国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

非線性三階時(shí)滯微分方程的振動(dòng)性

2024-04-04 14:06:55趙玉萍

摘要:利用Riccati變換、不等式技巧和分析性質(zhì),研究了一類三階非線性時(shí)滯微分方程解的振動(dòng)性和漸近性,獲得了該類方程振動(dòng)的充分條件,最后用例子作了驗(yàn)證.

關(guān)鍵詞:時(shí)滯微分方程;Riccati變換;振動(dòng)性;漸近性;正解

中圖分類號(hào):O 175.7文獻(xiàn)標(biāo)志碼:A文章編號(hào):1001-988Ⅹ(2024)02-0021-05

Oscillation criteria for third order nonlinear delay differential equations

ZHAO Yu-ping

Abstract:By using Riccati transformation,inequality techniques and analytical properties,the oscillation criteria and asymptotic behavior of solutions for a class of third order nonlinear delay differential equations are studied,the sufficient conditions for the oscillation of the equations are established.Finally,an example is used to verify it.

Key words:delay differential equation;Riccati transformation;oscillation criteria;asymptotic property;positive solution

0 引言

近年來,高階非線性微分方程的振動(dòng)性問題被廣泛應(yīng)用在生物學(xué)、天體物理、人工智能和流體力學(xué)等高新技術(shù)領(lǐng)域,方程振動(dòng)性的研究受到了很大關(guān)注,取得了許多重要結(jié)果[1-12].

參考文獻(xiàn):

[1]DˇZURINA J,JADLOVSK′A I.Oscillation of third-order differential equations with noncanonical operators[J].Appl Math Comput,2018,336(1):394.

[2]YAO Jian-li,ZHANG Xiao-ping,YU Jian-bao.Oscillation of third-order nonlinear delay differential equations[J].Ann Appl Math,2020,36(4):416.

[3]林文賢.一類具阻尼項(xiàng)的三階非線性中立型泛函微分方程的振動(dòng)性[J].中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,55(6):5.

[4]曾云輝,羅李平,汪志紅,等.一類具阻尼項(xiàng)的三階非線性中立型泛函微分方程的振動(dòng)性和漸近性[J].振動(dòng)與沖擊,2021,32(2):22.

[5]仉志余,宋菲菲,俞元洪.顯含阻尼項(xiàng)的三階非線性中立型Emden-Fowler微分方程的振動(dòng)性和漸近性[J].應(yīng)用數(shù)學(xué),2020,33(3):12.

[6]賈對(duì)紅.具有連續(xù)分布時(shí)滯的三階中立型微分方程的振動(dòng)性[J].太原師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2021,20(2):17.

[7]劉一龍.時(shí)間尺度上三階Emden-Fowler動(dòng)力方程的振動(dòng)準(zhǔn)則[J].浙江大學(xué)學(xué)報(bào)(理學(xué)版),2014,41(3):7.

[8]汪皎月.三階中立型微分方程的振動(dòng)準(zhǔn)則[J].西南大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,33(36):67.

[9]AKTA M F,TIRVAKI A,ZAFER A.Oscillation criteria for third-order nonlinear functional differential equations[J].Journal of Taiyuan Normal University,2020,23(7):756.

[10]YANG Lu,XU Zeng.Oscillation of certain third-order quasilinear neutral differential equations[J].Mathematica Slovaca,2014,64(1):85.

[11]LI Weng-xia.Oscillation results of Philos-type for third-order half linear neutral damped differential equations[J].Journal of Anhui University(Natural Science Edition),2016,33(5):89.

[12]高承華,呂莉.邊界條件含有特征參數(shù)的二階離散Sturm-Liouville問題的譜[J].西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,55(6):1.

(責(zé)任編輯 馬宇鴻)

收稿日期:2023-08-10;修改稿收到日期:2023-09-18

基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(12161071);青海省科技廳資助項(xiàng)目(2023-ZJ-949Q)

作者簡(jiǎn)介:趙玉萍(1975—),女,青海西寧人,教授,碩士.主要研究方向?yàn)槲⒎址匠陶駝?dòng)性.E-mail:234880202@qq.com

雅江县| 仪征市| 澄城县| 黔西县| 南部县| 宿州市| 沙坪坝区| 横峰县| 杭锦旗| 张家界市| 玛纳斯县| 湖北省| 家居| 房产| 手游| 曲沃县| 灵璧县| 平度市| 垣曲县| 调兵山市| 福清市| 嘉荫县| 北宁市| 区。| 阆中市| 平顶山市| 芜湖市| 峨山| 保山市| 锡林郭勒盟| 汉中市| 苏尼特左旗| 遂宁市| 乐都县| 涟源市| 台湾省| 丹阳市| 澄江县| 乃东县| 台南县| 龙胜|