張俊環(huán) 張美玲 楊麗 姜鳳超 于文劍 王玉柱 孫浩元
摘? ? 要:【目的】探究杏不同品種間葉片解剖結(jié)構(gòu)特征的差異,并據(jù)此進(jìn)行抗旱性指標(biāo)的篩選和綜合評(píng)價(jià),為杏抗旱性資源的高效篩選和利用提供方法?!痉椒ā恳?0個(gè)抗旱性不同的杏品種(系)為材料,采用石蠟切片以及掃描電鏡技術(shù)觀察比較其葉片的解剖結(jié)構(gòu),測(cè)定葉片厚度、上表皮細(xì)胞厚度、下表皮細(xì)胞厚度、柵欄組織厚度、海綿組織厚度、柵欄組織厚度/海綿組織厚度、葉片結(jié)構(gòu)緊密度和疏松度以及葉片下表皮氣孔密度共9項(xiàng)葉片結(jié)構(gòu)指標(biāo)。運(yùn)用主成分分析法和隸屬函數(shù)法綜合評(píng)價(jià)10個(gè)杏品種(系)的抗旱能力?!窘Y(jié)果】葉片解剖結(jié)構(gòu)在品種間表現(xiàn)出不同程度的差異性,9個(gè)抗旱性指標(biāo)在10個(gè)品種(系)間有較大差異,變異系數(shù)在10.73% ~ 34.58%,靈敏度較高。通過主成分分析選取柵欄組織厚度、葉片厚度、柵欄組織厚度/海綿組織厚度、葉片結(jié)構(gòu)緊密度和下表皮厚度這5個(gè)指標(biāo)作為評(píng)價(jià)杏資源抗旱性的有效指標(biāo)。對(duì)10個(gè)杏品種(系)的5項(xiàng)抗旱性特征指標(biāo)的隸屬函數(shù)值累加并求均值,該值越大代表抗旱能力越強(qiáng)。10個(gè)杏品種(系)的抗旱能力排序?yàn)椋呵嗝苌常綠 4-25>皮乃孜>駱駝黃>串枝紅>G 4-43>G 4-40>G 4-26>紅金榛>大優(yōu)佳?!窘Y(jié)論】通過對(duì)葉片解剖結(jié)構(gòu)數(shù)據(jù)的主成分分析和隸屬函數(shù)值計(jì)算,評(píng)價(jià)并篩選到抗旱性相對(duì)較強(qiáng)的杏品種有青密沙、皮乃孜、駱駝黃、串枝紅等,研究結(jié)果可為其他杏資源的抗旱性評(píng)價(jià)、篩選和科學(xué)利用提供參考。
關(guān)鍵詞:杏;葉片;顯微結(jié)構(gòu);抗旱性
中圖分類號(hào):S662.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)11-2381-10
Comprehensive evaluation of drought resistance of different apricot cultivars (lines) based on leaf microstructure
ZHANG Junhuan, ZHANG Meiling, YANG Li, JIANG Fengchao, YU Wenjian, WANG Yuzhu, SUN Haoyuan*
(Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Apricot Engineering and Technology Research Center of National Forestry and Grassland Administration/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China)
Abstract: 【Objective】 The common apricot (Armeniaca. vulgaris L.) has 2000 cultivars or genotypes, but there have been few studies on drought resistance among various cultivars. There are also few reports about the evaluation of drought resistance based on leaf anatomical structure in apricot. This study aimed to establish an efficient method for drought-resistance evaluation of apricot plants and to screen out some apricot cultivars with high drought resistance. 【Methods】 10 apricot cultivars (accessions) with different drought-resistance were selected as materials. Paraffin sections and scanning electron microscopy were used to study the anatomical structures of leaves. Nine structural parameters were detected, which included leaf thickness (LT), thickness of upper and lower epidermis (TUE, TLE), thickness of palisade tissue (TP), thickness of spongy tissue (TS), ration of palisade and spongy (P/S), tightness of leaf tissue structure (TLTS), looseness of leaf tissue structure (LLTS), and SD. Based on these data, principal component analysis and subordinate function method were used to analyze the drought resistance of 10 apricot cultivars (accessions). 