潘昱睿 王瑜元 白玉龍
摘 要 神經(jīng)病理性疼痛是一個重要的臨床問題,常規(guī)藥物治療效果不佳。A型肉毒毒素可緩解多種疼痛,其鎮(zhèn)痛作用被認為與神經(jīng)膠質(zhì)細胞相關。本文概要介紹A型肉毒毒素作用于神經(jīng)膠質(zhì)細胞緩解神經(jīng)病理性疼痛機制的研究進展,進一步探究A型肉毒毒素在神經(jīng)病理性疼痛治療上的臨床潛力。
關鍵詞 神經(jīng)病理性疼痛 A型肉毒毒素 神經(jīng)膠質(zhì)細胞
中圖分類號:R971; R961 文獻標志碼:A 文章編號:1006-1533(2024)03-0009-07
引用本文 潘昱睿, 王瑜元, 白玉龍. A型肉毒毒素作用于神經(jīng)膠質(zhì)細胞緩解神經(jīng)病理性疼痛機制的研究進展[J]. 上海醫(yī)藥, 2024, 45(3): 9-15.
基金項目:國家自然科學基金青年科學基金項目(82102663)
Research progress on mechanism of botulinum toxin type A acting on glial cells to relieve neuropathic pain
PAN Yurui, WANG Yuyuan, BAI Yulong
(Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China)
ABSTRACT Neuropathic pain is an important clinical problem that is poorly treated with conventional medications. Botulinum toxin type A relieves a wide range of pain, and its analgesic effects are thought to be associated with glial cells. This article summarizes the research progress of the mechanism of botulinum toxin type A acting on glial cells to relieve neuropathic pain, and further explores the clinical potential of botulinum toxin type A in the treatment of neuropathic pain.
KEY WORDS neuropathic pain; botulinum toxin type A; glial cells
神經(jīng)病理性疼痛是由影響軀體感覺神經(jīng)系統(tǒng)的各種損害或疾病引起的直接后果,表現(xiàn)為自發(fā)性疼痛、痛覺過敏(由傷害性刺激引起的痛覺增強)和觸誘發(fā)痛(由無害刺激引起的疼痛),以及睡眠剝奪、焦慮、抑郁等共病。A型肉毒毒素是革蘭陽性厭氧菌肉毒梭狀芽孢桿菌產(chǎn)生的一種神經(jīng)毒素[1],被廣泛用于治療肌張力障礙疾病,如眼瞼痙攣、面肌痙攣等。近年來,A型肉毒毒素在神經(jīng)病理性疼痛治療上的應用逐漸增多并顯示有良好效果,但作用機制尚未完全明確。多項研究表明,神經(jīng)膠質(zhì)細胞尤其是小膠質(zhì)細胞在神經(jīng)病理性疼痛的發(fā)展、維持中起著重要作用[2-3]。本文概要介紹A型肉毒毒素通過作用于神經(jīng)膠質(zhì)細胞緩解神經(jīng)病理性疼痛機制的研究進展。
1 A型肉毒毒素
肉毒毒素是肉毒梭狀芽孢桿菌產(chǎn)生的一類神經(jīng)毒素,其中A型肉毒毒素已廣泛用于臨床。A型肉毒毒素由通過二硫鍵連接的輕鏈和重鏈組成,其輕鏈可裂解可溶性N-乙基馬來酰亞胺敏感因子附著蛋白受體(soluble N-ethylmaleimide-sensitive factor attachment protein receptor, SNARE)而阻止神經(jīng)遞質(zhì)和神經(jīng)肽的釋放。長期以來,A型肉毒毒素的鎮(zhèn)痛作用一直被認為源自于其肌肉松弛作用。但一項對神經(jīng)病理性疼痛模型的研究顯示,A型肉毒毒素治療的肌肉松弛持續(xù)時間和疼痛緩解持續(xù)時間并不重疊,表明A型肉毒毒素具有獨立于肌肉松弛的鎮(zhèn)痛作用[4]。A型肉毒毒素不僅抑制乙酰膽堿釋放,還抑制其他神經(jīng)遞質(zhì)和神經(jīng)肽釋放,如P物質(zhì)、降鈣素基因相關肽等[5]。A型肉毒毒素被認為是一種用于治療神經(jīng)病理性疼痛的三線止痛藥[6]。A型肉毒毒素治療神經(jīng)病理性疼痛有效,但鎮(zhèn)痛機制尚未完全明確。
