng)勢(shì)粒的增幅為1.35%~4.10%,弱勢(shì)粒的增幅在4.69%~8.13%。

2.4.2 強(qiáng)勢(shì)粒和弱勢(shì)粒灌漿參數(shù) 強(qiáng)勢(shì)粒和弱勢(shì)粒灌漿參數(shù)如表2所示,起始生長(zhǎng)勢(shì)(R0)表示受精后子房的生長(zhǎng)潛勢(shì),與籽粒前期的生長(zhǎng)速率密切相關(guān)。在強(qiáng)、弱勢(shì)粒中,N3處理的R0顯著高于N2、N1處理。玉米茬口下,N3處理強(qiáng)、弱勢(shì)粒R0較N1處理顯著提高10.00%和21.43%。大豆茬口下,N3處理強(qiáng)、弱勢(shì)粒R0較N1處理顯著提高18.18%和8.33%。冬小麥強(qiáng)勢(shì)粒最大灌漿速率(GRmax)均高于弱勢(shì)粒。在強(qiáng)勢(shì)粒中,玉米茬口的GRmax隨施氮量的增加而降低,N1處理較N3處理顯著提高了8.59%;大豆茬口的GRmax隨施氮量的增加呈先升高后降低的趨勢(shì),N1處理較N2處理顯著提高了6.03%。在弱勢(shì)粒中,玉米和大豆茬口的GRmax均隨施氮量的增加呈先升后降的趨勢(shì),N1處理較N2處理分別顯著提高了6.91%和14.29%。冬小麥強(qiáng)勢(shì)粒平均灌漿速率(GRmean)高于弱勢(shì)粒。不同茬口下強(qiáng)勢(shì)粒GRmean無顯著差異,但弱勢(shì)粒GRmean表現(xiàn)出顯著性差異,大豆茬口較玉米茬口整體顯著提高5.04%。強(qiáng)勢(shì)粒的活躍灌漿期(D)高于弱勢(shì)粒。玉米茬口下,強(qiáng)勢(shì)粒的活躍灌漿期隨施氮量的增加而增加,N3處理強(qiáng)勢(shì)?;钴S灌漿期較N1處理顯著提高8.59%,大豆茬口下強(qiáng)勢(shì)粒表現(xiàn)出相同趨勢(shì);弱勢(shì)粒的活躍灌漿期均在N2處理最高,大豆茬口下N2處理較N1處理顯著提高了6.02%。

2.5 施氮量對(duì)不同茬口冬小麥產(chǎn)量及產(chǎn)量構(gòu)成的影響

如表3所示,大豆茬口下,冬小麥的穗數(shù)表現(xiàn)出N2>N3>N1處理,N2處理較N3處理顯著提高了6.11%;玉米茬口下,冬小麥的穗數(shù)表現(xiàn)出N3>N2>N1處理,N3處理較N2處理顯著提高了9.43%。同一茬口下,穗粒數(shù)隨施氮量的增加呈上升趨勢(shì)。大豆茬口千粒質(zhì)量整體顯著高于玉米茬口。大豆茬口下,千粒質(zhì)量隨氮肥的增加呈上升趨勢(shì)。玉米茬口下,N1處理下的千粒質(zhì)量高于N3和N2處理。綜合產(chǎn)量構(gòu)成三要素,玉米茬口下,N3處理冬小麥產(chǎn)量最大。大豆茬口下,N2處理下冬小麥產(chǎn)量最大。

相同施氮量下,大豆茬口冬小麥產(chǎn)量、穗數(shù)、穗粒數(shù)和千粒質(zhì)量均高于玉米茬口。在N2處理下與玉米茬口相比,大豆茬口冬小麥產(chǎn)量、穗數(shù)分別提高了18.29%、34.88%,均達(dá)到顯著水平? (P<0.05)。除了N2處理玉米茬口冬小麥千粒質(zhì)量低于大豆茬口外,玉米茬口冬小麥千粒質(zhì)量均高于大豆茬口。玉米茬口和大豆茬口最高產(chǎn)量為7 607.26 kg·hm-2和8 053.69 kg·hm-2。大豆茬口主要通過提高冬小麥穗數(shù)和穗粒數(shù)來提高小麥產(chǎn)量。通過F測(cè)驗(yàn)表明,茬口對(duì)冬小麥產(chǎn)量、穗數(shù)、穗粒數(shù)和千粒質(zhì)量存在顯著影響,氮肥對(duì)冬小麥產(chǎn)量和穗數(shù)存在顯著影響,并且對(duì)產(chǎn)量和穗數(shù)存在顯著的交互作用。