【Results】 There were great differences in leaf anatomical structure among different cultivars (lines). The smallest value of LT was 111.1 μm, and the largest LT was 222.5 μm. The TP and TS varied from 16.0 μm to 63.6 μm and from 52.8 μm to 90.0 μm, respectively. The P/S value ranged from 0.30 to 0.81. The thickness of the upper epidermal cells was higher than that of the lower epidermal cells, and the variation ranges of these two indexes were 27.7-39.7 μm and 13.4-21.8 μm, respectively. TLTS and LLTS ranged from 14.4% to 31.3% and from 40.5% to 54.9%, respectively. Scanning electron microscopy (SEM) revealed that the stomata in apricot leaves were only distributed in the lower epidermis. Obvious difference of SD among 10 cultivars (accessions) was also observed. Luotuohuang had the highest stomata density (396 per μm2) and G 4-25 had the lowest (102 per μm2), and the coefficient of variation among the 10 cultivars (lines) was 34.00%. Among the nine parameters, the coefficient of variation was in the order of TP>SD>P/S>TLTS>LT>TS>TLSR>TUE. The TP showed the largest difference among cultivars, with a coefficient of variation of 34.58%, while the TUE and LLTS showed little difference, with a coefficient of variation of 10.73% and 11.71%, respectively. The coefficient of variation for these 9 parameters ranged from 10.73% to 34.58%, which indicates that the anatomical structure change of apricot leaves sensitively responds to environment conditions. These parameters could be used to evaluate the drought resistance of different cultivars of apricot. Principal component analysis method was used to screen the crucial indicators. According to the criterium of the factor characteristic value greater than 1 and the cumulative contribution rate greater than 80%, the first two principal components were extracted out. The contribution rates of the first and second principal components were 49.61% and 30.65%, respectively, and the cumulative contribution rates of the first two principal components reached 80.26%, which could well retain most information of the nine parameters. For the first two principal components, there were difference in the load values of each parameter. The greater the load value, the greater the contribution rate to the principal component, and the more effective for evaluating drought resistance. In the first principal component, the loading values of TP, LT, P/S and TLTS, which the photosynthetic capacity and drought resistance of plant leaves, were higher than 0.8. In the second principal component, the load value of TLE, which reflects the protective characteristics of plant leaves, was the largest. By principal component analysis, TP, LT, P/S, TLTS and TLE were selected as the typical parameters to evaluate drought resistance of apricot. There is no consistent correlation between the anatomical parameters of apricot leaves and drought resistance. In order to avoid the limitation of a single parameter, the membership function analysis method was used for comprehensive evaluation. According to the results of principal component analysis, five parameters (TP, LT, P/S, TLTS and TLE) were determined