2 神經(jīng)膠質(zhì)細胞
小膠質(zhì)細胞存在于大腦和脊髓的所有區(qū)域。作為一種巨噬細胞,小膠質(zhì)細胞在神經(jīng)組織的免疫和炎癥方面起著重要作用[7]。小膠質(zhì)細胞活化表現(xiàn)為“小膠質(zhì)細胞增生”,特征是顯著的細胞形態(tài)變化(肥大)、增殖和功能變化[3]。與小膠質(zhì)細胞類似,星形膠質(zhì)細胞也會在各種病理條件下被激活,導致“星形膠質(zhì)細胞增生”,特征是細胞形態(tài)變化、增殖和星形膠質(zhì)細胞標記的膠質(zhì)纖維酸性蛋白水平顯著上調(diào)[8-9]。
3 神經(jīng)膠質(zhì)細胞在神經(jīng)病理性疼痛中的作用
神經(jīng)系統(tǒng)和免疫系統(tǒng)的相互作用對神經(jīng)病理性疼痛的發(fā)展、維持起著重要作用[2]。研究顯示,正常情況下刺激小膠質(zhì)細胞可導致痛覺過敏,表明小膠質(zhì)細胞參與疼痛的產(chǎn)生[10]。神經(jīng)損傷發(fā)生后,小膠質(zhì)細胞通過改變形態(tài)和激活胞內(nèi)炎癥通路,釋放促炎細胞因子,促進神經(jīng)炎癥的發(fā)生、發(fā)展[11-12]。多種與疼痛相關的神經(jīng)調(diào)質(zhì)能作用于小膠質(zhì)細胞,小膠質(zhì)細胞表面廣泛表達的各種神經(jīng)遞質(zhì)受體、激素和神經(jīng)調(diào)質(zhì)受體在痛覺敏化中起著關鍵作用[13-14]。神經(jīng)損傷會導致傷害性信息通過小膠質(zhì)細胞胞內(nèi)信號通路轉(zhuǎn)導,如絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)、核轉(zhuǎn)錄因子κB(nuclear transcription factor κB, NF-κB)、信號轉(zhuǎn)導及轉(zhuǎn)錄激活蛋白、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)等信號通路[12, 15]。
星形膠質(zhì)細胞已被認為是另一種參與神經(jīng)病理性疼痛發(fā)生、發(fā)展的神經(jīng)膠質(zhì)細胞。神經(jīng)病理性疼痛信號的引入會上調(diào)星形膠質(zhì)細胞中膠質(zhì)纖維酸性蛋白的表達和多種活性物質(zhì)的分泌[16],進而促進神經(jīng)病理性疼痛的發(fā)生、發(fā)展,介導中樞敏化的形成。神經(jīng)損傷發(fā)生后,星形膠質(zhì)細胞相對較晚地被激活,通常在小膠質(zhì)細胞被激活之后,但在神經(jīng)病理性疼痛持續(xù)時間內(nèi),星形膠質(zhì)細胞保持活化狀態(tài)[17-18]。
4 A型肉毒毒素作用于小膠質(zhì)細胞緩解神經(jīng)病理性疼痛的機制
A型肉毒毒素、星形膠質(zhì)細胞和小膠質(zhì)細胞之間相互作用的主要證據(jù)大多來自對神經(jīng)病理性疼痛動物模型的研究。
4.1 A型肉毒毒素通過P2X7受體促進小膠質(zhì)細胞向M2表型的極化來緩解疼痛
在中樞神經(jīng)系統(tǒng),P2X7受體及其mRNA在小膠質(zhì)細胞中的表達水平最高,在星形膠質(zhì)細胞和少突膠質(zhì)細胞中的表達量則低得多[19-20]。一項研究發(fā)現(xiàn),小膠質(zhì)細胞通過P2X7受體上調(diào)促炎細胞因子白介素-18水平來維持癌癥痛,驅(qū)動脊髓神經(jīng)元過度活化和中樞敏化[21]。小鼠周圍神經(jīng)損傷后,P2X7受體基因的缺失可顯著降低其引起的痛覺過敏[22]。這些研究結(jié)果表明,P2X7受體在神經(jīng)病理性疼痛的發(fā)生、發(fā)展中起著重要作用。
小膠質(zhì)細胞有M1、M2兩種表型。M1型小膠質(zhì)細胞可增加各種促炎細胞因子的合成和釋放,如腫瘤壞死因子-α(tumor necrosis factor-α, TNF-α)、白介素-18等,激活鄰近神經(jīng)元,導致痛覺過敏和疼痛持續(xù)[23]。M2型小膠質(zhì)細胞則能分泌抗炎細胞因子,如白介素-4、白介素-10等。Higashi等[24]發(fā)現(xiàn),P2X7受體可促進小膠質(zhì)細胞向M1表型的極化,并釋放促炎細胞因子,而抑制這種極化,就可緩解疼痛。Wu等[25]的研究表明,在體、離體時P2X7受體表達水平的上調(diào)都會誘導脊髓小膠質(zhì)細胞向M1表型的極化,且伴隨TNF-α、白介素-18的分泌。