2.6 不同茬口冬小麥產(chǎn)量與施氮量的關(guān)系

對(duì)不同茬口冬小麥產(chǎn)量與施氮量的關(guān)系進(jìn)行一元二次方程擬合,由表4可示,大豆茬口最高產(chǎn)量施氮量和最佳經(jīng)濟(jì)產(chǎn)量施氮量分別為203.60和199.11 kg·hm-2,比玉米茬口施氮量分別減少了24.89%和24.69%,最佳經(jīng)濟(jì)產(chǎn)量卻比玉米茬口增加了7.49%。由此可知,大豆茬口可以在保證產(chǎn)量的前提下降低施氮量。

3 討論

3.1 施氮量與茬口對(duì)冬小麥生長(zhǎng)的影響

莖蘗動(dòng)態(tài)是小麥重要的生物學(xué)特征,也是決定群體發(fā)展的重要因素[18]。前人研究表明,增施氮肥能夠提高分蘗能力,增加莖蘗數(shù)[19],本研究支持了這一結(jié)果,不同茬口下,相較N1處理,N2和N3處理均提高了莖蘗數(shù)。同一施氮量下,大豆茬口較玉米茬口冬小麥顯著提高了莖蘗數(shù),可能是豆科作物的固氮作用促進(jìn)了冬小麥對(duì)氮素的吸收[20],增加了莖蘗數(shù);另一方面和豆科茬口在團(tuán)粒結(jié)構(gòu)和根際沉積氮量的良好茬口優(yōu)勢(shì)[21]有關(guān)。但大豆茬口較玉米茬口冬小麥莖蘗成穗率方面差異不顯著。這一結(jié)果可能是大豆茬口提高了小麥的分蘗能力,但也使得群體競(jìng)爭(zhēng)增大,出現(xiàn)了更多的無效分蘗,致使成穗率比較低[22]。

LAI是小麥群體生長(zhǎng)的基礎(chǔ)指標(biāo),與作物的光合能力有著密切關(guān)系[23-24],而合理的栽培管理措施是保證作物生長(zhǎng)的重要前提。本研究中,大豆茬口的LAI顯著高于玉米茬口,說明大豆茬口下的冬小麥有著較高的光合能力,有利于干物質(zhì)積累。玉米茬口下,各時(shí)期LAI隨施氮量的增加而提高,這與李鑫格等[25]的研究一致。

干物質(zhì)積累是作物產(chǎn)量形成的基礎(chǔ),特別是花后積累的干物質(zhì)對(duì)籽粒的貢獻(xiàn)率達(dá)60%以上[26]。本試驗(yàn)表明,玉米茬口不同施氮量在開花期之前干物質(zhì)積累差異不大,開花期之后出現(xiàn)顯著差異,這可能是由于N1處理能滿足作物前期的生長(zhǎng)需求,但到后期供應(yīng)不足所導(dǎo)致的。而大豆茬口差異不顯著,可能是豆科茬口提高了氮的有效性,使得即使在N1處理下也能滿足作物的生長(zhǎng)。