as the typical indexes to evaluate the drought resistance of apricot resources. The membership function method was further used to calculate these five characteristic parameters, and the membership function values of the five parameters related to drought resistance of the 10 apricot cultivars (accessions) were accumulated and the mean values were calculated. The higher the value, the stronger the drought resistance. The drought resistance among the 10 apricot cultivars (accessions) was in the order of Qingmisha>G 4-25>Pinaizi>Luotuohuang>Chuanzhihong>G 4-43>G 4-40>G 4-26>Hongjinzhen>Dayoujia. 【Conclusion】 The drought resistance of 10 apricot cultivars (accessions) was comprehensively evaluated. Five parameters of anatomical structure were selected as the main indexes to evaluate the drought resistance of apricot, including leaf thickness (LT), palisade tissue thickness (TP), ration of palisade/spongy (P/S), tightness of leaf tissue structure (TLTS), and thickness of lower epidermis (TLE). With the mean value of five typical index membership functions>0.8 as the reference threshold, we found several cultivars (accessions) such as Qingmisha, G4-25, Pinaizi, Luotuohuang and Chuanzhihong had strong drought resistance. These results provide method for the evaluation of drought resistance and for screening and scientific utilization of apricot germplasm resources.
Key words: Apricot; Leaf; Anatomical structure; Drought resistance
收稿日期:2023-05-09 接受日期:2023-08-17
基金項(xiàng)目:北京市自然科學(xué)基金項(xiàng)目(6232011);北京市農(nóng)林科學(xué)院科技創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20230118);北京市農(nóng)林科學(xué)院科研創(chuàng)新平臺(tái)建設(shè)項(xiàng)目(PT2023-9)
作者簡(jiǎn)介:張俊環(huán),女,副研究員,博士,主要從事杏資源評(píng)價(jià)、育種及栽培技術(shù)研究。Tel:18510158719,E-mail:zhang_junhuan@163.com
*通信作者Author for correspondence. Tel:13691419570,E-mail:sunhyhnus@126.com
隨著全球經(jīng)濟(jì)發(fā)展和氣候的不斷變化,水資源短缺現(xiàn)象日趨嚴(yán)重,干旱地區(qū)逐年擴(kuò)大,干旱化程度逐漸加重,干旱給果樹生產(chǎn)帶來了較大挑戰(zhàn),抗旱性研究已成為農(nóng)業(yè)研究領(lǐng)域重點(diǎn)關(guān)注的問題??购敌允怯啥嗷蚩刂频臄?shù)量遺傳性狀,是在形態(tài)結(jié)構(gòu)、生理和生化等各方面綜合表現(xiàn)的遺傳特性。葉片作為植物進(jìn)行光合作用和蒸騰作用的主要器官,對(duì)水分感知較為靈敏,干旱處理能夠使杏葉片下表皮的氣孔數(shù)量和密度增加,葉片的柵欄組織和海綿組織變得緊湊,葉片厚度減小[1]。研究表明,植物的抗旱性強(qiáng)弱與葉片結(jié)構(gòu)密切相關(guān),并把葉片厚度、中脈厚度、柵欄組織厚度、氣孔密度、葉片上下表皮厚度、海綿組織厚度、柵海比、柵欄組織結(jié)構(gòu)緊密度、海綿組織結(jié)構(gòu)疏松度等葉片解剖結(jié)構(gòu)特征參數(shù)作為植物抗旱性評(píng)價(jià)的重要指標(biāo)。但是,不同植物種類用來進(jìn)行抗旱性評(píng)價(jià)的有效葉片結(jié)構(gòu)特征參數(shù)不同。葉片厚度、上(下)角質(zhì)層厚度、柵欄組織厚度和葉片結(jié)構(gòu)緊密度可作為紫葉李、紫丁香、旱柳、木槿4種園林植物抗旱性綜合評(píng)價(jià)的主要指標(biāo)[2]。葉片厚度、氣孔開度、柵海比是岑軟系列油茶抗旱性評(píng)價(jià)的主要葉片結(jié)構(gòu)特征參數(shù)[3],王新語等[4]在繡球上的試驗(yàn)數(shù)據(jù)證實(shí),葉片整體厚度與不同品種抗旱性強(qiáng)弱密切相關(guān),抗旱性強(qiáng)的植物一般都具有發(fā)達(dá)的柵欄組織。
