紀(jì)國(guó)翡 李夢(mèng)珂 盧念 趙雪雯 蘇澤彬 許雪峰 張新忠 韓振?!∏癫?/p>
摘? ? 要:【目的】探究不同供磷水平下根系分泌物對(duì)蘋(píng)果砧木磷元素吸收的影響,為解決蘋(píng)果園區(qū)普遍存在的有效磷易被固定為難溶態(tài)磷而導(dǎo)致的缺磷問(wèn)題提供參考。【方法】以平邑甜茶(Malus hupehensis Rehd.)、八棱海棠(M. robusta Rehd.)、M26(M. pumila Mill.)、M9(M. pumila Mill.)、楸子(M. prunifolia)、中砧一號(hào)(M. xiaojinensis)、山丁子(M. baccata Borkh.)7種蘋(píng)果砧木為試驗(yàn)材料,采用基質(zhì)培養(yǎng)在正常供磷(對(duì)照)(0.5 mmol·L-1 KH2PO4)、低磷(LP)(0.01 mmol·L-1 KH2PO4)、額外施加磷酸鈣(LP-Ca3(PO4)2)[0.01 mmol·L-1 KH2PO4+ Ca3(PO4)2]條件下處理50 d,測(cè)定7種蘋(píng)果砧木的磷效率、根系分泌物、根系構(gòu)型(root system architecture,RSA)、光合及熒光參數(shù)等指標(biāo),結(jié)合相關(guān)性及主成分分析探究根系分泌物對(duì)蘋(píng)果砧木磷元素高效吸收的影響?!窘Y(jié)果】與正常施磷相比,經(jīng)低磷處理后,平邑甜茶、M26、M9、中砧一號(hào)的根冠比均顯著提高,中砧一號(hào)的上升幅度為49.5%;除山丁子外其余6種砧木的光合速率均顯著降低。在RSA方面,除根總表面積外其他3個(gè)指標(biāo)均受低磷處理的顯著影響。在檸檬酸分泌速率(citric acid secretion rate,CASR)方面,與正常施磷相比,低磷處理顯著提高了除M26外其余6種砧木的分泌速率,中砧一號(hào)的CASR最高;經(jīng)低磷處理后,蘋(píng)果酸分泌速率(malic acid secretion rate,MASR)與CASR有著相似的變化規(guī)律,中砧一號(hào)的MASR顯著高于除八棱海棠以外的其余5種砧木,M26在7種砧木中最低?!窘Y(jié)論】供試的7種蘋(píng)果砧木在低磷脅迫耐性方面存在顯著差異。在低磷脅迫下,7種砧木根系的酸類(lèi)物質(zhì)分泌與磷吸收效率(phosphorus acquisition efficiency,PAE)呈正相關(guān),中砧一號(hào)的PAE最高,其檸檬酸和質(zhì)子分泌速率(proton secretion rate,PSR)也均高于其他6種砧木,同時(shí)其MASR也顯著高于除八棱海棠以外的其余5種砧木。
關(guān)鍵詞:蘋(píng)果砧木;低磷脅迫;磷酸鈣;根系分泌物;有機(jī)酸
中圖分類(lèi)號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)11-2359-12
Effects of root exudation of apple rootstocks on phosphorus acquisition efficiency under low phosphorus
JI Guofei, LI Mengke, LU Nian, ZHAO Xuewen, SU Zebin, XU Xuefeng, ZHANG Xinzhong, HAN Zhenhai, QIU Changpeng*
(College of Horticulture, China Agricultural University/Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality, Beijing 100193, China)
Abstract: 【Objective】 The aim of this study was to explore the effects of root exudates on the phosphorus acquisition efficiency of apple rootstocks under different phosphorus supply levels, so as to provide the theoretical basis for solving the common problem of phosphorus deficiency in apple orchards. An additional calcium phosphate treatment was also designed to investigate the effect of root exudation on alleviating phosphorus stress. 【Methods】 Seven kinds of apple rootstocks including Pingyi Tiancha (Malus hupehensis Rehd.), Baleng (M. robusta Rehd.), M26 (M. pumila Mill.), M9 (M. pumila Mill.), Qiuzi (M. prunifolia), Chistock-1 (M. xiaojinensis) and Shandingzi (M. baccata Borkh.) were used as experimental materials. The differences in tree growth, root exudates, root architecture, photosynthesis and fluorescence parameters, and phosphorus efficiency of each rootstock under normal phosphorus (CK) (0.5 mmol·L-1 KH2PO4), low phosphorus (LP) (0.01 mmol·L-1 KH2PO4), and additional calcium phosphate treatments (LP-Ca3(PO4)2) (0.01 mmol·L-1 KH2PO4+Ca3(PO4)2) for 50 days were studied. After 50 d, the plants were oven-dried for 72 h. The dried plants were digested using a microwave oven (Mars, CEM, USA). An inductively coupled plasma optical emission spectrometry (ICP-OES, Optima 5300DV, PerkinElmer, USA) was used to measure the phosphorus content. Root images were collected with an EPSON scanner and root total length, root surface area, root total volume and root tips were analyzed with the software WinRHIZO version 5.0 (Regent Instruments Inc., Canada). The photosynthetic and fluorescence parameters of leaves were measured with a Li-6400 XT portable photosynthetic measurement system (Li-Cor Biosciences, Lincoln, USA). The effects of root exudates on phosphorus acquisition efficiency of apple rootstocks were investigated by correlation and principal component analysis. All experiments had eight biological replicates. Statistical analyses were performed using IBM SPSS Statistics (Version 25, SPSS, Chicago, IL, USA) and Origin software (2022, Origin Lab, Northampton, MA, USA). 【Results】 Compared with the normal phosphorus treatment, the root-shoot ratios of Pingyi Tiancha, M26, M9, and Chistock-1 were significantly increased under low phosphorus condition, and the increase rate of Chistock-1 was 49.5%. The root-shoot ratio of Shandingzi was the largest after additional application of calcium phosphate. Except for root total surface area, the other three root indexes were significantly affected by low phosphorus treatment. The root total length of Pingyi Tiancha, Baleng, M26 and M9 increased after low phosphorus treatment, of which Baleng increased by 37.5% compared with CK. Compared with normal phosphorus, the root total volume of Baleng and M26 increased significantly, and the number of root tips of Pingyi Tiancha, M9 and Chistock-1 increased significantly under low phosphorus treatment, and the increase rate of Chistock-1 reached 89.2%. Under low phosphorus treatment, the PAE of Chistock-1 was the highest. After additional application of calcium phosphate, the PAE of Chistock-1 and Shandingzi increased significantly compared with low phosphorus treatment, with an increase rate of 40% in Chistock-1. Low phosphorus treatment resulted in a significant decrease in the photosynthetic rate in Shandingzi leaves compared to CK. Low phosphorus treatment significantly increased citric acid secretion rate in the rootstocks except M26, and the citric acid secretion rate in Chistock-1 was the highest. After low phosphorus treatment, the change pattern of malic acid secretion rate was similar to that of the citric acid secretion rate. The malic acid secretion rate of Chistock-1 was significantly higher than that of the remaining rootstocks except Baleng. M26 was the lowest in malic acid secretion among the seven rootstocks. 【Conclusion】 The seven apple rootstocks tested differed significantly in their tolerance to low phosphorus stress. Under low phosphorus stress, the secretion of organic acids was positively correlated with the phosphorus acquisition efficiency of apple rootstocks. The phosphorus acquisition efficiency of Chistock-1 was the highest, and its citric acid and proton secretion rates were all higher than those of the other six rootstocks. At the same time, its malic acid secretion rate was significantly higher than that of the other rootstocks except Baleng.