3.2 施氮量與茬口對(duì)冬小麥灌漿和產(chǎn)量的影響

灌漿期是小麥籽粒形成、提高產(chǎn)量的重要生育時(shí)期,此時(shí)期在很大程度上決定了粒質(zhì)量[27-28]。本研究中,隨著施氮量的增加,顯著增加了小麥穗數(shù),但降低了千粒質(zhì)量,這種結(jié)果與前人研究一致[29-30],可能是穗數(shù)的增加使得群體間的競(jìng)爭(zhēng)加劇而導(dǎo)致的。小麥的籽粒灌漿與穗上的所處位置密切相關(guān),小麥穗基部第1位和第2位籽粒的粒質(zhì)量和灌漿速率顯著高于第3位籽粒[31]。本研究發(fā)現(xiàn)冬小麥弱勢(shì)粒粒質(zhì)量和灌漿速率在灌漿過程中均較低于強(qiáng)勢(shì)粒。在小麥中,頂部小穗的粒質(zhì)量顯著低于底部小穗的粒質(zhì)量,但弱勢(shì)粒對(duì)小麥產(chǎn)量增加的貢獻(xiàn)大于強(qiáng)勢(shì)粒[32]。以往的研究表明,干旱、高溫、栽培技術(shù)對(duì)弱勢(shì)粒灌漿的影響大于對(duì)強(qiáng)勢(shì)粒灌漿的影響[33-35]。因此,弱勢(shì)粒對(duì)環(huán)境和農(nóng)藝措施更為敏感。本試驗(yàn)結(jié)果證實(shí)了這一點(diǎn),相較于強(qiáng)勢(shì)粒,弱勢(shì)粒受到茬口的影響更劇烈,并表明大豆茬口較玉米茬口主要是通過促進(jìn)弱勢(shì)粒的灌漿來提高小麥粒質(zhì)量。之前的研究表明,籽粒灌漿速率隨氮肥施用量的減少而增加[36-37]。本研究發(fā)現(xiàn),隨著施氮量的增加,強(qiáng)勢(shì)粒和弱勢(shì)粒的最大灌漿速率、平均灌漿速率下降。本研究中籽粒灌漿時(shí)間隨施氮量的增加而減少[38],表明氮肥降低會(huì)影響籽粒灌漿的持續(xù)時(shí)間。這些結(jié)果表明,施氮降低了強(qiáng)、弱勢(shì)籽粒的灌漿速率,延長(zhǎng)了活躍灌漿期。這可能是因?yàn)楦叩斎朐黾恿酥参锝M織中的氮濃度,帶來較高的氮代謝率,并導(dǎo)致碳水化合物消耗增加,減少碳水化合物向籽粒灌漿的轉(zhuǎn)移[39-40]。冬小麥粒質(zhì)量與灌漿速率和灌漿持續(xù)時(shí)間呈顯著正相關(guān)關(guān)系[41]。本研究中,大豆茬口強(qiáng)弱勢(shì)粒平均灌漿速率整體大于玉米茬口,最終粒質(zhì)量表現(xiàn)為大豆茬口>玉米茬口,表明茬口主要通過影響強(qiáng)弱勢(shì)粒平均灌漿速率影響粒質(zhì)量。

氮素是影響作物產(chǎn)量的重要因素,但過量施氮不利于花后物質(zhì)轉(zhuǎn)運(yùn)受阻,也就使得灌漿性能大幅下降,千粒質(zhì)量降低,嚴(yán)重影響了作物的產(chǎn)量形成[42]。小麥產(chǎn)量由穗數(shù)、穗粒數(shù)、千粒質(zhì)量3個(gè)要素構(gòu)成,協(xié)調(diào)好這3個(gè)要素的關(guān)系是小麥高產(chǎn)的重要因素之一[43-44]。前人研究發(fā)現(xiàn)隨著施氮量的增加,小麥產(chǎn)量、穗數(shù)、穗粒數(shù)和千粒質(zhì)量表現(xiàn)出先上升后下降的趨勢(shì)[45]。本研究表明,大豆茬口下,隨施氮量的提高,冬小麥穗數(shù)和產(chǎn)量先升后降,但穗粒數(shù)卻表現(xiàn)出增加趨勢(shì),這可能與大豆茬口的氮沉積有關(guān);玉米茬口下,冬小麥產(chǎn)量和穗數(shù)隨施氮量的增加而增加,而千粒質(zhì)量和穗粒數(shù)并無顯著性差異,說明玉米茬口下產(chǎn)量的提高主要是通過穗數(shù)的增加的引起的。將兩個(gè)茬口的產(chǎn)量與構(gòu)成要素進(jìn)行整體比較,發(fā)現(xiàn)大豆茬口各方面均優(yōu)于玉米茬口,存在著明顯的茬口優(yōu)勢(shì)。史校艷等[46]的研究認(rèn)為,茬口效應(yīng)影響冬小麥的產(chǎn)量、穂數(shù)和穗粒數(shù),呈現(xiàn)出為大豆茬口>玉米茬口。本研究發(fā)現(xiàn)同一氮肥處理下,與史校艷等的結(jié)果一致,且千粒質(zhì)量也表現(xiàn)為大豆茬口>玉米茬口。本研究中,大豆茬口下N3和N2處理冬小麥產(chǎn)量差異不顯著,可能是由于大豆茬口的殘留氮充足,使得冬小麥在施氮量減少的情況下也能滿足冬小麥產(chǎn)量形成[47]。通過對(duì)冬小麥產(chǎn)量與施氮量間的關(guān)系進(jìn)行一元二次方程擬合,結(jié)果表明,大豆茬口最高產(chǎn)量施氮量和最佳經(jīng)濟(jì)產(chǎn)量施氮量為203.60、199.11 kg·hm-2,較玉米茬口減少了施氮量,但產(chǎn)量反而有所增加。因此,在實(shí)際生產(chǎn)中,應(yīng)根據(jù)茬口的特性選擇適宜的施氮量,使氮肥得以最大化利用。