用BBG(一種P2X7受體的特異性拮抗劑)處理癌癥骨痛大鼠模型可顯著上調(diào)M2表型標志物(CD163、精氨酸酶-1)和抗炎細胞因子(白介素-4、白介素-10)的表達水平,同時下調(diào)M1表型標志物(誘異型一氧化氮合酶、CD86)和促炎細胞因子(TNF-α、白介素-18)的表達水平。這些數(shù)據(jù)表明,P2X7受體參與調(diào)節(jié)小膠質(zhì)細胞的M1/M2表型極化。Gui等[26]的研究發(fā)現(xiàn),在慢性壓迫損傷所致神經(jīng)病理性疼痛大鼠模型中,A型肉毒毒素能通過下調(diào)P2X7受體表達水平而誘導小膠質(zhì)細胞向M2表型的極化,提高大鼠的疼痛閾值。目前,盡管P2X7受體是如何誘導小膠質(zhì)細胞向M2表型極化的尚不完全清楚,但可確定的是,A型肉毒毒素能夠通過P2X7受體促進小膠質(zhì)細胞向M2表型的極化,故對于神經(jīng)病理性疼痛,設法使小膠質(zhì)細胞從促炎表型轉(zhuǎn)化為抗炎表型或許是一種新的有效治療策略。
4.2 A型肉毒毒素通過影響P2X4受體、p38 MAPK信號通路來緩解疼痛
P2X4受體是小膠質(zhì)細胞上的另一種三磷酸腺苷受體。2003年,Tsuda等[27]首次在神經(jīng)病理性疼痛研究中觀察到P2X4受體表達水平的變化:神經(jīng)損傷后,脊髓中小膠質(zhì)細胞P2X4受體的表達水平上調(diào),而神經(jīng)元和星形膠質(zhì)細胞的P2X4受體表達水平卻無變化。阻斷P2X4受體能抑制神經(jīng)損傷引起的觸誘發(fā)痛[27]。此后,越來越多的研究表明,小膠質(zhì)細胞P2X4受體是神經(jīng)病理性疼痛發(fā)生、發(fā)展的重要參與者。
p38 MAPK是神經(jīng)膠質(zhì)細胞中的重要信號通路,與疼痛介質(zhì)的產(chǎn)生密切相關[28]。有研究觀察到選擇性神經(jīng)損傷(spared nerve indury)大鼠脊髓小膠質(zhì)細胞P2X4受體、p38 MAPK、腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor, BDNF)的表達水平上調(diào)[29],而小膠質(zhì)細胞P2X4受體能通過激活并誘導p38 MAPK信號通路釋放BDNF、p38或MAPK的抑制因子來減弱這一現(xiàn)象[30-31]。一項研究表明,A型肉毒毒素可通過抑制小膠質(zhì)細胞P2X4受體- p38 MAPK信號通路而影響小膠質(zhì)細胞的活化[32]。P2X4受體、p38 MAPK信號通路在A型肉毒毒素緩解神經(jīng)病理性疼痛中起著重要作用。
4.3 A型肉毒毒素通過靶向Toll樣受體(Toll-like receptor, TLR)2-髓樣分化因子88(myeloid differentiation factor 88, MyD88)信號通路裂解突觸體相關蛋白(synaptosomal-associated protein, SNAP)-23來緩解疼痛
SNARE是A型肉毒毒素的作用靶點。既往體外、體內(nèi)研究表明,SNAP-23而不是SNAP-25在A型肉毒毒素對小膠質(zhì)細胞的影響中起著重要作用[33-34]。在小膠質(zhì)細胞表面表達的眾多受體中,TLR家族特別是TLR2和TLR4代表了小膠質(zhì)細胞活化和神經(jīng)損傷之間的可能聯(lián)系[35-36]。MyD88是介導TLR效應的最重要胞內(nèi)途徑。小膠質(zhì)細胞被激活后,其表面TLR能通過TLR- MyD88信號通路激活并促進NF-κB合成細胞因子,如TNF-α、白介素-1β等[37]。
Piotrowska等[33]發(fā)現(xiàn),A型肉毒毒素能通過抑制胞內(nèi)信號通路(NF-κB、p38、胞外調(diào)節(jié)蛋白激酶1/2信號通路)的活化來阻止內(nèi)毒素誘導的促炎細胞因子的釋放。這與先前對巨噬細胞的研究結(jié)果一致:A型肉毒毒素可減少MAPK的磷酸化[38];NF-κB、p38、胞外調(diào)節(jié)蛋白激酶1/2信號通路與神經(jīng)炎癥的發(fā)生、發(fā)展密切相關。相關研究顯示,A型肉毒毒素能下調(diào)神經(jīng)病理性疼痛大鼠小膠質(zhì)細胞TLR2、MyD88的表達水平,但對TLR4表達水平?jīng)]有影響[33, 39]。最近,研究者們注意到了TLR與SNARE之間的相互作用問題。Nair-Gupta等[40]的研究發(fā)現(xiàn),依賴MyD88的TLR信號通路參與樹突狀細胞吞噬小體上SNAP-23的磷酸化。