Key words: Apple rootstock; Low phosphorus stress; Calcium phosphate; Root exudates; Organic acid
收稿日期:2023-03-16 接受日期:2023-08-18
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1000103);國(guó)家自然科學(xué)基金項(xiàng)目(31801810);國(guó)家蘋(píng)果產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-27);農(nóng)業(yè)農(nóng)村部園藝作物營(yíng)養(yǎng)與生理重點(diǎn)實(shí)驗(yàn)室;中國(guó)農(nóng)業(yè)大學(xué)2115人才工程(00109023);北京市教委高精尖學(xué)科建設(shè)項(xiàng)目(PXM2019_014207_000032)
作者簡(jiǎn)介:紀(jì)國(guó)翡,女,在讀碩士研究生,主要從事根系分泌物響應(yīng)礦質(zhì)元素缺乏的機(jī)制探究。Tel:18518010063,E-mail:guofeiji@163.com
*通信作者Author for correspondence. E-mail:changpengqiu@hotmail.com
磷是植物必需的營(yíng)養(yǎng)元素,參與脂質(zhì)代謝、含氮化合物代謝和碳水化合物運(yùn)輸?shù)壬锘瘜W(xué)過(guò)程,在植物的生長(zhǎng)發(fā)育、抗逆性和產(chǎn)量品質(zhì)等方面發(fā)揮著重要作用。土壤中的磷以無(wú)機(jī)磷酸鹽(Pi)的形式被植物吸收和同化[1-2]。據(jù)統(tǒng)計(jì),大部分土壤的總磷含量(w,后同)在50~1500 mg·kg-1之間[3-4]。然而,土壤中有效磷含量遠(yuǎn)遠(yuǎn)不足以滿(mǎn)足植物的需求,主要是磷元素大多數(shù)以磷酸根的形式與土壤中的鈣、鐵、鋁等結(jié)合,轉(zhuǎn)變成不溶性的磷酸鈣、磷酸鋁、磷酸鐵等[5],導(dǎo)致磷素難以被植物體所吸收。
為了應(yīng)對(duì)土壤中有效磷含量低的狀況,植物進(jìn)化出了廣泛的適應(yīng)策略以促進(jìn)對(duì)磷元素的吸收和利用。根系構(gòu)型(root system architecture,RSA)重建是從土壤中獲得更多有效磷的關(guān)鍵策略,如根長(zhǎng)度、根表面積、根直徑和根毛數(shù)量等[6-7]。在擬南芥中,主根縮短、側(cè)根和根毛數(shù)量和長(zhǎng)度增加是磷缺乏的典型特征[8]。對(duì)蘋(píng)果的研究也表明,蘋(píng)果砧木在磷脅迫下會(huì)增加吸收根的總面積和長(zhǎng)度,根毛數(shù)量也會(huì)顯著增加[9]。據(jù)報(bào)道,植物通過(guò)激活高親和性磷轉(zhuǎn)運(yùn)蛋白來(lái)優(yōu)化磷的吸收和利用。PHT1作為一類(lèi)高親和力磷轉(zhuǎn)運(yùn)蛋白,通常在植物根系中顯著高表達(dá)[10],在植物根系對(duì)土壤有效磷的吸收中起著至關(guān)重要的作用。在蘋(píng)果的研究中還測(cè)定了14個(gè)MdPHT1基因在不同組織中的表達(dá),其中,MdPHT1;7在提高植物磷積累和低磷耐受性方面發(fā)揮重要作用[11]。磷缺乏還強(qiáng)烈影響生物化學(xué)反應(yīng),包括促進(jìn)有機(jī)酸、質(zhì)子和酸性磷酸酶的分泌,從而增加根際有效磷含量[12]。植物根系分泌的多種化合物,如氨基酸、脂肪酸、糖、有機(jī)酸、維生素等,也為土壤中微生物的生長(zhǎng)提供了充足的養(yǎng)分[13],同時(shí)溶磷微生物能有效提高土壤可溶性磷含量,改善植物缺磷環(huán)境[14-15]。
在低磷脅迫下,果樹(shù)根系分泌的有機(jī)酸和酸性磷酸酶活性與磷供給水平呈負(fù)相關(guān)[16]。隨著磷供給水平的降低,不同果樹(shù)根系分泌的酸性磷酸酶活性增強(qiáng),有機(jī)酸含量增加[17]。許多研究者把低磷脅迫下植物根系有機(jī)酸分泌量和酸性磷酸酶活性作為評(píng)價(jià)植物低磷耐受性的重要指標(biāo),然而關(guān)于蘋(píng)果根系分泌物對(duì)磷元素高效吸收影響的研究較少。鑒于此,筆者在本試驗(yàn)中探究了不同供磷水平下各蘋(píng)果砧木類(lèi)型的生理響應(yīng),對(duì)7種蘋(píng)果砧木在磷吸收利用效率、根系分泌物、RSA及光合、熒光參數(shù)等層面進(jìn)行了較全面的分析,通過(guò)相關(guān)性及主成分分析探討根系分泌物對(duì)蘋(píng)果砧木磷元素高效吸收的影響并設(shè)計(jì)磷酸鈣試驗(yàn),為揭示蘋(píng)果砧木磷元素高效吸收的生理機(jī)制提供依據(jù)。
1 材料和方法