4 結(jié)? 論

不同茬口下,冬小麥的生長(zhǎng)和產(chǎn)量對(duì)施氮量的響應(yīng)不同。玉米茬口下,冬小麥莖蘗發(fā)育、葉面積指數(shù)、干物質(zhì)積累和產(chǎn)量隨施氮量的增加而增加;大豆茬口下,冬小麥上述指標(biāo)隨施氮量的增加表現(xiàn)出先升后降的趨勢(shì),在施氮量180 kg·hm-2最高。同一施氮量下,大豆茬口莖蘗發(fā)育、葉面積指數(shù)、干物質(zhì)積累、籽粒灌漿和產(chǎn)量表現(xiàn)優(yōu)于玉米茬口。相比于玉米茬口,大豆茬口可以在保證產(chǎn)量的前提下降低施氮量,適宜的施氮量為? 199.11~203.60 kg·hm-2。

參考文獻(xiàn) Reference:

[1] RUOCHEN L,YONGXIANG G,QI C,et al.Blended controlled-release nitrogen fertilizer with straw returning improved soil nitrogen availability,soil microbial community,and root morphology of wheat [J].Soil & Tillage Research,2021,212:105045.

[2] QUAN M,MENG Y? W,GUO L? Z,et al.Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat [J].Field Crops Research,2021,267:108163.

[3] 張福鎖,王激清,張衛(wèi)峰,等.中國主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J].土壤學(xué)報(bào),2008(5):915-924.

ZHANG F S,WANG J Q,ZHANG W F,et al.Nutrient use efficiencies of major cereal crops in china and measures for improvement [J].Acta Pedologica Sinica,2008(5):915-924.

[4] 徐 飛,宋玉立,周益林,等.2013-2016年河南省小麥莖基腐病的發(fā)生危害情況及特點(diǎn)[J].植物保護(hù),2016,42(6):126-132.

XU F,SONG Y L,ZHOU Y L,et al.Occurrence dynamics and characteristics of? Fusarium? root and crown rot of wheat in Henan Province during 2013-2016 [J].Plant Protection.,2016,42(6):126-132.

[5] 王傳杰,肖 婧,蔡岸冬,等.不同氣候與施肥條件下農(nóng)田土壤微生物生物量特征與容量分析[J].中國農(nóng)業(yè)科學(xué),2017,50(6):1067-1075.

WANG CH? J,XIAO J,CAI A D,et al.Capacity and characteristics of soil microbial biomass under various climate and fertilization conditions across china croplands [J].Scientia Agricultura Sinica,2017,50(6):1067-1075.

[6] ZHAO J,YANG Y,ZHANG K,et al.Does crop rotation yield more in China? A meta-analysis [J].Field Crops Research, 2020,245:107659.

[7] 曾昭海.豆科作物與禾本科作物輪作研究進(jìn)展及前景[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2018,26(1):57-61.