磷酸化的SNAP-23可穩(wěn)定SNARE復合體,導致吞噬小體與內(nèi)質(zhì)體再循環(huán)區(qū)室融合,最終形成交叉呈遞。在小膠質(zhì)細胞中可觀察到類似現(xiàn)象[1]。因此,可以推斷,抑制小膠質(zhì)細胞中的TLRMyD88- NF-κB信號通路就能減少SNAP-23。既往在對小膠質(zhì)細胞體外模型和慢性壓迫損傷所致疼痛大鼠模型的研究中都觀察到,A型肉毒毒素可下調(diào)小膠質(zhì)細胞SNAP-23表達水平,且在對慢性壓迫損傷所致疼痛大鼠模型的研究中進一步發(fā)現(xiàn),A型肉毒毒素通過兩種表觀遺傳修飾下調(diào)SNAP-23表達水平:一方面,A型肉毒毒素通過抑制κB抑制因子激酶磷酸化來抑制SNAP-23的表達和磷酸化;另一方面,A型肉毒毒素通過泛素介導的SNAP-23降解來減少SNAP-23的表達[33, 39]。總之,A型肉毒毒素似能通過抑制TLR2- MyD88信號通路而下調(diào)SNAP-23表達水平并減少其磷酸化,進而阻止促炎細胞因子的產(chǎn)生。
4.4 A型肉毒毒素上調(diào)沉默信息調(diào)節(jié)因子1(silent information regulator 1, SIRT1)表達水平使NF-κB、p53、PI3K-蛋白激酶B信號通路失活來緩解疼痛
SIRT1已被證實是防治神經(jīng)病理性疼痛的潛在靶點[41-42]。SIRT1存在于細胞核和細胞質(zhì)中,主要作用是使細胞核內(nèi)的p53、NF-κB等轉(zhuǎn)錄因子去乙?;痆43-44]。在各種神經(jīng)病理性疼痛動物模型的脊髓中均觀察到,SIRT1的表達水平較低[45-46]。研究發(fā)現(xiàn),持續(xù)性痛覺過敏和慢性壓迫損傷所致疼痛與脊髓中SIRT1表達水平降低有關,而鞘內(nèi)注射SIRT1激動劑SRT1720則可上調(diào)SIRT1表達水平,進而通過抑制NF-κB乙?;妥钄郥NF-α、白介素-6等促炎細胞因子的釋放來緩解神經(jīng)病理性疼痛[47]。這些研究結(jié)果表明,脊髓中的SIRT1在神經(jīng)病理性疼痛發(fā)生、發(fā)展中起著重要作用。
近期,一項對脊髓損傷大鼠模型的研究發(fā)現(xiàn),A型肉毒毒素在體內(nèi)、體外均能顯著上調(diào)SIRT1表達水平,從而使NF-κB、p53、PI3K-蛋白激酶B等炎癥和損傷相關信號通路失活,減輕炎癥和氧化應激[46]。若再聯(lián)合米諾環(huán)素處理,效果更明顯[46]。p53是細胞凋亡途徑中的關鍵分子之一,其表達上調(diào)可直接誘導細胞凋亡[48]。一項對體內(nèi)、體外脊髓損傷模型的研究發(fā)現(xiàn),SIRT1可能通過p53信號通路抑制神經(jīng)元凋亡[49]。一項小膠質(zhì)細胞培養(yǎng)研究發(fā)現(xiàn),傷害性趨化因子-1會深度激活小膠質(zhì)細胞的PI3K-蛋白激酶B信號通路[50]。進一步的體內(nèi)研究顯示,鞘內(nèi)注射PI3K抑制劑LY29400不僅能顯著降低骨癌痛動物模型脊髓中的小膠質(zhì)細胞水平,而且可降低骨癌痛引起的機械性痛覺過敏[50]。這些研究結(jié)果表明,A型肉毒毒素可能通過上調(diào)SIRT1表達水平使NF-κB、p53、PI3K-蛋白激酶B信號通路失活,最終減輕神經(jīng)炎癥。
5 A型肉毒毒素作用于星形膠質(zhì)細胞緩解神經(jīng)病理性疼痛的機制
許多研究表明,抑制星形膠質(zhì)細胞活化可減輕各種疼痛動物模型的疼痛[51-53],但A型肉毒毒素對星形膠質(zhì)細胞的作用尚不明確。Marinelli等[34]的研究發(fā)現(xiàn),A型肉毒毒素系通過裂解脊髓星形膠質(zhì)細胞中的SNAP-25而產(chǎn)生神經(jīng)病理性疼痛緩解作用的。其他研究也顯示,在經(jīng)A型肉毒毒素處理后的脂多糖激活的培養(yǎng)星形膠質(zhì)細胞[54]和脊髓背角星形膠質(zhì)細胞(慢性壓迫損傷所致疼痛模型[34, 55]和脊髓損傷模型[56])中檢測到裂解的SNAP-25。不過,多項體外研究證實,A型肉毒毒素不影響脂多糖刺激的培養(yǎng)星形膠質(zhì)細胞的促炎細胞因子(白介素-1β、白介素-6、白介素-18、一氧化氮合酶2)和抗炎細胞因子(白介素-1受體拮抗劑、白介素-10、白介素-18結(jié)合蛋白)的釋放。此外,A型肉毒毒素不影響脂多糖處理的培養(yǎng)原代星形膠質(zhì)細胞中MAPK、p38、胞外調(diào)節(jié)蛋白激酶1/2和NF-κB信號通路的活化,對TLR2、TLR4的表達水平亦無影響[33]。Holm等[57]的研究發(fā)現(xiàn),星形膠質(zhì)細胞對TLR2和TLR3激動劑的反應較強,對TLR4激動劑的反應完全依賴于功能性小膠質(zhì)細胞的存在。A型肉毒毒素對星形膠質(zhì)細胞的直接影響似乎較為輕微。