1.1 試驗(yàn)材料
試驗(yàn)于2022年5—6月在中國(guó)農(nóng)業(yè)大學(xué)科學(xué)園溫室內(nèi)進(jìn)行。以1年生蘋(píng)果砧木平邑甜茶(Malus hupehensis Rehd.)、八棱海棠(M. robusta Rehd.)、M26(M. pumila Mill.)、M9(M. pumila Mill.)、楸子(M. prunifolia)、中砧一號(hào)(M. xiaojinensis)、山丁子(M. baccata Borkh.)為試驗(yàn)材料。
1.2 試驗(yàn)處理
每個(gè)砧木類(lèi)型選擇24株生長(zhǎng)勢(shì)一致的健康植株,每個(gè)處理設(shè)置8株重復(fù)。將1年生植株栽植到直徑10 cm、高14 cm的黑色方形塑料盆中。栽培基質(zhì)為V(沙子)∶V(蛭石)∶V(珍珠巖)=5∶4∶1的混合物[18]。移栽后緩苗7 d,其間用去離子水澆灌。試驗(yàn)分別設(shè)置3個(gè)處理,正常供磷對(duì)照(0.5 mmol·L-1 KH2PO4)、低磷LP(0.01 mmol·L-1 KH2PO4)、額外施加磷酸鈣LP-Ca3(PO4)2(0.01 mmol·L-1 KH2PO4,每1 kg基質(zhì)混入2.5 g Ca3(PO4)2)[19]。
用以下?tīng)I(yíng)養(yǎng)液處理生長(zhǎng)良好的幼苗:(1)正常供磷(對(duì)照),1/2 Hoagland溶液,含500 μmol·L-1 KH2PO4;(2)低磷(LP),1/2 Hoagland溶液,含10 ?mol·L-1 KH2PO4;(3)額外施加磷酸鈣處理(LP-Ca3(PO4)2),1/2 Hoagland溶液,含10 ?mol·L-1 KH2PO4。每2 d給植株澆1次營(yíng)養(yǎng)液,每次澆灌50 mL。處理50 d后進(jìn)行指標(biāo)測(cè)定。
1.3 生理指標(biāo)的測(cè)定方法
生長(zhǎng)指標(biāo)的測(cè)定:用直尺測(cè)量植株莖基部到頂芽的高度;采用EPSON掃描儀和根圖像分析軟件WinRHIZO version 5.0(Regent Instruments Inc., Canada)測(cè)定總根長(zhǎng)度(root total length,RTL)、根總體積(root total volume,RTV)、根系總表面積(root surface,RS)和根尖數(shù)(root tips,RT)。
光合指標(biāo):采用便攜式光合儀(Li-6400 XT, Li-Cor Biosciences, Lincoln, USA)測(cè)定凈光合速率(Pn),采用配置2 cm2熒光葉室的便攜式光合儀測(cè)定葉片的葉綠素?zé)晒鈪?shù)。于黑暗環(huán)境下對(duì)葉片進(jìn)行完全暗適應(yīng)處理,再將葉片在自然光下進(jìn)行充分活化,于1000 μmol·m-2·s-1的光照度下進(jìn)行PSII實(shí)際光化學(xué)效率(PhiPS2)的測(cè)定。不同砧木不同供磷處理隨機(jī)選取3株,每株選取生長(zhǎng)情況良好的功能葉片2枚。
根分泌物的收集:在處理50 d后收集根系分泌物。將根系從基質(zhì)中輕輕剝離并搖動(dòng)。采用Kidd等[20]的方法。用蒸餾水輕輕洗凈蘋(píng)果砧木根系,立即將洗凈的根系放入裝有100 mL 0.05 mmol·L-1 CaCl2溶液的黑色塑料瓶中,此時(shí)將根系完全浸沒(méi),從10:00—16:00連續(xù)收集6 h,用氣泵不斷通氣,以保證根系的正常呼吸。收集的根分泌物立即放于-80 ℃冰箱,用于后續(xù)測(cè)定。將收集的液體凍干后溶解在1 mL去離子水中。
根系分泌物的測(cè)定:檸檬酸分泌速率(citric acid secretion rate,CASR)采用檸檬酸含量檢測(cè)試劑盒進(jìn)行測(cè)定(購(gòu)于Solarbio公司,貨號(hào):BC2155);蘋(píng)果酸分泌速率(malic acid secretion rate,MASR)采用蘋(píng)果酸含量測(cè)定試劑盒進(jìn)行測(cè)定(購(gòu)于蘇州格銳思生物科技有限公司,貨號(hào):G0862F);根系分泌酸性磷酸酶活性的測(cè)定參照Ni等[21]的方法;質(zhì)子分泌速率(proton secretion rate,PSR)的測(cè)定參照Msehli等[22]的方法。
磷吸收和磷利用效率的測(cè)定:處理50 d后,將采集的植物樣品洗凈并于烘箱放置72 h烘干,研磨后采用微波消解法進(jìn)行消解,采用電感耦合等離子體發(fā)射光譜儀法(ICP-OES)測(cè)定磷含量。
1.4 數(shù)據(jù)處理與分析
