亓政良 徐芳菲 王先洪 傅敏 王利平 洪霓 王國平
摘? ? 要:【目的】鑒定明確近年在福建新發(fā)生的李葉斑病的病原菌種類?!痉椒ā坎杉钊~斑病葉進行組織分離,對獲得的菌株采用形態(tài)學(xué)和分子生物學(xué)相結(jié)合的方法進行種類鑒定和致病性研究?!窘Y(jié)果】通過組織分離和純化,并根據(jù)菌落形態(tài)特征共獲得66個刺盤孢屬(Colletotrichum)菌株。對這些菌株進行形態(tài)學(xué)觀察和多基因(ACT、TUB2、CHS-1、GAPDH及ITS)系統(tǒng)發(fā)育分析的結(jié)果顯示,它們分別歸屬于刺盤孢屬的6個種,包括果生刺盤孢(C. fructicola)59個菌株、喀斯特刺盤孢(C. karstii)2個菌株、普洛柏刺盤孢(C. plurivorum)2個菌株、暹羅刺盤孢(C. siamense)1個菌株、無錫刺盤孢(C. wuxiense)1個菌株和李刺盤孢(C. pruni-salicinae)1個菌株,其中李刺盤孢(C. pruni-salicinae)為筆者鑒定出的1個新種。分離鑒定的6種刺盤孢的代表菌株,有傷接種結(jié)果顯示它們均可使李葉片和果實致病,但其致病力明顯不同,它們對桃、梨、柑橘和獼猴桃的致病也存在顯著差異。【結(jié)論】引起福建李葉斑病的病原菌有果生刺盤孢、喀斯特刺盤孢、普洛柏刺盤孢、暹羅刺盤孢、無錫刺盤孢和李刺盤孢6種,其中果生刺盤孢(C. fructicola)為優(yōu)勢種,占刺分離獲得的盤孢屬(Colletotrichum)菌株的89.4%。不同刺盤孢菌的致病性存在明顯差異。
關(guān)鍵詞:李;葉斑?。淮瘫P孢菌;多基因系統(tǒng)發(fā)育分析;致病性
中圖分類號:S662.3 文獻標志碼:A 文章編號:1009-9980(2023)11-2423-12
Identification and pathogenicity of pathogenic species of plum leaf spot disease in Fujian
QI Zhengliang, XU Fangfei, WANG Xianhong, FU Min, WANG Liping, HONG Ni, WANG Guoping*
(College of Plant Science and Technology, Huazhong Agricultural University/Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, Hubei, China)
Abstract: 【Objective】 In recent years, a new leaf disease has occurred in plum producing areas in Fujian Province, causing yellow to brown spots on the leaves in preliminary stage, irregular gray to dark brown stripes in later period and leaf fall in severe cases. According to the symptoms, it is named plum leaf spot disease. The disease has a trend of spreading and increasing every year, which has aroused high local attention. This study investigated the occurrence of the disease and identified the pathogen species. 【Methods】 A survey of leaf spot disease was conducted in two plum orchards from 2020 to 2021 in Liancheng county, Fujian province. The leaves with the symptoms were collected from the plum trees of Furong, Younai and Huanai (Prunus sallcina) in the surveyed orchards and 4-5 mm2 diseased tissues (neighboring the asymptomatic regions) were surface-sterilized with 75% ethanol for 45 s, washed two times in sterile water and dried on sterilized filter paper, and placed onto potato dextrose agar (PDA) plates and incubated at a temperature of 28 ℃ in the dark. The single mycelium was used for purifying strains, and pure cultures were stored in 25% glycerol at -80 ℃. The pathogen genomic DNA was extracted with cetyltrimethylammonium bromide (CTAB) buffer, which was identified through partial actin (ACT), beta-tubulin (TUB2), chitin synthase (CHS-1), a 200-bp intron of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and partial regions of six loci including partial rDNA-ITS (ITS) region sequence analysis. The multiple sequences were aligned using MAFFT v.7 with default settings, manually adjusted in MEGA v.5.2.2 if necessary and