6 A型肉毒毒素作用于少突膠質(zhì)細胞緩解神經(jīng)病理性疼痛的機制
有關少突膠質(zhì)細胞在慢性疼痛發(fā)病機制中所起作用的研究較少。在部分視神經(jīng)脊髓炎(一種脫髓鞘疾?。┗颊咧锌蓹z測到針對髓鞘少突膠質(zhì)細胞糖蛋白的自身抗體[58]。相當部分的多發(fā)性硬化癥(另一種脫髓鞘疾病)患者會出現(xiàn)慢性疼痛[59],其特征是自身免疫介導的少突膠質(zhì)細胞丟失,這表明人類少突膠質(zhì)細胞的破壞與疼痛之間可能存在一定的關聯(lián)。使用白喉毒素對成年小鼠少突膠質(zhì)細胞進行實驗性消融,小鼠會發(fā)生持續(xù)幾周的神經(jīng)病理性疼痛,且疼痛的發(fā)生不依賴適應性免疫細胞或反應性小膠質(zhì)細胞和星形膠質(zhì)細胞[60],表明少突膠質(zhì)細胞可能獨立于免疫因素或反應性小膠質(zhì)細胞和星形膠質(zhì)細胞而在疼痛中起著作用。Zarpelon等[61]的研究發(fā)現(xiàn),少突膠質(zhì)細胞是慢性壓迫損傷所致疼痛模型誘導產(chǎn)生白介素-33的主要細胞,而缺乏白介素-33受體ST2的小鼠表現(xiàn)出疼痛減輕。此外,鞘內(nèi)注射白介素-33會引起幼年小鼠的超敏反應,并增強其神經(jīng)損傷后的機械性痛覺過敏,由白介素-33介導的痛覺過敏依賴于促炎細胞因子TNF-α和白介素-1β。因此,少突膠質(zhì)細胞在痛覺中的作用可能與初級傳入神經(jīng)元、小膠質(zhì)細胞和星形膠質(zhì)細胞的作用交織在一起。少突膠質(zhì)細胞對創(chuàng)傷性脊髓損傷高度敏感,并易因脊髓損傷而發(fā)生凋亡[62]。總體來說,目前有關A型肉毒毒素對少突膠質(zhì)細胞作用的研究較少,二者間的相互作用尚不明確。
7 小結(jié)
神經(jīng)病理性疼痛的發(fā)病機制復雜,且臨床上缺乏有效的治療方法。既往研究表明,A型肉毒毒素通過影響小膠質(zhì)細胞極化、抑制小膠質(zhì)細胞胞內(nèi)炎癥通路、裂解SNAP-23,以及上調(diào)SIRT1表達水平使NF-κB、p53、PI3K-蛋白激酶B信號通路失活等機制來緩解神經(jīng)病理性疼痛。星形膠質(zhì)細胞通過受體、連接蛋白與神經(jīng)元及其他神經(jīng)膠質(zhì)細胞密切聯(lián)系,在神經(jīng)病理性疼痛發(fā)生、發(fā)展中也起著重要作用。少突膠質(zhì)細胞在疼痛中的作用及其與A型肉毒毒素的相互作用尚不明確,其在痛覺調(diào)制中的作用可能與初級傳入神經(jīng)元、小膠質(zhì)細胞和星形膠質(zhì)細胞的作用交織在一起。A型肉毒毒素對神經(jīng)膠質(zhì)細胞的作用很復雜,加之實驗模型的多樣性和膠質(zhì)細胞胞內(nèi)炎癥通路的復雜性,目前仍不能對A型肉毒毒素的作用機制作出統(tǒng)一的解釋。但可推斷的是,鑒于研究發(fā)現(xiàn)存在多種作用機制,A型肉毒毒素在神經(jīng)病理性疼痛治療方面具有相當?shù)臐摿Α?/p>
利益沖突聲明:所有作者均聲明不存在利益沖突。
參考文獻
[1] Rojewska E, Piotrowska A, Popiolek-Barczyk K, et al. Botulinum toxin type A—a modulator of spinal neuron-glia interactions under neuropathic pain conditions [J]. Toxins(Basel), 2018, 10(4): 145.
[2] De Logu F, De Prá SD, De David Antoniazzi CT, et al. Macrophages and Schwann cell TRPA1 mediate chronic allodynia in a mouse model of complex regional pain syndrome typeⅠ[J]. Brain Behav Immun, 2020, 88: 535-546.
[3] Chen G, Zhang YQ, Qadri YJ, et al. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain [J]. Neuron, 2018, 100(6): 1292-1311.