利用Microsoft Excel 2019、Origin 2022軟件處理試驗(yàn)數(shù)據(jù)并繪圖,通過(guò)Origin 2022和SPSS Statistics 25.0軟件進(jìn)行統(tǒng)計(jì)分析,利用T檢驗(yàn)進(jìn)行差異顯著性分析(p<0.05),采用最小顯著性差異(LSD)法進(jìn)行多重比較,并對(duì)數(shù)據(jù)進(jìn)行相關(guān)性分析、標(biāo)準(zhǔn)化處理和主成分分析。
2 結(jié)果與分析
2.1 低磷及額外施加磷酸鈣對(duì)蘋(píng)果砧木生長(zhǎng)的影響
在正常施磷條件下,7種砧木中山丁子的根冠比最大。與正常施磷相比,在低磷條件下,平邑甜茶、M26、M9、中砧一號(hào)的根冠比均顯著提高,中砧一號(hào)的上升幅度為49.5%。額外施加磷酸鈣后山丁子的根冠比最大;M9的根冠比小于除M26以外的其他5種砧木。相較于低磷處理,經(jīng)額外施加磷酸鈣后,平邑甜茶的根冠比顯著提高,其他6種砧木無(wú)顯著變化。7種砧木在正常施磷時(shí)中砧一號(hào)的株高增長(zhǎng)比例最大,平邑甜茶最小。在低磷條件下,除M26和平邑甜茶外,其余5種砧木的株高增長(zhǎng)比例均低于正常施磷條件。額外施加磷酸鈣后,中砧一號(hào)和M9的株高增長(zhǎng)比例顯著高于平邑甜茶、M26、山丁子;相較于低磷處理,在額外施加磷酸鈣后平邑甜茶的株高增長(zhǎng)比例顯著下降,而八棱海棠和M9則顯著提高(表1)。
2.2 根系構(gòu)型對(duì)低磷及額外施加磷酸鈣處理的差異響應(yīng)
對(duì)7種砧木在不同供磷條件下RSA的研究結(jié)果表明,所有4個(gè)根系功能性狀在不同砧木間均有顯著差異(圖1)。除根總表面積外,其他3個(gè)指標(biāo)均受低磷處理的顯著影響。在總根長(zhǎng)度方面,低磷處理后平邑甜茶、八棱海棠、M26、M9的總根長(zhǎng)度均增大,其中八棱海棠與對(duì)照相比提高了37.5%;同時(shí)在低磷條件下,楸子和M26的總根長(zhǎng)度顯著高于其他5種砧木。相較于低磷處理,額外施加磷酸鈣后,7種砧木中M26的總根長(zhǎng)度顯著增加,上升幅度為19.5%。在根系總表面積方面,在低磷條件下,M26、楸子、中砧一號(hào)的根系總表面積顯著高于其他砧木。相較于低磷處理,額外施加磷酸鈣后,各砧木的根總表面積無(wú)顯著變化。在根總體積方面,與正常磷相比,低磷處理后八棱海棠、M26的根總體積顯著增加;與低磷處理相比,額外施加磷酸鈣后,7種砧木的根總體積均未顯著變化。在根尖數(shù)方面,與正常磷相比,低磷處理后平邑甜茶、M9、中砧一號(hào)的根尖數(shù)顯著增加,中砧一號(hào)的上升幅度達(dá)到89.2%。
2.3 低磷及額外施加磷酸鈣對(duì)蘋(píng)果砧木磷吸收利用的影響
磷吸收效率(phosphorus acquisition efficiency,PAE)是植物在一定介質(zhì)有效磷濃度下吸收的總磷量,它反映了植株對(duì)介質(zhì)中磷的吸收能力。由圖2-A可知,在低磷處理下,中砧一號(hào)的PAE最高;山丁子、八棱海棠、M26的PAE顯著低于除楸子外的其他砧木;與正常磷供給相比,除楸子和中砧一號(hào)外其余5種砧木的PAE在低磷處理后均降低。在額外施加磷酸鈣后,相較于低磷處理,中砧一號(hào)、山丁子的PAE均有所提高,其中,中砧一號(hào)的上升幅度為40.0%。
磷利用效率(phosphorus utilization efficiency,PUE)是指植株體內(nèi)單位磷所生產(chǎn)的生物量。在正常磷條件下,M26和楸子的磷利用效率顯著高于其他5種砧木,中砧一號(hào)和山定子的PUE較低。相較于正常磷處理,在低磷處理后中砧一號(hào)的磷利用效率顯著提高(圖2-B)。
2.4 低磷及額外施加磷酸鈣對(duì)蘋(píng)果砧木光合及熒光參數(shù)的影響
磷是葉綠體和ATP的組成部分。與正常施磷相比,經(jīng)低磷處理后,除山丁子外其余6種砧木的光合速率均降低。由圖3-A可知,低磷處理后,M9和M26的光合速率顯著高于除平邑甜茶外的其他砧木。在額外施加磷酸鈣后,相較于低磷處理,八棱海棠葉片的光合速率顯著提高,其他6種砧木無(wú)顯著變化。
PSII反應(yīng)中心的光化學(xué)效率PhiPS2代表了蘋(píng)果砧木葉片的實(shí)際光能轉(zhuǎn)換效率,是反映植物光合能力的重要指標(biāo)之一。不同砧木類(lèi)型的光化學(xué)效率在響應(yīng)低磷處理時(shí)表現(xiàn)出顯著差異。相較于正常磷處理,平邑甜茶、M26、楸子葉片的PhiPS2在低磷處理后顯著降低,其余4種砧木無(wú)顯著變化。在額外施加磷酸鈣后,相較于低磷處理,楸子葉片的PhiPS2顯著上升,且幅度達(dá)到22.2%(圖3-B)。
2.5 根系分泌物對(duì)低磷及額外施加磷酸鈣的差異響應(yīng)
為研究不同磷處理是否影響7種砧木的根系分泌,對(duì)其根系的CASR、MASR、PSR和酸性磷酸酶分泌活性(acid phosphatase activity,APA)進(jìn)行了測(cè)定(圖4)。