phylogenetic tree was constructed using maximum-likelihood (ML) by IQ-TREE. The morphological characteristics, sporulation phenotype, conidia morphology and ascospore morphology for representative strains of the identified Colletotrichum spp. were recorded. The pathogenicity was determined on the detached leaves and fruits of plum inoculated with mycelial plugs and conidia suspension of representative strains of the identified Colletotrichum spp., the host ranges were determined on the detached leaves of peach (Prunus persica), pear (Pyrus pyrifolia), citrus (Citrus reticulate) and kiwifruit (Actinidia chinensis) inoculated with representative strains of the identified Colletotrichum spp..【Results】 Through tissue isolation and purification, 66 strains with the similar morphology to Colletotrichum spp. were isolated in total. The obtained strains were identified by multiple genes (ACT, TUB2, CHS-1, GAPDH, and ITS) and were clustered in six different branches, including 59 strains clustered in the branch of C. fruticola, 2 strains in C. karstii, 2 strains in C. pluriforum, 1 strain in C. siamense, 1 strain in C. wuxiensis and 1 strain (2FRL-3-1) close to C. tropicicola. Morphological observation showed that 2FRL-3-1 was significantly different from C. tropicicola in colony color and conidia size, which indicated that 2FRL-3-1 was a novel species of Colletotrichum spp. identified in this study, named as C. pruni-salicinae. The results of pathogenicity test showed that the representative strains of the above 6 species of Colletotrichum spp. induced lesions on the leaves and fruits of P. salicina Lindl. The strains isolated from infected sites were identical to the strains inoculated. The results showed that they were all pathogenic and responsible for plum leaf spot and fulfilled the Kochs postulates. But there were significant differences of pathogenicity in the fruits. The pathogenicity of C. siamense on the fruits was significantly stronger than the other 5 species. The pathogenicity of HN-6-1 was significantly stronger than that of 2FRL-2-3, although they all belonged to the species C. karstii. The results indicated that different species and different strains of the same species of Colletotrichum spp. had significant pathogenicity differentiation against the same host. The results of determination for the host range showed that the above six species of Colletotrichum spp. infected the leaves of the plants other than plum, C. fruticola and C. wuxiense infected the leaves of peach (P. persica), pear (P. pyrifolia), citrus (Citrus reticulata) and kiwifruit (A. chinensis), C. siamense and C. pluriforum infected the leaves of peach, pear and kiwifruit, while C. karstii and C. pruni-salicinae also infected the leaves of peach and pear. 