[4] Park HJ, Lee Y, Lee J, et al. The effects of botulinum toxin A on mechanical and cold allodynia in a rat model of neuropathic pain [J]. Can J Anaesth, 2006, 53(5): 470-477.
[5] Becker WJ. Botulinum toxin in the treatment of headache [J]. Toxins (Basel), 2020, 12(12): 803.
[6] Attal N. Pharmacological treatments of neuropathic pain: the latest recommendations [J]. Rev Neurol (Paris), 2019, 175(1/2): 46-50.
[7] Paolicelli RC, Ferretti MT. Function and dysfunction of microglia during brain development: consequences for synapses and neural circuits [J]. Front Synaptic Neurosci, 2017, 9: 9.
[8] Garrison CJ, Dougherty PM, Kajander KC, et al. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury [J]. Brain Res, 1991, 565(1): 1-7.
[9] Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000) [J]. Neurochem Res, 2000, 25(9/10): 1439-1451.
[10] Guan Z, Kuhn JA, Wang X, et al. Injured sensory neuronderived CSF1 induces microglial proliferation and DAP12-dependent pain [J]. Nat Neurosci, 2016, 19(1): 94-101.
[11] Luvisetto S. Botulinum neurotoxins beyond neurons: interplay with glial cells [J]. Toxins (Basel), 2022, 14(10): 704.
[12] Wang XY, Ma HJ, Xue M, et al. Anti-nociceptive effects of Sedum lineare Thunb. on spared nerve injury-induced neuropathic pain by inhibiting TLR4/NF-κB signaling in the spinal cord in rats [J]. Biomed Pharmacother, 2021, 135: 111215.
[13] Burnstock G, Kennedy C. P2X receptors in health and disease[J]. Adv Pharmacol, 2011, 61: 333-372.
[14] Acioglu C, Heary RF, Elkabes S. Roles of neuronal Tolllike receptors in neuropathic pain and central nervous system injuries and diseases [J]. Brain Behav Immun, 2022, 102: 163-178.
[15] Ji A, Xu J. Neuropathic pain: biomolecular intervention and imaging via targeting microglia activation [J]. Biomolecules, 2021, 11(9): 1343.
[16] Garrison CJ, Dougherty PM, Carlton SM. GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801 [J]. Exp Neurol, 1994, 129(2): 237-243.
[17] Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? [J]. Pain, 2013, 154(Suppl 1): S10-S28.