在檸檬酸分泌方面,與正常施磷相比,低磷處理顯著提高了除M26以外其余6種砧木的分泌速率,其中,中砧一號(hào)的CASR最高。在額外施加磷酸鈣后,相較于低磷處理,M26、楸子、中砧一號(hào)、山丁子的CASR均提高,中砧一號(hào)的上升幅度為43.9%(圖4-A)。經(jīng)低磷處理后,MASR與CASR有著相似的變化規(guī)律,中砧一號(hào)的MASR顯著高于除八棱海棠以外的其余5種砧木,同時(shí)發(fā)現(xiàn)M26的MASR在7種砧木中最低。在額外施加磷酸鈣后,相較于低磷處理,M26的MASR顯著上升,其他砧木無(wú)顯著變化(圖4-B)。
在質(zhì)子分泌方面,相較于正常磷,低磷處理顯著提高了楸子和山丁子的PSR;且低磷條件下中砧一號(hào)的PSR在7種砧木中最高。在額外施加磷酸鈣后,相較于低磷處理,八棱海棠、M26、中砧一號(hào)的PSR均有所提高,其中M26上升幅度為84.7%(圖4-C)。在根系分泌的酸性磷酸酶活性方面,在低磷條件下,八棱海棠的酸性磷酸酶活性顯著高于除山丁子外的其余5種砧木;在額外施加磷酸鈣后,八棱海棠有著最高的酸性磷酸酶活性;相較于低磷處理,7種砧木的酶活性在額外施加磷酸鈣后均未表現(xiàn)出顯著差異(圖4-D)。
2.6 蘋(píng)果砧木磷效率、各生理指標(biāo)相關(guān)性分析
2.6.1 相關(guān)性分析 蘋(píng)果砧木磷效率與各生理指標(biāo)之間并不是獨(dú)立的,而是具有一定的相關(guān)性,相關(guān)性分析可以用來(lái)衡量各變量因素之間的相關(guān)密切程度。在額外施加磷酸鈣條件下,對(duì)7種蘋(píng)果砧木的19項(xiàng)指標(biāo)進(jìn)行的相關(guān)性分析,結(jié)果顯示(圖5-A),PAE與CASR(r=0.715)、MASR(r=0.746)、質(zhì)子分泌速率PSR(r=0.566)呈正相關(guān)。磷利用效率PUE與MASR(r=-0.667)呈負(fù)相關(guān),與光合速率Pn(r=0.778)呈正相關(guān)。植株總干質(zhì)量DW與根總體積RTV(r=0.796)呈正相關(guān)。實(shí)際光化學(xué)效率PhiPS2與根系總表面積RS(r=0.605)、電子傳遞速率ETR(r=0.742)呈正相關(guān)。
2.6.2 主成分分析 主成分分析是一種將多個(gè)指標(biāo)轉(zhuǎn)化為幾個(gè)不相關(guān)的綜合指標(biāo)的多元統(tǒng)計(jì)分析方法,它可以從多個(gè)因素中分析出重要的影響因素,從而簡(jiǎn)化多指標(biāo)分析。為了進(jìn)一步明確影響蘋(píng)果砧木磷高效的關(guān)鍵指標(biāo),筆者在本研究中對(duì)額外施加磷酸鈣條件下的各指標(biāo)進(jìn)行了主成分分析。由圖5-B可知,主因素分析進(jìn)一步將9項(xiàng)指標(biāo)分為了2個(gè)主成分,累積貢獻(xiàn)率達(dá)到69.3%,將其歸納為光合產(chǎn)物合成代謝和根系分泌2個(gè)方面。第一分量(PC1)的貢獻(xiàn)率為45.7%,包括PAE、CASR、MASR、PSR、Pn和PhiPS2;第二分量(PC2)的貢獻(xiàn)率為23.6%,包括RS、RT和Fv/Fm。
3 討 論
3.1 7種蘋(píng)果砧木對(duì)低磷脅迫的差異響應(yīng)
植物進(jìn)化出了不同的機(jī)制以適應(yīng)低磷脅迫。在長(zhǎng)期缺磷條件下,由于遺傳因素和環(huán)境因素等植物會(huì)在形態(tài)、生理等方面發(fā)生變化,植物的耐低磷脅迫能力也受RSA、根系分泌物、光合等多種因素的共同影響[23-25]。研究表明,不同植物品種的耐低磷機(jī)制存在著顯著差異[26-27]。本試驗(yàn)結(jié)果表明,7種蘋(píng)果砧木PAE、RSA、根系分泌物及光合等特征差異顯著。中砧一號(hào)PAE最高,這與其檸檬酸、蘋(píng)果酸及質(zhì)子總分泌量大有關(guān),因此其耐低磷脅迫能力較強(qiáng);八棱海棠有機(jī)酸及質(zhì)子分泌量也較大,且其根系分泌的酸性磷酸酶活性顯著高于除山丁子外的其余5種砧木;楸子和M26的耐低磷機(jī)制與RSA關(guān)系密切,楸子的總根長(zhǎng)度長(zhǎng)、根系總表面積大、根尖數(shù)多,M26則在低磷條件下有著較大的根總體積,這與季萌萌等[28]對(duì)5種蘋(píng)果砧木低磷脅迫下的研究結(jié)果一致;M9則以較高的Pn來(lái)應(yīng)對(duì)低磷脅迫。為適應(yīng)低磷環(huán)境植物也會(huì)提高根冠比,促進(jìn)根系發(fā)育,進(jìn)而有效利用環(huán)境中的磷[29]。這與本研究結(jié)果一致,山丁子相較于其他6種砧木有著最大的根冠比,將更多的光合產(chǎn)物分配到根系,促進(jìn)根系對(duì)磷的吸收。
3.2 根系分泌物與蘋(píng)果砧木磷吸收的關(guān)系