【Conclusion】 Based on morphological characteristics and phylogenetic analysis of the multiple genes (ACT, TUB2, CHS-1, GAPDH, and ITS), the pathogens of plum leaf spot disease in Fujian were identified as 6 species, including C. fruticola, C. karstii, C. pluriforum, C. siamense, C. wuxiense and C. pruni-salicinae. Among them, C. fruticola was the dominant species, accounting for 89.4% of Colletotrichum strains. There were significant differences in pathogenicity between different species and strains of the same species on the same host. C. siamense had the strongest pathogenicity on the fruits of plum. This study is the first report on the identification of pathogens associated with plum leaf spot disease in Fujian.
Key words: Plum; Leaf spot; Colletotrichum spp.; Multi-gene phylogenetic analysis; Pathogenicity
收稿日期:2023-03-31 接受日期:2023-07-31
基金項目:國家梨產(chǎn)業(yè)技術(shù)體系樹體病害防控崗位(CARS-28-16)
作者簡介:亓政良,男,在讀碩士研究生,從事果樹病理學(xué)研究。Tel:18366319588,E-mail:qizhengliang000@163.com
*通信作者 Author for correspondence. E-mail:gpwang@mail.hzau.edu.cn
近年在福建連城等地的李產(chǎn)區(qū)發(fā)生一種新的葉部病害,根據(jù)其癥狀表現(xiàn)稱之為李葉斑病。該病初期在李葉上產(chǎn)生黃色至淺褐色病點,之后逐漸擴展成形狀不規(guī)則的灰色至深褐色病斑,發(fā)生嚴重時葉片干枯。該病有擴展蔓延和逐年加重的趨勢,已引起當(dāng)?shù)氐母叨汝P(guān)注。
據(jù)Olawole等[1]報道,在美國的李產(chǎn)區(qū)發(fā)生一種細菌病害,導(dǎo)致李葉枯焦,潮濕時病部產(chǎn)生菌膿,研究證實系由葉緣焦枯病菌(Xylella fastidiosa)所致。我國四川的李產(chǎn)區(qū)也發(fā)生有李葉枯病,葉片邊緣或尖端形成不規(guī)則的褐色斑點,繼而擴展為較大的灰褐色病斑。經(jīng)病原鑒定證實是由兩種鐮刀菌(Fusarium pernambucanum和F. sulawesiense)引起的[2]。2021年在我國廣西李產(chǎn)區(qū)發(fā)現(xiàn)李黃斑病,該病田間癥狀表現(xiàn)為最初葉上形成小的黃色斑點,逐漸擴展為不規(guī)則深褐色凹陷病斑,其邊緣顯現(xiàn)黃色暈圈。研究表明該病的病原菌為埃斯欽諾梅刺盤孢(Colletotrichum aeschynomenes)[3]。不難看出,福建李葉斑病的癥狀表現(xiàn)與由細菌引起的李葉枯焦病[1]和由鐮刀菌引起的李葉枯病[2]有明顯的不同,而與由刺盤孢菌引起的李黃斑病[3]相似。
植物病原刺盤孢屬(Colletotrichum)的寄主范圍廣泛,可為害許多作物造成嚴重的經(jīng)濟損失,該屬種類繁多,不同的種可導(dǎo)致癥狀相同的病害,同一種刺盤孢也可引起不同癥狀表現(xiàn)的病害。據(jù)日本報道,引起李果實炭疽病的病原菌有尖孢炭疽菌(C. acutatum)、膠孢炭疽菌(C. gloeosporioides)和內(nèi)乏亞炭疽菌(C. nymphaeae)[4-5]。而在韓國栽培的日本李(Prunus salicina Lindl.)上,導(dǎo)致果實炭疽病的病原菌為膠孢炭疽菌(C. gloeosporioides)、內(nèi)乏亞炭疽菌(C. nymphaeae)、松針炭疽菌(C. foriniae)和暹羅刺盤孢(C. siamense)[5-6]。我國福建芙蓉李炭疽病的病原菌為膠孢炭疽菌(C. gloeosporioides)[7],而在廣東栽培的日本李(Prunus salicina Lindl.)和廣西栽培的三華李(P. salicina Lindl. cv. Sanhua)上,葉片與果實炭疽病則分別由松針炭疽菌(C. fioriniae)[8]和埃斯欽諾梅刺盤孢(C. aeschynomenes)[3]所致。
筆者在本研究中為明確福建李葉斑病的病原種類,對該病進行田間調(diào)查,采集病樣進行病原菌分離、形態(tài)學(xué)觀察及多基因鑒定、致病性驗證。研究結(jié)果可為產(chǎn)區(qū)李葉斑病的防控提供理論依據(jù),并為深入了解植物病原刺盤孢種類和致病多樣性提供新的信息。
1 材料和方法
1.1 材料
2020年6月至2021年6月,在福建省連城縣李葉斑病發(fā)生最嚴重的2個李園進行病害系統(tǒng)觀察,并從3個李品種(芙蓉李、油柰、花柰)園,分別采用五點取樣法,每點選取5株李樹,每株李樹上隨機采集4枚顯現(xiàn)有葉斑病典型癥狀的葉片,作為病葉樣品用于病菌的分離。
1.2 方法
1.2.1 病原菌的分離純化 從病葉樣品病健交界處切取4~5 mm2組織塊,放入75%的乙醇中消毒45 s后,使用無菌水中漂洗2次后取出,放在滅菌濾紙上晾干后,置于PDA培養(yǎng)基上,在28 ℃恒溫培養(yǎng)箱中黑暗培養(yǎng)2~3 d,待菌落長出后,挑取小塊未污染的菌絲塊移至新的PDA培養(yǎng)基上培養(yǎng)5 d??僧a(chǎn)生分生孢子的分離株的純化方法參考《植病研究方法》概述的瓊膠平板表面單孢子挑取方法[9],未觀察到產(chǎn)孢的分離株通過單菌絲純化方法[10]。純化后的菌株分別置于PDA斜面上4 ℃保存和25%甘油中-80 ℃保存?zhèn)溆谩?/p>