[18] Zhang J, De Koninck Y. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury [J]. J Neurochem, 2006, 97(3): 772-783.
[19] Illes P, Verkhratsky A, Burnstock G, et al. P2X receptors and their roles in astroglia in the central and peripheral nervous system [J]. Neuroscientist, 2012, 18(5): 422-438.
[20] Zhao YF, Tang Y, Illes P. Astrocytic and oligodendrocytic P2X7 receptors determine neuronal functions in the CNS [J]. Front Mol Neurosci, 2021, 14: 641570.
[21] Yang Y, Li H, Li TT, et al. Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18 [J]. J Neurosci, 2015, 35(20): 7950-7963.
[22] Chessell IP, Hatcher JP, Bountra C, et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain [J]. Pain, 2005, 114(3): 386-396.
[23] Qin Y, Sun X, Shao X, et al. Lipopolysaccharide preconditioning induces an anti-inflammatory phenotype in BV2 microglia [J]. Cell Mol Neurobiol, 2016, 36(8): 1269-1277.
[24] Higashi Y, Aratake T, Shimizu S, et al. Influence of extracellular zinc on M1 microglial activation [J]. Sci Rep, 2017, 7: 43778.
[25] Wu P, Zhou G, Wu X, et al. P2X7 receptor induces microglia polarization to the M1 phenotype in cancer-induced bone pain rat models [J]. Mol Pain, 2022, 18: 17448069211060962.
[26] Gui X, Wang H, Wu L, et al. Botulinum toxin type A promotes microglial M2 polarization and suppresses chronic constriction injury-induced neuropathic pain through the P2X7 receptor [J]. Cell Biosci, 2020, 10: 45.
[27] Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury [J]. Nature, 2003, 424(6950): 778-783.
[28] Nasseri B, Zaringhalam J, Daniali S, et al. Thymulin treatment attenuates inflammatory pain by modulating spinal cellular and molecular signaling pathways [J]. Int Immunopharmacol, 2019, 70: 225-234.
[29] Zhou TT, Wu JR, Chen ZY, et al. Effects of dexmedetomidine on P2X4Rs, p38-MAPK and BDNF in spinal microglia in rats with spared nerve injury [J]. Brain Res, 2014, 1568: 21-30.
[30] Long T, He W, Pan Q, et al. Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model [J]. J Headache Pain, 2020, 21(1): 4.
[31] Meng XW, Gao JL, Zuo JL, et al. Toll-like receptor-4/p38 MAPK signaling in the dorsal horn contributes to P2X4 receptor activation and BDNF over-secretion in cancer induced bone pain [J]. Neurosci Res, 2017, 125: 37-45.
[32] Shi X, Gao C, Wang L, et al. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling [J]. Toxicon, 2020, 178: 33-40.
[33] Piotrowska A, Popiolek-Barczyk K, Pavone F, et al. Comparison of the expression changes after botulinum toxin type A and minocycline administration in lipopolysaccharidestimulated rat microglial and astroglial cultures [J]. Front Cell Infect Microbiol, 2017, 7: 141.
[34] Marinelli S, Vacca V, Ricordy R, et al. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes [J]. PLoS One, 2012, 7(10): e47977.
[35] Jurga AM, Rojewska E, Piotrowska A, et al. Blockade of Tolllike receptors (TLR2, TLR4) attenuates pain and potentiates buprenorphine analgesia in a rat neuropathic pain model [J]. Neural Plast, 2016, 2016: 5238730.
[36] Tanga FY, Nutile-McMenemy N, DeLeo JA. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy [J]. Proc Natl Acad Sci U S A, 2005, 102(16): 5856-5861.
[37] Yang H, Tian W, Wang S, et al. TSG-6 secreted by bone marrow mesenchymal stem cells attenuates intervertebral disc degeneration by inhibiting the TLR2/NF-κB signaling pathway [J]. Lab Invest, 2018, 98(6): 755-772.
[38] Kim YJ, Kim JH, Lee KJ, et al. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages [J]. PLoS One, 2015, 10(4): e0120840.
[39] Wang X, Tian S, Wang H, et al. Botulinum toxin type A alleviates neuropathic pain and suppresses inflammatory cytokines release from microglia by targeting TLR2/MyD88 and SNAP23 [J]. Cell Biosci, 2020, 10(1): 141.
[40] Nair-Gupta P, Baccarini A, Tung N, et al. TLR signals induce phagosomal MHC-Ⅰdelivery from the endosomal recycling compartment to allow cross-presentation [J]. Cell, 2014, 158(3): 506-521.