ZENG ZH? H.Progress and perspective of legume-gramineae rotations [J].Chinese Journal of Eco-Agriculture,2018,26(1):57-61.

[8] JIE Z,JI C,DAMIEN B,et al.Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers[J].Nature Communications,2022,13(1):4926.

[9] GAN Y,HAMEL C,JOHN T,et al.Diversifying crop rotations with pulses enhances systemproductivity[J].Scientific reports,2015,5:14625.

[10] PETERSON T A,RUSSELLE M P.Alfalfa and the nitrogen cycle in the Corn Belt[J].Journal of Soil & Water Conservation,1991,46(3):229-235.

[11] PLAZA-BONILLA D,NOLOT J,RAFFAILLAC D,et al.Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France[J].European Journal of Agronomy,2017,82:331-341.

[12] DONG Z,WU L,KETTLEWELL B,et al.Hydrogen fertilization of soils is this a benefit of legumes in rotation? [J].Plant,Cell & Environment,2003,26(11):1875-1879.

[13] PEOPLES M B,MCLENNAN P D,BROCKWELL J.Hydrogen emission from nodulated soybeans [Glycine max (L.) Merr.] and consequences for the productivity of a subsequent maize (Zea mays L.) crop [J].Plant & Soil,2008,307(1-2):67-82.

[14] 黃 玲,趙 凱,邵敏敏,等.高產(chǎn)小麥群體動(dòng)態(tài)及干物質(zhì)積累與轉(zhuǎn)運(yùn)特性分析[J].山東農(nóng)業(yè)科學(xué),2021,53(5):162-166.

HUANG L,ZHAO K,SHAO M M,et al.Population dynamics and characteristics of dry? matter accumulation and translocation of high-yielding? wheat cultivars [J].Shandong Agricultural Sciences,2021,53(5):162-166.

[15] 何雨桔,劉 瓊,王 焜,等.施氮量對(duì)不同株葉型小麥旗葉光合及籽粒灌漿特性的影響[J].四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2022,40(5):707-713.

HE Y J,LIU Q,WANG K,et al.Effects ofnitrogen application rate on flag leaf photosynthesis and grain filling characteristics of wheat with different leaf? types[J].Journal of Sichuan Agricultural University,2022,40(5):707-713.

[16] 朱慶森,曹顯祖,駱亦其.水稻籽粒灌漿的生長(zhǎng)分析[J].作物學(xué)報(bào),1988(3):182-193.

ZHU Q S,CAO X Z,LUO Y Q.Growth analysis on the process of grain filling in rice [J].Acta Agronomica Sinica,1988(3):182-193.

[17] 喬占西,楊改紅,許素梅.用多項(xiàng)式回歸方法確定最佳施氮量[J].許昌學(xué)院學(xué)報(bào),2003(5):18-20.

QIAO ZH X,YANG G H,XU S M.Definition ofthe best quantity of applying nitrogenous fertilizer by means of polynomial regression [J].Journal of Xuchang University,2003(5):18-20.

[18] 薛華龍,婁夢(mèng)玉,李 雪,等.施磷水平對(duì)不同茬口下冬小麥生長(zhǎng)發(fā)育及產(chǎn)量的影響[J].中國農(nóng)業(yè)科學(xué),2021,? 54(17):3712-3725.

XUE H L,LOU M Y,LI X,et al.Effects of phosphorus application levels on growth and yield of winter wheat under different crops for rotation [J].Scientia Agricultura Sinica,2021,54(17):3712-3725.

[19] ZHANG L,HE X,LIANG Z,et al.Tiller development affected by nitrogen fertilization in a high-yielding wheat production system[J].Crop Science,2020,60(2):1034-1047.

[20]ESPINOZA S,OVALLE C,ZAGAL E,et al.Contribution of legumes to wheat productivity in Mediterranean environments of central Chile [J].Field Crops Research,2012,133:150-159.

[21] 耿賽男,李嵐?jié)缬窦t,等.大豆和玉米影響后茬作物氮素供應(yīng)的研究進(jìn)展[J].植物營養(yǎng)與肥料學(xué)報(bào),2022,? 28(5):919-932.