1.2.2 培養(yǎng)特征觀察 挑取培養(yǎng)5 d的菌落邊緣的菌絲塊(直徑5 mm)轉(zhuǎn)接至PDA平板中央,置于28 ℃恒溫培養(yǎng)箱中黑暗條件下培養(yǎng),每個菌株重復(fù)3皿。每天記錄菌落在培養(yǎng)基上的生長情況并測量菌落直徑。在體視顯微鏡(SZX16,Japan)下觀察分生孢子堆和子囊殼。在光學(xué)顯微鏡(Olympus BX63,Japan)下觀察分生孢子、子囊、子囊孢子等并測量大小。
1.2.3 多基因擴增與測序 將供試菌株的菌絲塊轉(zhuǎn)入鋪有滅菌玻璃紙的PDA平板中央,置于28 ℃智能光照培養(yǎng)箱中培養(yǎng)6 d后收集菌絲,采用CTAB(十六烷基三乙基溴化銨)法提取分離物基因組DNA[11],并通過1.2%瓊脂糖凝膠電泳后檢測提取的DNA質(zhì)量。采用引物ITS4/ITS5、GDF1/GDR1、ACT-512F/ACT-783R、CHS-79F/CHS-345R和T1/Bt2b分別擴增菌株的ITS序列、GAPDH 200 bp的內(nèi)含子以及ACT、CHS-1和TUB2基因的部分序列。具體引物信息見表1[12-16]。PCR反應(yīng)體系和擴增參考Weir等[17]的方法。將PCR產(chǎn)物委托生工生物工程股份有限責(zé)任公司進行測序。
1.2.4 系統(tǒng)發(fā)育分析 在核酸序列數(shù)據(jù)庫GenBank(http://www.ncbi.nlm.nih.gov)中BLAST搜索并下載與測序所得序列相似性較高的序列和刺盤孢屬各模式種的序列,使用DNAMAN 9.0軟件對本研究中得到的產(chǎn)物序列與從GenBank中下載的序列進行多重比對和分析,再使用默認設(shè)置的MAFFT v.7對序列進行多重比對,必要時用MEGA7對序列進行手工校正。將比對好的基因序列按照ACT、TUB2、CHS-1、GAPDH和ITS的順序首尾相連進行拼接[18]。使用IQ-TREE對合并的數(shù)據(jù)集進行遺傳進化分析,采用最大似然法(Maximum-likelihood)并選用GTR+G核苷酸替代模型構(gòu)建系統(tǒng)進化樹,用自展檢驗法以1000次重復(fù)計算支持率。
1.2.5 致病性測定 分生孢子懸浮液有傷接種:以健康的李葉片為接種材料,用75%乙醇表面消毒后,使用無菌的昆蟲針(直徑0.5 mm)在葉脈兩側(cè)各針刺1次,將代表菌株的分生孢子懸浮液(濃度為106 個·mL-1)7 μL滴注在葉片的刺傷點上[19],每個菌株接種葉片8枚,3次重復(fù),并以無菌水接種作為對照。接種后的葉片置于接種盤中(盤底鋪滴有無菌水的滅菌紗布,上覆保鮮膜),再用塑料保鮮膜密封保濕,將其置于25 ℃、12/12 h光暗交替環(huán)境中培養(yǎng)。培養(yǎng)期間每天觀察葉片發(fā)病情況,接種第6天測量病斑大小并拍照記錄。
菌絲塊有傷接種:以健康的李葉片和果實為接種材料,用75%乙醇表面消毒后,分別用3根捆綁一起的無菌昆蟲針(直徑0.5 mm)在果實側(cè)面中央位置刺入約5 mm深,用單根無菌昆蟲針在每枚葉片的葉脈兩側(cè)各針刺1次。用打孔器打取供試菌株的菌絲塊(直徑5 mm),將菌絲塊有菌絲的一面接種于刺傷點,每個菌株接種葉片8枚或果實5個,3次重復(fù),以接種空白PDA培養(yǎng)基為對照,用無菌的脫脂棉蘸取適量無菌水后敷在菌絲塊上保濕,接種48 h后去除脫脂棉和菌絲塊,培養(yǎng)條件同分生孢子懸浮液有傷接種,第10天測量病斑直徑。
1.2.6 寄主范圍測定 選取桃(Prunus persica)、梨(Pyrus pyrifolia)、柑橘(Citrus reticulata)、獼猴桃(Actinidia chinensis)的離體葉片,有傷接種6種刺盤孢的共10個代表菌株,每個菌株接種5枚葉片,3次重復(fù)。接種方法與觀察同1.2.5。
2 結(jié)果與分析
2.1 李葉斑病的田間癥狀表現(xiàn)與獲得的刺盤孢屬(Colletotrichum)菌株
2020年6月至2021年6月在福建省連城縣李葉斑病發(fā)生最嚴重的2個李園進行病害系統(tǒng)觀察,結(jié)果顯示,病害發(fā)生初期,葉片上形成淺褐色斑點(圖1-A),之后擴展成灰色至深褐色條狀病斑(圖1-B),病斑的周圍有黃色暈圈,發(fā)病后期葉尖和葉緣向上卷縮并焦枯(圖1-C)。發(fā)病嚴重時,整株葉片發(fā)生干枯(圖1-D)。
同期在福建省連城縣,從3個李品種(芙蓉李、油柰和花柰)上采集顯現(xiàn)李葉斑病典型癥狀的病葉,并通過組織分離法進行病菌分離和純化,共從30份病葉樣品中獲得98個分離物。根據(jù)對其菌落形態(tài)特征觀察,其中有66個分離物屬于刺盤孢屬(Colletotrichum)菌株,占總分離物的67.3%。
2.2 多基因系統(tǒng)發(fā)育分析和鑒定出的刺盤孢種類
對獲得的66個刺盤孢屬(Colletotrichum)菌株進行DNA提取和ACT、TUB2、CHS-1、GAPDH、ITS序列擴增,分別得到大小約280、780、285、270、600 bp的特異性片段。按照ACT-TUB2-CHS-1-GAPDH-ITS順序進行序列串聯(lián),以瓜類炭疽菌(C. orbiculare)(CBS51497)為外群構(gòu)建系統(tǒng)發(fā)育進化樹,序列分析結(jié)果(圖2)顯示,這66個菌株的序列聚集在6個不同的分支上,其中59個菌株與果生刺盤孢(C. fructicola)聚集在一個分支上,2個菌株(2FRL-2-3和HN-6-1)與喀斯特刺盤孢(C. karstii)的來源于美國海棠分離物(CBS 113087)親緣關(guān)系最近,2個菌株(HN-6-4和2FRL-4-1)與普洛柏刺盤孢(C. plurivorum)的來源于巴西棉花分離物(CBS 132444)聚為一個分支,菌株HN-3-2與暹羅刺盤孢(C. siamense)的來源于泰國咖啡分離物(ICMP 18578)親緣關(guān)系最近,菌株2FRL-3-3與無錫刺盤孢(C. wuxiense)的來源于中國茶分離物(JS1A44和JS1A32)聚為一個分支,菌株2FRL-3-1以高支持率單獨形成一個分枝,與熱帶生刺盤孢(C. tropicicola)BCC 38877分離株的親緣關(guān)系最近。進一步研究顯示,菌株2FRL-3-1的培養(yǎng)特性與形態(tài)特征(結(jié)果見2.3中的描述)與熱帶生炭疽菌(C. tropicicola)模式菌株BCC 38877[20]存在明顯差異,由此認定2FRL-3-1為刺盤孢屬的一個新種,并根據(jù)其寄主命名為李刺盤孢(C. pruni-salicinae),Mycobank登陸號:MB843544,主模式標本號:HMAS 352256,中國普通微生物菌種保藏管理中心保存編號:CGMCC3.20959。