相關(guān)性分析結(jié)果表明,在額外施加磷酸鈣后, PAE與CASR、MASR、PSR等指標(biāo)之間關(guān)系密切,且均呈正相關(guān)。其中,中砧一號(hào)在7種蘋(píng)果砧木中有著最大的PAE,其根系分泌的檸檬酸、蘋(píng)果酸及質(zhì)子等酸性物質(zhì)也較多,這表明增加根系分泌物是磷高效蘋(píng)果砧木對(duì)低磷脅迫的生理適應(yīng)性特征,也是影響蘋(píng)果砧木磷元素高效吸收的重要機(jī)制,這與前人研究結(jié)果一致[30-31]。此外,多項(xiàng)研究也表明低磷脅迫下植株的凈光合速率、氣孔導(dǎo)度等均下降[32],PSII開(kāi)放中心的活性、電子傳遞效率及光能轉(zhuǎn)換效率也受到抑制,以此促發(fā)熱能耗散保護(hù)光合器官[33]。韓夢(mèng)等[34]對(duì)茄子幼苗進(jìn)行了不同濃度磷的處理,結(jié)果也表明不同磷濃度對(duì)茄子幼苗葉片的光合作用、熒光特性有著不同程度的影響。本試驗(yàn)的相關(guān)性分析結(jié)果表明,Pn與根系分泌物相關(guān)指標(biāo)之間呈負(fù)相關(guān),主成分分析進(jìn)一步證實(shí)了在低磷脅迫下,蘋(píng)果砧木的光合速率與根系分泌物各指標(biāo)之間呈現(xiàn)相反的趨勢(shì),這表明低磷脅迫使蘋(píng)果砧木的光合速率降低,進(jìn)而促使根系分泌更多的分泌物來(lái)溶解土壤中難溶態(tài)磷,以此來(lái)提高磷高效蘋(píng)果砧木的磷元素吸收效率達(dá)到緩解低磷脅迫的目的。
3.3 蘋(píng)果砧木根系檸檬酸和蘋(píng)果酸的分泌促進(jìn)了低磷條件下的磷吸收
根分泌有機(jī)酸被認(rèn)為是有效獲取磷酸鹽的重要策略[35],原因是有機(jī)酸可以通過(guò)陰離子交換或金屬離子螯合取代不溶性配合物中的磷,使磷更容易被根系吸收[36-37]。在低磷脅迫下,檸檬酸、蘋(píng)果酸和草酸是植物根系分泌的常見(jiàn)有機(jī)酸[38]。在缺磷脅迫下,根系分泌的有機(jī)酸總量能在一定程度上反映植物的耐低磷能力,磷高效植物通過(guò)增加某些特定有機(jī)酸的分泌來(lái)溶解土壤中難溶態(tài)磷,以此來(lái)提高根際土壤的有效磷含量應(yīng)對(duì)缺磷脅迫。黃愛(ài)纓等[30]分別對(duì)磷高效和磷低效玉米自交系在低磷脅迫時(shí)的有機(jī)酸分泌量進(jìn)行了測(cè)定,結(jié)果表明,無(wú)論是4葉期的草酸檸檬酸分泌量、5~6葉期的草酸蘋(píng)果酸分泌量,還是7葉期的蘋(píng)果酸分泌量,磷高效玉米自交系的有機(jī)酸分泌總量顯著高于磷低效玉米自交系。因此,在低磷條件下,根系分泌有機(jī)酸的量一定程度上能代表植株的耐低磷能力,分泌越多,對(duì)磷元素的吸收利用越高效。在本試驗(yàn)中,與正常施磷相比,低磷處理顯著提高了除M26以外其余6種砧木的根系CASR,也顯著提高了除M26和楸子以外其余砧木的MASR。另外,中砧一號(hào)有著最高的PAE和CASR,同時(shí)其MASR也顯著高于除八棱海棠以外的其余5種砧木。額外施加磷酸鈣后,部分砧木的酸類(lèi)物質(zhì)分泌增加,PAE提高,相關(guān)性結(jié)果也表明這2種酸與PAE的相關(guān)性顯著,表明這2種酸的分泌在蘋(píng)果砧木響應(yīng)低磷脅迫時(shí)有著重要的作用,增加根系檸檬酸和蘋(píng)果酸的分泌是耐低磷蘋(píng)果砧木植物應(yīng)對(duì)磷脅迫的重要機(jī)制。但是,是否是通過(guò)促進(jìn)土壤難溶態(tài)磷的分解來(lái)耐低磷的機(jī)制還有待進(jìn)一步研究。
4 結(jié) 論
在低磷脅迫下,7種蘋(píng)果砧木的耐低磷機(jī)制有所差異,主要表現(xiàn)為總根長(zhǎng)度、總表面積及根尖數(shù)的增加;根系分泌的增加;光合速率的降低等。其中楸子和M26的總根長(zhǎng)度顯著高于其余5種砧木;M9和M26的光合速率顯著高于除平邑甜茶外的其他砧木;八棱海棠根系分泌的酸性磷酸酶活性較高。此外,根系酸類(lèi)物質(zhì)分泌與各砧木的吸收效率呈正相關(guān),中砧一號(hào)的PAE最高,其檸檬酸和質(zhì)子分泌速率也均高于其余6種砧木,同時(shí)其MASR也顯著高于除八棱海棠以外的其余5種砧木,在低磷條件下表現(xiàn)出了磷元素高效吸收的能力。與低磷處理相比,額外施加磷酸鈣能顯著提高蘋(píng)果砧木中砧一號(hào)和山丁子的PAE。
參考文獻(xiàn)References:
[1] SCHACHTMAN D P,REID R J,AYLING S M. Phosphorus uptake by plants:From soil to cell[J]. Plant Physiology,1998,116(2):447-453.
[2] VANCE C P,UHDE-STONE C,ALLAN D L. Phosphorus acquisition and use:Critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist,2003,157(3):423-447.