GENG S N,LI L T,MIAO Y H,et al.Research advances on the mechanisms of soybean and maize influence nitrogen supply in subsequent crops [J].Journal of Plant Nutrition and Fertilizers,2022,28(5):919-932.

[22] 王新其,李國梁,施圣高,等.小麥高產(chǎn)群體莖蘗特征及產(chǎn)量構(gòu)成因素分析[J].作物研究,2016,30(6):688-693.

WANG? X Q,LI G L,SHI SH G,et al.Analysis about the population stem tiller traits of high-yielding wheat and its yield components [J].Crop Research,2016,30(6):688-693.

[23] 王立紅,張宏芝,王 重,等.新疆冬小麥不同產(chǎn)量水平群體特性分析[J].麥類作物學(xué)報(bào),2020,40(5):594-600.

WANG L H,ZHANG H ZH,WANG ZH,et al.Population characteristics of different yield levels of winter wheat in Xinjiang [J].Journal of Triticeae Crops,2020,40(5):594-600.

[24] 咸云宇,趙凌天,劉 暢,等.緩釋氮肥配施尿素對(duì)遲播小麥產(chǎn)量形成及氮素利用的影響[J].麥類作物學(xué)報(bào),2022,42(9):1117-1129.

XIAN Y Y,ZHAO L T,LIU CH,et al.E ffect of slow release nitrogen fertilizer combined with urea onyield formation and nitrogen utilization of late sowing wheat [J].Journal of Triticeae Crops,2022,42(9):1117-1129.

[25] 李鑫格,高 楊,劉小軍,等.播期播量及施氮量對(duì)冬小麥生長(zhǎng)及光譜指標(biāo)的影響[J].作物學(xué)報(bào),2022,48(4):975-987.

LI X G,GAO Y,LIU X J,et al.Effects of sowingdates,sowing rates,and nitrogen rates on growth and spectral indices in winter wheat [J].Acta Agronomica Sinica,2022,48(4):975-987.

[26] 屈會(huì)娟,李金才,沈?qū)W善,等.種植密度和播期對(duì)冬小麥品種蘭考矮早八干物質(zhì)和氮素積累與轉(zhuǎn)運(yùn)的影響[J].作物學(xué)報(bào),2009,35(1):124-131.

QU H J,LI J C,SHENG X SH,et al.Effects of plant density and seeding date on accumulation and translocation of dry matter and nitrogen in winter wheat cultivar lankao aizao 8 [J].Acta Agronomica Sinica,2009,35(1):124-131.

[27] CHEN J,CAO F,SHAN S,et al.Grain filling of early-season rice cultivars grown under mechanical transplanting [J].PLoS ONE,2019,14(11):e224935.

[28] YANG J C,ZHANG J H.Grain filling of cereals under soil drying[J].New Phytologist,2010,169(2):223-236.

[29] CORDOBA,MARIANO,BULLOCK,et al.Delineation of management zones to improve nitrogen management of wheat [J].Computers and Electronics in Agriculture,2015,110:103-113.

[30] HAMNR K,WEIH M,ERIKSSON J,et al.Influence of nitrogen supply on macro- and micronutrient accumulation during growth of winter wheat [J].Field Crops Research,2017,213:118-129.

[31] 郭文善,彭永欣,封超年,等.小麥不同花位籽粒重差異及其原因分析[J].江蘇農(nóng)學(xué)院學(xué)報(bào),1992(3):1-7.

GUO W SH,PENG Y X,F(xiàn)ENG CH N,et al.Weight difference of grains at different positions and its reason [J].Jiangsu Agricultural Research,1992(3):1-7.

[32] FAN F,YUNLIANG H,SHENGNAN W,et al.Theeffect of grain position on genetic improvement of grain number and thousand grain weight in winter wheat in north China [J].Frontiers in Plant Science,2018,9:129.

[33] LIANG,HAIYAN,LV,et al.Effect of polyamines on the grain filling of wheat under drought stress [J].Plant Physiology and Biochemistry,2016,100:113-129.