研究結(jié)果(表2)表明,從福建李葉斑病樣品中分離獲得的66個刺盤孢屬(Colletotrichum)菌株,分屬于刺盤孢屬的6個種,其中果生刺盤孢(C. fructicola)59個菌株、喀斯特刺盤孢(C. karstii)2個菌株、普洛柏刺盤孢(C. plurivorum)2個菌株、暹羅刺盤孢(C. siamense)1個菌株、無錫刺盤孢(C. wuxiense)1個菌株和李刺盤孢(C. pruni-salicinae)1個菌株。結(jié)果顯示果生刺盤孢(C. fructicola)為優(yōu)勢種,其菌株數(shù)占刺盤孢屬(Colletotrichum)菌株數(shù)的89.4%(59/66),而其余5種刺盤孢的菌株數(shù)僅占10.6%(7/66)。
2.3 6種刺盤孢菌(代表菌株)的形態(tài)學(xué)特征
(1)果生刺盤孢(C. fructicola,YN-2-5):在PDA培養(yǎng)基上菌落灰白色,可產(chǎn)生黑色色素,氣生菌絲發(fā)達;培養(yǎng)14 d后,產(chǎn)生橙黃色分生孢子堆(圖3-a),分生孢子圓柱狀(圖3-i),兩端鈍圓,大小為(14~18.5) μm×(4.5~6.5) μm;培養(yǎng)20 d后可見有性態(tài)(圖3-g),子囊殼內(nèi)含有棍棒狀的子囊,子囊內(nèi)有8個呈梭狀的子囊孢子(圖3-h)。
(2)暹羅刺盤孢(C. siamense,HN-3-2):在PDA培養(yǎng)基上菌落灰白色,可產(chǎn)生黑色色素,氣生菌絲發(fā)達;培養(yǎng)12 d后,產(chǎn)生橙色的分生孢子堆(圖3-b),分生孢子圓柱狀,兩端鈍圓,透明,無隔膜(圖3-j),大小為(11~17.2) μm×(4.3~6.9) μm;培養(yǎng)20 d可見有性態(tài)(圖3-e),子囊殼內(nèi)含有棍棒狀子囊,子囊內(nèi)產(chǎn)生有梭狀子囊孢子(圖3-f)。
(3)無錫刺盤孢(C. wuxiense,2FRL-3-3):在PDA培養(yǎng)基上菌落白色,不產(chǎn)生色素,氣生菌絲發(fā)達;未觀察到孢子產(chǎn)生。
(4)喀斯特刺盤孢(C. karstii,HN-6-1):在PDA培養(yǎng)基上菌落白色,可產(chǎn)生淡黃色色素,氣生菌絲較弱;培養(yǎng)14 d后,產(chǎn)生棕黃色分生孢子堆(圖3-c),分生孢子光滑,無隔膜,短棒狀(圖3-k),一端稍微凸起,大小為(11~15) μm×(5~7) μm;未觀察到有性態(tài)。
(5)普洛柏刺盤孢(C. plurivorum,HN-6-4):在PDA培養(yǎng)基上菌落墨綠色,可產(chǎn)生黑色色素,氣生菌絲發(fā)達;未觀察到孢子產(chǎn)生。
(6)李刺盤孢(C. pruni-salicinae,2FRL-3-1):菌落正面灰色,背面產(chǎn)生黃綠色色素,生長速率為1.20~1.22 cm·d-1。培養(yǎng)14 d后,產(chǎn)生淺黃色的分生孢子堆(圖3-d),分生孢子透明、無隔膜,兩端鈍圓(圖3-l),大小為(15~22) μm×(5~10) μm,`x =(17.7±1.26) μm×(7.2±0.98) μm,n = 50。
2.4 致病性測定結(jié)果
從已鑒定出的6種刺盤孢中各選取1個代表菌株,采用分生孢子懸浮液或菌絲塊有傷接種到李(P. salicina Lindl.)葉片。結(jié)果顯示,果生刺盤孢(C. fructicola)YN-2-5菌株、喀斯特刺盤孢(C. karstii)HN-6-1菌株、暹羅刺盤孢(C. siamense)HN-3-2菌株、李刺盤孢(C. pruni-salicinae)2FRL-3-1菌株的分生孢子懸浮液和無錫刺盤孢(C. wuxiense)2FRL-3-3菌株、普洛柏刺盤孢(C. plurivorum)HN-6-4菌株的菌絲塊接種后均能使葉片發(fā)病,發(fā)病率為100%(24/24),產(chǎn)生的近圓形黃褐色病斑(圖4)與田間癥狀表現(xiàn)相同。對發(fā)病組織進行病菌再分離和鑒定,結(jié)果顯示再分離出的病菌種類與接種的菌株一致。結(jié)果表明,筆者在所鑒定出的果生刺盤孢(C. fructicola)、喀斯特刺盤孢(C. karstii)、普洛柏刺盤孢(C. plurivorum)、暹羅刺盤孢(C. siamense)、無錫刺盤孢(C. wuxiense)和李刺盤孢(C. pruni-salicinae)等6種刺盤孢均為引起福建李葉斑病的病原菌。
選取6種刺盤孢的代表菌株,采用菌絲塊有傷接種李果實。結(jié)果顯示,這些代表菌株均能使果實產(chǎn)生壞死斑癥狀,發(fā)病率為100%(15/15)。對接種10 d后產(chǎn)生的病斑進行長度觀測(圖5),可以看出,不同刺盤孢種的致病力有異。暹羅刺盤孢(C. siamense)的致病力最強,平均病斑直徑2.23 cm;果生刺盤孢(C. fructicola)和無錫刺盤孢(C. wuxiense)致病力居中,平均病斑直徑1.55 cm;普洛柏刺盤孢(C. plurivorum)和李刺盤孢(C. pruni-salicinae)的致病力較弱,平均病斑直徑0.86 cm??λ固卮瘫P孢(C. karstii)的不同菌株之間的致病力也存在較大差異,菌株HN-6-1產(chǎn)生的平均病斑直徑達1.34 cm,而菌株2FRL-2-3平均病斑直徑則為0.61 cm。
對寄主范圍測定的結(jié)果顯示,6種刺盤孢的10個代表菌株對桃、梨、柑橘和獼猴桃的致病存在明顯差異。普洛柏刺盤孢(C. plurivorum)和李刺盤孢(C. pruni-salicinae)在梨葉上的發(fā)病率分別為44%和66%,其余4種刺盤孢在桃和梨葉上的發(fā)病率均100%。果生刺盤孢(C. fructicola)和無錫刺盤孢(C. wuxiense)在柑橘葉上的發(fā)病率分別為66%和33%,在獼猴桃葉上的發(fā)病率分別為55%和33%。暹羅刺盤孢(C. siamense)在獼猴桃葉上的發(fā)病率66%。
