国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

熱傳導(dǎo)方程Robin系數(shù)反問題解的唯一性及正則化解的存在性

2024-04-04 14:06:55王兵賢徐梅張玲萍

王兵賢 徐梅 張玲萍

摘要:Robin系數(shù)在熱傳導(dǎo)模型中刻畫了熱傳導(dǎo)區(qū)域邊界上的熱交換,是一類非常重要的參數(shù),本文基于某小時段溫度測量值反演熱傳導(dǎo)模型中的Robin系數(shù).首先,在邊界值以及測量值滿足一定的光滑性條件時,給出了反問題解的唯一性;其次,基于Tikhonov正則化思想,通過構(gòu)造目標(biāo)泛函將反問題轉(zhuǎn)化為求目標(biāo)泛函的極小值,并證明了泛函極小元的存在性.

關(guān)鍵詞:熱傳導(dǎo)方程;Robin系數(shù);反問題;唯一性;極小元

中圖分類號:O 241.82文獻(xiàn)標(biāo)志碼:A文章編號:1001-988Ⅹ(2024)02-0026-03

Uniqueness of solution to inverse problem for the Robin coefficientin heat conduction equation and existence of its regularized solution

WANG Bing-xian,XU Mei,ZHANG Ling-ping

Abstract:The Robin coefficient characterizes the heat exchange on the edge of the heat conduction region in the heat conduction model,which is a very important parameter.This article discussed the inversion problem of the Robin coefficient in the heat conduction model based on temperature measurements during a certain period of time.Firstly,the uniqueness result of the solution to the inverse problem was given under certain conditions of boundary and measured values.Then,based on Tikhonovs regularization idea,the objective functional was constructed,and the inverse problem was transformed into finding the minimum of the objective functional,and the existence of minimizer was proved.

Key words:heat conduction equation;Robin coefficient;inverse problem;uniqueness;minimizer

0 引言

設(shè)區(qū)域ΩRd(d=2,3)為有界區(qū)域,且具有Lipchitz邊界Ω,考慮熱傳導(dǎo)方程初邊值問題

4 結(jié)束語

本文討論了Robin系數(shù)反演問題解的唯一性以及目標(biāo)最優(yōu)化問題極小元的存在性.對于反問題的條件穩(wěn)定性、目標(biāo)泛函最優(yōu)化下降算法的研究,以及數(shù)值模擬,我們將另文討論.

參考文獻(xiàn):

[1]CANNON J R.The One-Dimensional Heat Equation[M].Menlo Park,CA:Addison-Wesley,1984.

[2]JIN B T,LU X L.Numerical identification of a Robin coefficient in parabolic problems[J].Math Compu,2012,81(17):1369.

[3]YANG F L,YAN L,WEI T.The identification of a Robin coefficient by a conjugate gradient method[J].Int J Numer Math Engi,2009,78:800.

[4]LIU J J,WANG Y C.On the reconstruction of boundary impedance of heat conduction system from nonlocal measurement[J].Inverse Problems,2016,32(7):075002.

[5]HAO D N.A noncharacteristic Cauchy problem for linear parabolic equations II[J].Numerical Functional Analysis and Optimization,1992,13:541.

[6]CHAABANE S,F(xiàn)ELLAH I,JAOUA M,et al.Logarithmic stability estimates for a Robin coefficient in two dimensional Laplace inverse problems[J].Inverse Problems,2004,20(1):47.

[7]LIN F,F(xiàn)ANG W.A linear integral equation approach to the Robin inverse problem[J].Inverse Problems,2005,21(5):1757.

[8]DIVO E,KASSAB A J,KAPAT J S,et al. Retrieval of multidimensional heat transfer coefficient distributions using an inverse bem-based regularized algorithm:numerical and experimental results[J].Engineering Analysis with Boundary Elements,2005,29:150.

[9]FASINO D,INGLESE G.An inverse Robin problem for Laplaces equation:theoretical results and numerical methods[J].Inverse Problems,1999,15(1):41.

[10]LI Z Y,LIU Y K,YAMAMOTO M.Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions[J].Inverse Problems and Imaging,2023,17(1):1.

[10]JING X H,PENG J G.Simultaneous uniqueness for an inverse problem in a time-fractional diffusion equation[J].Applied Mathematics Letters,2020,109:106558.

(責(zé)任編輯 馬宇鴻)

收稿日期:2023-05-05;修改稿收到日期:2023-05-30

基金項目:國家自然科學(xué)基金資助項目(11501236);江蘇省高校自然科學(xué)基金面上項目(18kJD110002);淮陰師范學(xué)院博士啟動基金項目(31WBX00)

作者簡介:王兵賢(1978—),男,甘肅民勤人,副教授,博士.主要研究方向為數(shù)學(xué)物理反問題及統(tǒng)計模型快速算法.E-mail:wangbingxian@126.com

泾川县| 谢通门县| 邳州市| 萍乡市| 呼玛县| 青龙| 井研县| 淮安市| 云南省| 那坡县| 津南区| 濉溪县| 尼玛县| 桑日县| 惠水县| 博乐市| 深水埗区| 青阳县| 顺昌县| 分宜县| 衡东县| 项城市| 鄢陵县| 休宁县| 台南县| 河津市| 肃南| 明光市| 堆龙德庆县| 郁南县| 方正县| 文昌市| 绥中县| 武隆县| 和政县| 淳安县| 怀化市| 罗定市| 炎陵县| 上栗县| 武义县|