[34] LUO J,WONG I,KING B,et al.Co-creation and co-destruction of service quality through customer-to-customer interactions:Why prior experience matters [J].International Journal of Contemporary Hospitality Management,2019,31(3):1309-1329.

[35] TSUKAGUCHI T,TANAKA R,INOUE H,et al.Effects of high temperature and shading on grain abscisic acid content and grain filling pattern in rice (Oryza sativa L.) [J].Plant Production Science,2018,21(9):1-6.

[36] 王成璦,趙 磊,趙秀哲,等.氮肥用量對(duì)水稻不同穗位與粒位籽粒灌漿速率的影響[J].農(nóng)學(xué)學(xué)報(bào),2016,6(2):8-21.

WANG CH Y,ZHAO L,ZHAO X ZH,et al.Effects of nitrogen fertilizer amount on grain filling rate of different panicle and grain positions of rice [J].Journal of Agriculture,2016,6(2):8-21.

[37] 徐云姬,張偉楊,錢希旸,等.施氮量對(duì)小麥籽粒灌漿的影響及其生理機(jī)制[J].麥類作物學(xué)報(bào),2015,35(8):1119-1126.

XU Y J,ZHANG W Y,QIAN X Y,et al.Effect of nitrogen on grain filling of wheat and its physiological mechanism [J].Journal of Triticeae Crops,2015,35(8):1119-1126.

[38] 李 娜,張保軍,張正茂,等.不同施氮量和播量對(duì)‘普冰151干物質(zhì)積累特征及籽粒灌漿特性的影響[J].西北農(nóng)業(yè)學(xué)報(bào),2017,26(5):693-701.

LI N,ZHANG B J,ZHANG ZH? M,et al.Effects of different n application rate and seeding rate on dry matter accumulation and grain filling characteristics of‘pubing 151 [J].Acta Agriculturae Boreali-occidentalis Sinica,2017,26(5):693-701.

[39] LIANG Z,BAO A,LI H,et al.The effect of nitrogen level on rice growth,carbon-nitrogen metabolism and gene expression [J].Biologia,2015,70(10):1340-1350.

[40] YANG J,ZHANG J.Grain-filling problem in ‘super? rice [J].Journal of Experimental Botany,2010,61(1):1-5.

[41] 文廷剛,陳昱利,杜小鳳,等.不同植物生長(zhǎng)調(diào)節(jié)劑對(duì)小麥籽粒灌漿特性及粒重的影響[J].麥類作物學(xué)報(bào),2014,? 34(1):84-90.

WEN T G,CHEN Y? L,DU X F,et al.Effects of different plant growth regulators on the grain filling characteristics and grain weight in wheat [J].Journal of Triticeae Crops,2014,34(1):84-90.

[42] 李朝蘇,湯永祿,吳 春,等.施氮量對(duì)四川盆地小麥生長(zhǎng)及灌漿的影響[J].植物營養(yǎng)與肥料學(xué)報(bào),2015,21(4):873-883.

LI CH S,TANG Y L,WU CH,et al.Effect of N rate on growth and grain filling of wheat in Sichuan Basin [J].Plant Nutrition and Fertilizer Science,2015,21(4):873-883.

[43] TAMMAM A M,EL-RADY A.Inheritance of yield and its components in some bread wheat (Triticum aestivum) crosses under heat stress [J].Egyptian Journal of Agricultural Research,2010,88(4):1239-1250.

[44] FETHI B,MOHAMED E G.Epistasis and genotype-by-environment interaction of grain yield related traits in durum wheat [J].Journal of Plant Breeding and Crop Science,2010,2(2):24-29.

[45] 蔣會(huì)利,溫曉霞,廖允成.施氮量對(duì)冬小麥產(chǎn)量的影響及土壤硝態(tài)氮運(yùn)轉(zhuǎn)特性[J].植物營養(yǎng)與肥料學(xué)報(bào),2010,? 16(1):237-241.

JIANG H L,WEN X X,LIAO Y CH.Effects of nitrogen application on winter wheat yield and translation of soil? NO-3-N [J].Plant Nutrition and Fertilizer Science,2010,16(1):237-241.