3 討 論
近年在福建省,特別是連城縣的李產(chǎn)區(qū)新發(fā)生的李葉斑病危害嚴重,已成為李生產(chǎn)上的突出問題。筆者在本研究中通過對連城李產(chǎn)區(qū)葉斑病的發(fā)生狀況和危害特點進行系統(tǒng)性調(diào)查和病原菌分離純化、形態(tài)特征觀察和多基因序列分析及致病性驗證,首次明確了福建李葉斑病的病原菌種類,其中果生刺盤孢(C. fructicola)為優(yōu)勢種,占總分離株數(shù)的89.4%,研究結(jié)果為該地李葉斑病的有效防控提供了理論依據(jù)。
研究結(jié)果表明,引起福建李葉斑病的病原菌有果生刺盤孢(C. fructicola)、喀斯特刺盤孢(C. karstii)、普洛柏刺盤孢(C. plurivorum)、暹羅刺盤孢(C. siamense)、無錫刺盤孢(C. wuxiense)和李刺盤孢(C. pruni-salicinae)等6種,引起日本李果實炭疽病的病原菌有尖孢炭疽菌(C. acutatum)、膠孢炭疽菌(C. gloeosporioides)和內(nèi)乏亞炭疽菌(C. nymphaeae)等3種[4-5],韓國李果實炭疽病的病原菌有膠孢炭疽菌(C. gloeosporioides)、內(nèi)乏亞炭疽菌(C. nymphaeae)、松針炭疽菌(C. foriniae)和暹羅刺盤孢(C. siamense)等4種[5-6]。這類由多種刺盤孢菌復(fù)合侵染所致的病害,其病原菌組成的差異是否由李的種類或品種、環(huán)境條件等的不同導(dǎo)致,還需進一步研究。
植物病原刺盤孢屬(Colletotrichum)有多個種和復(fù)合種,多數(shù)菌株能夠表現(xiàn)出穩(wěn)定且特定的形態(tài)特征,形態(tài)培養(yǎng)特性對刺盤孢屬種間的鑒定具有重要的意義[21],可以作為初步判斷所屬復(fù)合種的依據(jù)[22]。Liu等[23]研究發(fā)現(xiàn)平頭刺盤孢(C. truncatum)、辣椒刺盤孢(C. scovillei)、南瓜刺盤孢(C. brevisporum)和部分果生刺盤孢(C. fructicola)有獨特相對穩(wěn)定的菌落形態(tài)便于區(qū)分。Than等[24]認為菌落生長速率是區(qū)分膠孢刺盤孢(C. gloeosporioides)、平頭刺盤孢(C. truncatum)和尖孢刺盤孢(C. acutatum)的重要指標。而僅利用形態(tài)學(xué)特征很難準確鑒定到種,目前對刺盤孢菌種的鑒定,多采用形態(tài)學(xué)觀測結(jié)合分子生物學(xué)鑒定[25-26]。筆者在本研究中通過多基因(ACT、TUB2、CHS-1、GAPDH和ITS)系統(tǒng)進化分析,發(fā)現(xiàn)2FRL-3-1菌株以高支持率單獨形成一個分化枝,與熱帶生刺盤孢(C. tropicicola)BCC 38877分離株的親緣關(guān)系最近,進一步研究發(fā)現(xiàn)二者在生長速率和分生孢子大小方面存在明顯不同,由此認定2FRL-3-1為刺盤孢屬的一個新種,并根據(jù)其寄主命名為李刺盤孢(C. pruni-salicinae)。本研究結(jié)果為植物病原刺盤孢菌的分類鑒定提供了新的有用信息。
炭疽病可由多種刺盤孢菌復(fù)合侵染,引起墨西哥杧果炭疽病的病原有暹羅刺盤孢(C. siamense)、杧果刺盤孢(C. asianum)、熱帶生刺盤孢(C. tropicicola)、隱秘刺盤孢(C. alienum)和果生刺盤孢(C. fructicola),從杧果病組織中它們的分離比例存在差異,且所有分離株均對杧果果實具有致病性,不同種間存在分化現(xiàn)象,暹羅刺盤孢(C. siamense)和杧果刺盤孢(C. asianum)的致病力強于隱秘刺盤孢(C. alienum)和果生刺盤孢(C. fructicola)[27]。本研究結(jié)果顯示,在試驗條件下果生刺盤孢(C. fructicola)、喀斯特刺盤孢(C. karstii)、普洛柏刺盤孢(C. plurivorum)、暹羅刺盤孢(C. siamense)、無錫刺盤孢(C. wuxiense)和李刺盤孢(C. pruni-salicinae)等6種刺盤孢菌均可使李的葉片和果實致病,但在田間病葉中它們的分離比例存在顯著差異,后5種僅占10.6%。因此它們在病害中的作用以及與果生刺盤孢(C. fructicola)之間的關(guān)系還有待深入研究。致病性測定顯示,在引起福建李葉斑病的6種病原刺盤孢中,暹羅刺盤孢(C. siamense)對李果實的致病力較其余5種明顯增強。而喀斯特刺盤孢(C. karstii)的HN-6-1和2FRL-2-3菌株,接種到李果實后所產(chǎn)生的病斑的平均直徑也存在顯著差異,前者為1.34 cm,后者僅0.61 cm。這些結(jié)果表明植物病原刺盤孢的不同種以及同種的不同菌株對同一種寄主均存在明顯的致病力分化現(xiàn)象[28]。
植物病原刺盤孢的寄主范圍極為廣泛,同一種刺盤孢菌可侵染多種植物造成嚴重的病害[29-31]。刺盤孢菌在多種寄主上具有交叉侵染的潛力[32],來源于杧果和牛油果的膠孢刺盤孢(C. gloeosporioides)的分離株可以侵染辣椒、草莓、番石榴和木瓜[33]。本研究結(jié)果顯示,果生刺盤孢(C. fructicola)和無錫刺盤孢(C. wuxiense)可侵染李、桃、梨、柑橘和獼猴桃葉片,喀斯特刺盤孢(C. karstii)、普洛柏刺盤孢(C. plurivorum)和李刺盤孢(C. pruni-salicinae)也可侵染李、桃和梨葉片。不同宿主上分離得到的刺盤孢菌株的致病力存在差異,分離自牛油果的分離株致病力強于杧果分離株,分離株在原寄主葉片上的致病性要比在其他葉片上的致病性強得多,這些差異可能由于病原體對不易感的宿主的適應(yīng),從而具有更強的致病性,以克服宿主的防御機制[33-34]。因此,在果園田間管理中應(yīng)注意防范交互感染。
4 結(jié) 論