[41] Fan Y, Dong R, Zhang H, et al. The role of SIRT1 in neuropathic pain from the viewpoint of neuroimmunity [J]. Curr Pharm Des, 2022, 28(4): 280-286.
[42] Song FH, Liu DQ, Zhou YQ, et al. SIRT1: a promising therapeutic target for chronic pain [J]. CNS Neurosci Ther, 2022, 28(6): 818-828.
[43] Song Y, Wu Z, Zhao P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders [J]. Rev Neurosci, 2021, 33(4): 427-438.
[44] Jiao F, Gong Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases [J]. Oxid Med Cell Longev, 2020, 2020: 6782872.
[45] Mo Y, Liu B, Qiu S, et al. Down-regulation of microRNA-34c-5p alleviates neuropathic pain via the SIRT1/STAT3 signaling pathway in rat models of chronic constriction injury of sciatic nerve [J]. J Neurochem, 2020, 154(3): 301-315.
[46] Yu Z, Liu J, Sun L, et al. Combination of botulinum toxin and minocycline ameliorates neuropathic pain through antioxidant stress and anti-inflammation via promoting SIRT1 pathway[J]. Front Pharmacol, 2021, 11: 602417.
[47] Luo FQ, Ma Q, Zheng H, et al. Involvement of spinal SIRT1 in development of chronic constriction injury induced neuropathic pain in rats [J]. Int J Clin Exp Pathol, 2018, 11(5): 2561-2569.
[48] Kim Y, Jo SH, Kim WH, et al. Antioxidant and antiinflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury[J]. Stem Cell Res Ther, 2015, 6: 229.
[49] Yu X, Zhang S, Zhao D, et al. SIRT1 inhibits apoptosis in in vivo and in vitro models of spinal cord injury via microRNA-494 [J]. Int J Mol Med, 2019, 43(4): 1758-1768.
[50] Jin D, Yang JP, Hu JH, et al. MCP-1 stimulates spinal microglia via PI3K/Akt pathway in bone cancer pain [J]. Brain Res, 2015, 1599: 158-167.
[51] Zhuang ZY, Wen YR, Zhang DR, et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance [J]. J Neurosci, 2006, 26(13): 3551-3560.
[52] Chiang CY, Wang J, Xie YF, et al. Astroglial glutamateglutamine shuttle is involved in central sensitization of nociceptive neurons in rat medullary dorsal horn [J]. J Neurosci, 2007, 27(34): 9068-9076.
[53] Okada-Ogawa A, Suzuki I, Sessle BJ, et al. Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms [J]. J Neurosci, 2009, 29(36): 11161-11171.
[54] Chen WJ, Niu JQ, Chen YT, et al. Unilateral facial injection of botulinum neurotoxin A attenuates bilateral trigeminal neuropathic pain and anxiety-like behaviors through inhibition of TLR2-mediated neuroinflammation in mice [J]. J Headache Pain, 2021, 22(1): 38.
[55] Vacca V, Marinelli S, Luvisetto S, et al. Botulinum toxin A increases analgesic effects of morphine, counters development of morphine tolerance and modulates glia activation and μopioid receptor expression in neuropathic mice [J]. Brain Behav Immun, 2013, 32: 40-50.
[56] Vacca V, Madaro L, De Angelis F, et al. Revealing the therapeutic potential of botulinum neurotoxin type A in counteracting paralysis and neuropathic pain in spinally injured mice [J]. Toxins (Basel), 2020, 12(8): 491.
[57] Holm TH, Draeby D, Owens T. Microglia are required for astroglial Toll-like receptor 4 response and for optimal TLR2 and TLR3 response [J]. Glia, 2012, 60(4): 630-638.
[58] Asseyer S, Schmidt F, Chien C, et al. Pain in AQP4-IgGpositive and MOG-IgG-positive neuromyelitis optica spectrum disorders [J]. Mult Scler J Exp Transl Clin, 2018, 4(3): 2055217318796684.
[59] Urits I, Adamian L, Fiocchi J, et al. Advances in the understanding and management of chronic pain in multiple sclerosis: a comprehensive review [J]. Curr Pain Headache Rep, 2019, 23(8): 59.
[60] Gritsch S, Lu J, Thilemann S, et al. Oligodendrocyte ablation triggers central pain independently of innate or adaptive immune responses in mice [J]. Nat Commun, 2014, 5: 5472.
[61] Zarpelon AC, Rodrigues FC, Lopes AH, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain [J]. FASEB J, 2016, 30(1): 54-65.
[62] Li N, Leung GK. Oligodendrocyte precursor cells in spinal cord injury: a review and update [J]. Biomed Res Int, 2015, 2015: 235195.