[46] 史校艷,王志強(qiáng),谷慶昊,等.施氮量對(duì)不同茬口冬小麥產(chǎn)量及氮肥利用率的影響[J].生態(tài)學(xué)雜志,2019,38(7):2041-2048.

SHI X Y,WANG ZH Q,GU Q H,et al.Effects of nitrogen application on yield and nitrogen use efficiency of winter wheat with different former crops [J].Chinese Journal of Ecology,2019,38(7):2041-2048.

[47] BRYE K R,LONGER D E,CORDELL M L,et al.Wheatresponse to nitrogen under low phosphorus and potassium fertility in a wheat-soybean production system [J].Communications in Soil Science & Plant Analysis,2007,38(3/4):389-402.

Effect of Nitrogen Application Rate on Growth and Yield?? of? Winter Wheat? under Different Crop Rotations

Abstract To investigate the effect of nitrogen application rate on the growth and yield of winter wheat in different crop rotations and to establish a reasonable crop rotation system and nitrogen fertilizer management, three nitrogen application rates were set (N1:135 kg·hm-2;N2:180 kg·hm-2;N3:225 kg·hm-2). This study was conducted based on soybean and maize crop rotations to study the effect of nitrogen application rates on stem and tiller dynamics, leaf area index, dry matter accumulation, grain filling, and yield and yield components of winter wheat under different crop rotations. The results showed that,at the same nitrogen application rate, the tillering ability, leaf area index, dry matter accumulation, grain? mass, and yield of winter wheat in soybean crop rotation were significantly higher than those in maize crops for rotation. In the maize crop rotation, the tillering ability, leaf area index and dry matter accumulation of winter wheat followed the order of N3>N2>N1 treatment; under the soybean crop rotation, the above-mentioned indexes of winter wheat showed the order of N2>N3>N1 treatment, and the yield was the highest under the N2 treatment, significantly increasing by 18.29 % compared to the maize crop rotation. When combining grain filling with yield components, it was observed that the 1 000-grain? mass of soybean crop rotation was better than that in maize crop rotation. This improvement was attributed to the significant increase in the average grain filling rate of inferior grain,the average grain filling rate of inferior grain in the soybean crop rotation. After analyzing fitting curve between yield and nitrogen application rate, the maximum yield nitrogen application rate and the optimal economic yield nitrogen application rate of soybean crop rotation were 203.60 and 199.11 kg·hm-2, respectively, for maize crop rotation, these values were?? 271.09 and 264.40 kg·hm-2. In conclusion, soybean crop rotation is superior to maize crop rotation in the growth and yield of winter wheat, and the recommended nitrogen application rate is 199.11-? 203.60 kg·hm-2.

Key words Nitrogen application rate; Crop rotation; Wheat; Yield

猜你喜歡
施氮量茬口小麥
主產(chǎn)區(qū)小麥?zhǔn)召忂M(jìn)度過七成
孔令讓的“小麥育種夢(mèng)”
金橋(2021年10期)2021-11-05 07:23:28
葉面施肥實(shí)現(xiàn)小麥畝增產(chǎn)83.8千克
蕎麥輪作倒茬對(duì)比試驗(yàn)
哭娃小麥
茬口的熊
玉米‖花生茬口對(duì)冬小麥旗葉光化學(xué)活性的影響
移栽密度與施氮量對(duì)煙堿含量及產(chǎn)質(zhì)量的影響
花后高溫脅迫下不同施氮量對(duì)春小麥抗氧化特性的影響
豫東煙區(qū)施氮量和種植密度對(duì)烤煙生長(zhǎng)發(fā)育及產(chǎn)量、品質(zhì)的影響
揭东县| 兴山县| 开封市| 罗江县| 吉安县| 怀柔区| 那坡县| 万载县| 芜湖县| 三穗县| 江西省| 百色市| 凤城市| 开封县| 明溪县| 新昌县| 双城市| 磐安县| 平顺县| 巴里| 河间市| 宜都市| 德昌县| 临洮县| 永川市| 天等县| 盱眙县| 房产| 白河县| 隆回县| 霍林郭勒市| 喀喇| 华安县| 商洛市| 务川| 乌拉特后旗| 和田县| 阿克| 淳安县| 固阳县| 汉沽区|