引起福建李葉斑病的病原菌有果生刺盤孢(C. fructicola)、喀斯特刺盤孢(C. karstii)、普洛柏刺盤孢(C. plurivorum)、暹羅刺盤孢(C. siamense)、無錫刺盤孢(C. wuxiense)和李刺盤孢(C. pruni-salicinae)等6種,其中果生刺盤孢為優(yōu)勢病原種,占刺盤孢屬(Colletotrichum)菌株的89.4%。不同刺盤孢菌的致病性存在明顯差異。
參考文獻 References:
[1] OLAWOLE O I,URIBE P,RODRIGUEZ N A,GONZALEZ C F,ONG K L. First report of bacterial leaf scald of plum caused by Xylella fastidiosa in texas[J]. Plant Disease,2022,106(12):3198.
[2] LU M M,ZHANG Y J,LI Q L,HUANG S P,TANG L H,CHEN X L,GUO T X,MO J Y,MA L A. First report of leaf blight caused by Fusarium pernambucanum and Fusarium sulawesiense on plum in Sichuan,China[J]. Plant Disease,2022,106(10):2759.
[3] LU M M,MA L A,TANG L H,CHEN X L,GUO T X,MO J Y,HUANG S P,LI Q L. First report of anthracnose of Sanhua plum caused by Colletotrichum aeschynomenes in Guangxi,China[J]. Plant Disease,2022,107(4):1223.
[4] CHANG T H,HASSAN O,LEE Y S. First report of anthracnose of Japanese plum (Prunus salicina) caused by Colletotrichum nymphaeae in Korea[J]. Plant Disease,2018,102(7):1461.
[5] HASSAN O,LEE Y S,CHANG T. Colletotrichum species associated with Japanese plum (Prunus salicina) anthracnose in South Korea[J]. Scientific Reports,2019,9:12089.
[6] LEE Y S,HA D H,LEE T Y,PARK M J,CHUNG J B,JEONG B R. Isolation and characterization of Colletotrichum isolates causing anthracnose of Japanese plum fruit[J]. Korean Journal of Environmental Agriculture,2017,36(4):299-305.
[7] 林雄杰,王賢達,胡菡青,潘昌,范國成. 芙蓉李炭疽病的病原鑒定及生物學(xué)特性[J]. 中國南方果樹,2016,45(4):28-34.
LIN Xiongjie,WANG Xianda,HU Hanqing,PAN Chang,F(xiàn)AN Guocheng. Identification of the pathogenic fungus causing anthracnose of Furong plums and its biological characteristics[J]. South China Fruits,2016,45(4):28-34.
[8] CUI Y P,PENG A T,SONG X B,CHEN X,LING J F. First report of Japanese plum anthracnose caused by Colletotrichum fioriniae in China[J]. Journal of Plant Pathology,2021,103(3):1009.
[9] CHOI Y W,HYDE K D,HO W H. Single spore isolation of fungi[J]. Fungal Diversity,1999,3:29-38.
[10] YAEGASHI H,KANEMATSU S,ITO T. Molecular characterization of a new hypovirus infecting a phytopathogenic fungus,Valsa ceratosperma[J]. Virus Research,2012,165(2):143-150.
[11] FREEMAN S,KATAN T,SHABI E. Characterization of Colletotrichum gloeosporioides isolates from avocado and almond fruits with molecular and pathogenicity tests[J]. Applied and Environmental Microbiology,1996,62(3):1014-1020.
[12] CARBONE I,KOHN L M. A method for designing primer sets for speciation studies in filamentous ascomycetes[J]. Mycologia,1999,91(3):553-556.
[13] GUERBER J C,LIU B,CORRELL J C,JOHNSTON P R. Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns,mtDNA and intron RFLPs,and mating compatibility[J]. Mycologia,2003,95(5):872-895.
[14] WHITE T J,BRUNS T,LEE S,TAYLOR J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[J]. PCR Protocols,A Guide to Methods and Application,1990(1):315-322.