[3] SHEN J B,YUAN L X,ZHANG J L,LI H G,BAI Z H,CHEN X P,ZHANG W F,ZHANG F S. Phosphorus dynamics:From soil to plant[J]. Plant Physiology,2011,156(3):997-1005.
[4] MA J C,HE P,XU X P,HE W T,LIU Y X,YANG F Q,CHEN F,LI S T,TU S H,JIN J Y,JOHNSTON A M,ZHOU W. Temporal and spatial changes in soil available phosphorus in China (1990-2012)[J]. Field Crops Research,2016,192:13-20.
[5] RICHARDSON A E,BAREA J M,MCNEILL A M,PRIGENT-COMBARET C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant and Soil,2009,321(1):305-339.
[6] WILLIAMSON L C,RIBRIOUX S P,F(xiàn)ITTER A H,LEYSER H M. Phosphate availability regulates root system architecture in Arabidopsis[J]. Plant Physiology,2001,126(2):875-882.
[7] DESNOS T. Root branching responses to phosphate and nitrate[J]. Current Opinion in Plant Biology,2008,11(1):82-87.
[8] ZHOU J,JIAO F C,WU Z C,LI Y Y,WANG X M,HE X W,ZHONG W Q,WU P. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiology,2008,146(4):1673-1686.
[9] CHAI X,XIE L,WANG X,WANG H,ZHANG J,HAN Z,WU T,ZHANG X,XU X,WANG Y. Apple rootstocks with different phosphorus efficiency exhibit alterations in rhizosphere bacterial structure[J]. Journal of Applied Microbiology,2020,128(5):1460-1471.
[10] GORDON-WEEKS R,TONG Y P,EMYR DAVIES T G,LEGGEWIE G. Restricted spatial expression of a high-affinity phosphate transporter in potato roots[J]. Journal of Cell Science,2003,116(15):3135-3144.
[11] SUN T T,ZHANG J K,ZHANG Q,LI X L,LI M J,YANG Y Z,ZHOU J,WEI Q P,ZHOU B B. Transcriptome and metabolome analyses revealed the response mechanism of apple to different phosphorus stresses[J]. Plant Physiology and Biochemistry,2021,167:639-650.
[12] L?PEZ-ARREDONDO D L,LEYVA-GONZ?LEZ M A,GONZ?LEZ-MORALES S I,L?PEZ-BUCIO J,HERRERA-ESTRELLA L. Phosphate nutrition:improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology,2014,65:95-123.
[13] GONZ?LEZ-P?REZ E,ORTEGA-AMARO M A,SALAZAR-BADILLO F B,BAUTISTA E,DOUTERLUNGNE D,JIM?NEZ-BREMONT J F. The Arabidopsis-Trichoderma interaction reveals that the fungal growth medium is an important factor in plant growth induction[J]. Scientific Reports,2018,8:16427.
[14] GHAHREMANI M,TRAN H,BIGLOU S G,OGALLAGHER B,SHE Y M,PLAXTON W C. A glycoform of the secreted purple acid phosphatase AtPAP26 co-purifies with a mannose-binding lectin (AtGAL1) upregulated by phosphate-starved Arabidopsis[J]. Plant,Cell & Environment,2019,42(4):1139-1157.
[15] LUGLI L F,ANDERSEN K M,ARAG?O L E O C,CORDEIRO A L,CUNHA H F V,F(xiàn)UCHSLUEGER L,MEIR P,MERCADO L M,OBLITAS E,QUESADA C A,ROSA J S,SCHAAP K J,VALVERDE-BARRANTES O,HARTLEY I P. Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia[J]. Plant and Soil,2020,450(1/2):49-63.
[16] VALENTINUZZI F,PII Y,VIGANI G,LEHMANN M,CESCO S,MIMMO T. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria × ananassa[J]. Journal of Experimental Botany,2015,66(20):6483-6495.
[17] 樊衛(wèi)國(guó),羅燕. 不同磷水平下4種柑橘砧木的生長(zhǎng)狀況、根系形態(tài)和生理特性[J]. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(3):534-545.
FAN Weiguo,LUO Yan. Growth status,root morphology and physiological characteristics of four Citrus rootstocks under different phosphorus levels[J]. Scientia Agricultura Sinica,2015,48(3):534-545.
[18] GUO H C,YORK L M. Maize with fewer nodal roots allocates mass to more lateral and deep roots that improve nitrogen uptake and shoot growth[J]. Journal of Experimental Botany,2019,70(19):5299-5309.
[19] PENG W T,WU W W,PENG J C,LI J J,LIN Y,WANG Y N,TIAN J,SUN L L,LIANG C Y,LIAO H. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation[J]. Journal of Integrative Plant Biology,2018,60(3):216-231.
[20] KIDD D R,RYAN M H,HAHNE D,HALING R E,LAMBERS H,SANDRAL G A,SIMPSON R J,CAWTHRAY G R. The carboxylate composition of rhizosheath and root exudates from twelve species of grassland and crop legumes with special reference to the occurrence of citramalate[J]. Plant and Soil,2018,424(1):389-403.
[21] NI J J,WU P,LOU A C,ZHANG Y S,TAO Q N. Low phosphorus effects on the metabolism of rice seedlings[J]. Communications in Soil Science and Plant Analysis,1996,27(18/19/20):3073-3084.
[22] MSEHLI W,YOUSSFI S,DONNINI S,DELLORTO M,DE NISI P,ZOCCHI G,ABDELLY C,GHARSALLI M. Root exudation and rhizosphere acidification by two lines of Medicago ciliaris in response to lime-induced iron deficiency[J]. Plant and Soil,2008,312(1):151-162.
[23] RAMAEKERS L,REMANS R,RAO I M,BLAIR M W,VANDERLEYDEN J. Strategies for improving phosphorus acquisition efficiency of crop plants[J]. Field Crops Research,2010,117(2/3):169-176.
[24] 陳磊,王盛鋒,劉榮樂(lè),汪洪. 不同磷供應(yīng)水平下小麥根系形態(tài)及根際過(guò)程的變化特征[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(2):324-331.