[15] ODONNELL K,CIGELNIK E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous[J]. Molecular Phylogenetics and Evolution,1997,7(1):103-116.
[16] GLASS N L,DONALDSON G C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes[J]. Applied and Environmental Microbiology,1995,61(4):1323-1330.
[17] WEIR B S,JOHNSTON P R,DAMM U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology,2012,73:115-180.
[18] KATOH K,STANDLEY D M. MAFFT multiple sequence alignment software version 7:improvements in performance and usability[J]. Molecular Biology and Evolution,2013,30(4):772-780.
[19] LIN Q,KANCHANA-UDOMKARN C,JAUNET T,MONGKOLPORN O. Genetic analysis of resistance to pepper anthracnose caused by Colletotrichum capsici[J]. Thai Joural Agricultural Science,2002,35(3):259-264.
[20] NOIREUNG P,PHOULIVONG S,LIU F,CAI L,MCKENZIE E H C,CHUKEATIROTE E,JONES E B G,BAHKALI A H,HYDE K D. Novel species of Colletotrichum revealed by morphology and molecular analysis[J]. Cryptogamie Mycologie,2012,33(3):347-362.
[21] PRIHASTUTI H,CAI L,CHEN H,MCKENZIE E H C,HYDE K D. Characterization of Colletotrichum species associated with coffee berries in northern Thailand[J]. Fungal Diversity,2009,39(1):89-109.
[22] GUARNACCIA V,GROENEWALD J Z,POLIZZI G,CROUS P W. High species diversity in Colletotrichum associated with citrus diseases in Europe[J]. Persoonia - Molecular Phylogeny and Evolution of Fungi,2017,39(1):32-50.
[23] LIU F L,TANG G T,ZHENG X J,LI Y,SUN X F,QI X B,ZHOU Y,XU J,CHEN H B,CHANG X L,ZHANG S R,GONG G S. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province,China[J]. Scientific Reports,2016,6:32761.
[24] THAN P P,JEEWON R,HYDE K D,PONGSUPASAMIT S,MONGKOLPORN O,TAYLOR P W J. Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand[J]. Plant Pathology,2008,57(3):562-572.
[25] ZHANG W,DAMM U,CROUS P W,GROENEWALD J Z,NIU X L,LIN J M,LI Y T. Anthracnose disease of carpetgrass (Axonopus compressus) caused by Colletotrichum hainanense sp. nov.[J]. Plant Disease,2020,104(6):1744-1750.
[26] XUE L H,ZHANG Y W,DUAN T Y,LI M Y,WHITE J F,LIU Y,LI C J. Characterization and pathogenicity of Colletotrichum species on Philodendron tatei cv. Congo in Gansu Province,China[J]. Plant Disease,2020,104(10):2571-2584.
[27] TOVAR-PEDRAZA J M,MORA-AGUILERA J A,NAVA-D?AZ C,LIMA N B,MICHEREFF S J,SANDOVAL-ISLAS J S,C?MARA M P S,T?LIZ-ORTIZ D,LEYVA-MIR S G. Distribution and pathogenicity of Colletotrichum species associated with mango anthracnose in Mexico[J]. Plant Disease,2020,104(1):137-146.
[28] FU M,CROUS P W,BAI Q,ZHANG P F,XIANG J,GUO Y S,ZHAO F F,YANG M M,HONG N,XU W X,WANG G P. Colletotrichum species associated with anthracnose of Pyrus spp. in China[J]. Persoonia,2019,42:1-35.
[29] SHU J,NING P,GUO T X,TANG L H,HUANG S P,LI Q L,MO J Y,YU Z H,HSIANG T. First report of leaf spot caused by Colletotrichum fructicola on Callerya speciosa (Millettia speciosa) in Guangxi,China[J]. Plant Disease,2020,104(12):3256.
[30] 鐘杰,尹秀娟,鐘雙玉,陳錦,朱俊子,李曉剛. 富貴草葉斑病病原的鑒定[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2022,48(1):60-64.
ZHONG Jie,YIN Xiujuan,ZHONG Shuangyu,CHEN Jin,ZHU Junzi,LI Xiaogang. Identification of pathogen causing Colletotrichum liriopes leaf spot on Pachysandra terminalis[J]. Journal of Hunan Agricultural University (Natural Sciences),2022,48(1):60-64.
[31] 劉梅,王彩霞,燕繼曄,賈靜怡,李興紅. 遼寧省北鎮(zhèn)市葡萄葉斑病的病原鑒定[J]. 植物保護,2021,47(2):185-188.
LIU Mei,WANG Caixia,YAN Jiye,JIA Jingyi,LI Xinghong. Identification of the pathogen causing leaf spot on grape in Beizhen city of Liaoning Province[J]. Plant Protection,2021,47(2):185-188.
[32] FREEMAN S,KATAN T,SHABI E. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits[J]. Plant Disease,1998,82(6):596-605.
[33] SANDERS G M,KORSTEN L. Comparison of cross inoculation potential of South African avocado and mango isolates of Colletotrichum gloeosporioides[J]. Microbiological Research,2003,158(2):143-150.
[34] ALAHAKOON P W,BROWN A E,SREENIVASAPRASAD S. Cross-infection potential of genetic groups of Colletotrichum gloeosporioides on tropical fruits[J]. Physiological and Molecular Plant Pathology,1994,44(2):93-103.