CHEN Lei,WANG Shengfeng,LIU Rongle,WANG Hong. Changes of root morphology and rhizosphere processes of wheat under different phosphate supply[J]. Plant Nutrition and Fertilizer Science,2012,18(2):324-331.
[25] ZOU X H,WEI D,WU P F,ZHANG Y,HU Y N,CHEN S T,MA X Q. Strategies of organic acid production and exudation in response to low-phosphorus stress in Chinese fir genotypes differing in phosphorus-use efficiencies[J]. Trees,2018,32(3):897-912.
[26]? G?L?T K Y,?ZDEMIR O. Phosphorus tolerance levels of different chickpea genotypes[J]. Saudi Journal of Biological Sciences,2021,28(9):5386-5390.
[27] 陳凌,王君杰,王海崗,曹曉寧,劉思辰,田翔,秦慧彬,喬治軍. 耐低氮糜子品種的篩選及農(nóng)藝性狀的綜合評(píng)價(jià)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2020,53(16):3214-3225.
CHEN Ling,WANG Junjie,WANG Haigang,CAO Xiaoning,LIU Sichen,TIAN Xiang,QIN Huibin,QIAO Zhijun. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits[J]. Scientia Agricultura Sinica,2020,53(16):3214-3225.
[28] 季萌萌,許海港,彭玲,任飴華,葛順?lè)?,姜遠(yuǎn)茂. 低磷脅迫下五種蘋(píng)果砧木的磷吸收與利用特性[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(4):974-980.
JI Mengmeng,XU Haigang,PENG Ling,REN Yihua,GE Shunfeng,JIANG Yuanmao. Characteristics of phosphorus absorption and utilization in five apple rootstocks under low phosphorus stress[J]. Journal of Plant Nutrition and Fertilizer,2014,20(4):974-980.
[29] 栗振義,張綺芯,仝宗永,李躍,徐洪雨,萬(wàn)修福,畢舒貽,曹婧,何峰,萬(wàn)里強(qiáng),李向林. 不同紫花苜蓿品種對(duì)低磷環(huán)境的形態(tài)與生理響應(yīng)分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2017,50(20):3898-3907.
LI Zhenyi,ZHANG Qixin,TONG Zongyong,LI Yue,XU Hongyu,WAN Xiufu,BI Shuyi,CAO Jing,HE Feng,WAN Liqiang,LI Xianglin. Analysis of morphological and physiological responses to low pi stress in different alfalfas[J]. Scientia Agricultura Sinica,2017,50(20):3898-3907.
[30] 黃愛(ài)纓,代先祝,王三根,蔡一林. 低磷脅迫對(duì)玉米自交系苗期根系分泌有機(jī)酸的影響[J]. 西南大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,30(4):73-77.
HUANG Aiying,DAI Xianzhu,WANG Sangen,CAI Yilin. Effect of low-phosphorus stress on root exudation of maize inbred lines at the seedling stage[J]. Journal of Southwest University (Natural Science Edition),2008,30(4):73-77.
[31] 張振海,陳琰,韓勝芳,張孟臣,王冬梅. 低磷脅迫對(duì)大豆根系生長(zhǎng)特性及分泌H+和有機(jī)酸的影響[J]. 中國(guó)油料作物學(xué)報(bào),2011,33(2):135-140.
ZHANG Zhenhai,CHEN Yan,HAN Shengfang,ZHANG Mengchen,WANG Dongmei. Effect of P deficiency stress on soybean root system and its secretion of H+ and organic acid[J]. Chinese Journal of Oil Crop Sciences,2011,33(2):135-140.
[32] 張可煒,王賢麗,李坤朋,張舉仁. 低磷脅迫對(duì)耐低磷玉米自交系幼苗光合特性的影響[J]. 山東大學(xué)學(xué)報(bào)(理學(xué)版),2007,42(3):89-94.
ZHANG Kewei,WANG Xianli,LI Kunpeng,ZHANG Juren. Effect of low-level phosphorus stress on photosynthetic characteristics of maize inbred line seedlings with low-level phosphorus tolerance[J]. Journal of Shandong University (Natural Science),2007,42(3):89-94.
[33] 王菲,曹翠玲. 磷水平對(duì)不同磷效率小麥葉綠素?zé)晒鈪?shù)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2010,16(3):758-762.
WANG Fei,CAO Cuiling. Effects of phosphorus levels on chlorophyll fluorescence parameters of wheat (Triticum aestivum L.) with different phosphorus efficiencies[J]. Plant Nutrition and Fertilizer Science,2010,16(3):758-762.
[34] 韓夢(mèng),張榮,陳爽,單光耀,劉曉,徐帥,王巨媛,翟勝. 不同濃度磷對(duì)茄子葉片光合及熒光特性的影響[J]. 中國(guó)瓜菜,2019,32(12):57-59.
HAN Meng,ZHANG Rong,CHEN Shuang,SHAN Guangyao,LIU Xiao,XU Shuai,WANG Juyuan,ZHAI Sheng. Effects of different phosphorus on photosynthetic and fluorescence characteristics of eggplant[J]. China Cucurbits and Vegetables,2019,32(12):57-59.
[35] NARANG R A,BRUENE A,ALTMANN T. Analysis of phosphate acquisition efficiency in different Arabidopsis accessions[J]. Plant Physiology,2000,124(4):1786-1799.
[36] JONES D L. Organic acids in the rhizosphere:A critical review[J]. Plant and Soil,1998,205:25-44.
[37] RYAN P R,DELHAIZE E,JONES D L. Function and mechanism of organic anion exudation from plant roots[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52(1):527-560.
[38] L?PEZ-BUCIO J,NIETO-JACOBO M F,RAMI?REZ-RODRI?GUEZ V,HERRERA-ESTRELLA L. Organic acid metabolism in plants:From adaptive physiology to transgenic varieties for cultivation in extreme soils[J]. Plant Science,2000,160(1):1-13.