不同植物種間、品種間的抗旱性通常都有較大的差異。對(duì)蘋果[5]、板栗[6]、薄殼山核桃[7]、葡萄砧木[8]、甘薯[9]等植物的抗旱性研究表明,不同品種間的抗旱性差異性較大。杏樹是較為抗旱、耐瘠薄、適應(yīng)性強(qiáng)的果樹種類,果實(shí)營(yíng)養(yǎng)價(jià)值高,樹體生態(tài)涵養(yǎng)功能強(qiáng)。有研究表明,山杏、大扁杏(仁用杏)、普通杏等杏樹主栽種間的抗旱性有著顯著的差異[10-11]。作為栽培面積最大、包含品種最多的普通杏,各品種間的抗旱性研究鮮見報(bào)道,基于葉片解剖結(jié)構(gòu)對(duì)杏不同品種進(jìn)行抗旱性分析的研究也未見相關(guān)文獻(xiàn)報(bào)道。因此,筆者選取干旱條件下葉片表現(xiàn)明顯不同的10個(gè)典型杏品種(系),對(duì)其葉片解剖結(jié)構(gòu)進(jìn)行觀測(cè)分析,并通過隸屬函數(shù)法綜合評(píng)價(jià)其抗旱性,旨在提供一些關(guān)于杏抗旱栽培和抗旱育種方面的理論依據(jù),為篩選抗旱性杏種質(zhì)資源提供技術(shù)參考。
1 材料和方法
1.1 試驗(yàn)材料
試驗(yàn)材料于2022年6月21日取自北京市農(nóng)林科學(xué)院林業(yè)果樹研究所杏資源圃,資源圃土壤含水量為15.5%,處于干旱狀態(tài),杏樹的正常生長(zhǎng)發(fā)育要求果園土壤含水量在18%~20%之間。用于試驗(yàn)的各品種為田間葉片表現(xiàn)卷葉或平展?fàn)顩r不同的兩種類型,包括4個(gè)普通杏品種駱駝黃、串枝紅、紅金榛和青密沙及紅金榛和青密沙雜交F1群體中的4個(gè)株系G 4-25、G 4-26、G 4-40、G 4-43,還有2個(gè)普通杏變種李光杏類型皮乃孜和大優(yōu)佳杏。串枝紅、紅金榛、G 4-26、G 4-43和大優(yōu)佳這5個(gè)品種的葉片表現(xiàn)為卷葉狀態(tài),駱駝黃、青密沙、G 4-25、G 4-40和皮乃孜這5個(gè)品種的葉片為平展?fàn)顟B(tài)。各品種的砧木均為山杏。選取向陽方向當(dāng)年生新梢中部的成熟葉片,將葉片避開葉脈切成(2~3)mm ×(1~2)mm(長(zhǎng)×寬)的組織塊,每個(gè)品種10個(gè)重復(fù)樣本,分別放入FAA固定液(用于制作石蠟切片)和2.5%的戊二醛電鏡固定液中進(jìn)行抽氣,待樣品無氣泡產(chǎn)生、全部沉入底部后,常溫固定24 h以上,轉(zhuǎn)入4 ℃下保存?zhèn)溆谩?/p>
1.2 葉片解剖結(jié)構(gòu)觀測(cè)
采用石蠟切片法對(duì)試驗(yàn)樣本包埋處理。將葉片組織塊從固定液中取出,依次進(jìn)行乙醇脫水→透明→浸蠟→包埋→切片處理,切片厚度為4 μm,然后65 ℃烤片1 h,最后番紅-固綠染色,樹脂膠封片。由Pannoramic MIDI切片掃描儀掃描拍照,Case Viewer切片掃描軟件進(jìn)行觀察和測(cè)定葉片厚度(leaf thickness,LT)、上表皮厚度(thickness of upper epidermis,TUE)、下表皮厚度(thickness of lower epidermis,TLE)、柵欄組織厚度(thickness of palisade tissue,TP)與海綿組織厚度(thickness of spongy tissue,TS)等指標(biāo),并根據(jù)測(cè)量指標(biāo)計(jì)算葉片組織結(jié)構(gòu)緊密度(tightness of leaf tissue structure,TLTS)、葉片組織結(jié)構(gòu)疏松度(looseness of leaf tissue structure,LLTS)和柵海比(P/S)。葉片組織結(jié)構(gòu)緊密度是柵欄組織厚度占葉片厚度的百分比,葉片組織結(jié)構(gòu)疏松度是海綿組織厚度占葉片厚度的百分比,柵海比是柵欄組織厚度與海綿組織厚度的比值。
1.3 葉片氣孔特征和密度觀測(cè)
采用掃描電鏡進(jìn)行葉片表皮氣孔特征觀察。從固定液中取出葉片組織樣品,按70%乙醇→85%乙醇→95%乙醇→100%乙醇→100%乙醇→乙醇∶乙酸異戊酯(3∶1)→乙醇∶乙酸異戊酯(1∶1)→乙醇∶乙酸異戊酯(1∶3)→100%乙酸異戊酯的梯度進(jìn)行脫水,每級(jí)15~30 min(溶劑含量大于材料20倍)。后將材料放入Quorum K850臨界點(diǎn)干燥儀中進(jìn)行干燥,用導(dǎo)電膠粘在樣品臺(tái)上,使用HITACHI MC1000離子濺射儀進(jìn)行噴金鍍膜。將鍍膜后的樣品置于HITACHI Regulus 8100掃描電鏡艙內(nèi),進(jìn)行觀察并拍照。每個(gè)品種的組織樣品觀察5~8片。
氣孔密度(stomatal density,SD)計(jì)算,在Adobe Photoshop CS6下,從照片上隨機(jī)選擇5個(gè)1 μm2的區(qū)域,人工計(jì)數(shù)每個(gè)區(qū)域的氣孔數(shù),取其平均值,并計(jì)算其標(biāo)準(zhǔn)差。
1.4 抗旱性評(píng)價(jià)
利用主成分分析法和隸屬函數(shù)法對(duì)各品種(系)抗旱性進(jìn)行評(píng)價(jià),參考宋捷和田青[2]在園林植物上的研究方法,先計(jì)算每個(gè)品種所有單一指標(biāo)的隸屬函數(shù)值,再計(jì)算不同品種所有指標(biāo)的平均隸屬函數(shù)值,平均隸屬函數(shù)值的大小,分別代表抗旱性的強(qiáng)弱。與抗旱性呈正相關(guān)的指標(biāo)的隸屬函數(shù)值用公式X=(X-Xmin)/(Xmax-Xmin)計(jì)算,與抗旱性呈負(fù)相關(guān)的指標(biāo)的隸屬函數(shù)值用公式X= 1-(X-Xmin)/(Xmax-Xmin)計(jì)算,式中X表示某一品種(系)某一指標(biāo)的測(cè)定值,Xmin表示10個(gè)品種(系)中某一指標(biāo)的最小值,Xmax表示10個(gè)品種(系)中某一指標(biāo)的最大值。
1.5 數(shù)據(jù)處理
利用Excel 2019和SPSS 20.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)、處理和作圖,對(duì)不同品種(系)的杏葉片解剖結(jié)構(gòu)特征數(shù)據(jù)進(jìn)行單因素方差分析和主成分分析。
2 結(jié)果與分析
2.1 不同杏品種(系)的葉片解剖結(jié)構(gòu)變化
對(duì)10個(gè)杏品種(系)葉片橫切面結(jié)構(gòu)的比較分析表明,不同杏品種(系)葉肉組織解剖結(jié)構(gòu)組成是相似的,其橫切面結(jié)構(gòu)由上表皮、柵欄組織、海綿組織、下表皮以及維管束組織組成(圖1)。上、下表皮細(xì)胞均為一層,細(xì)胞較大;柵欄組織緊挨著上表皮,由1~2層長(zhǎng)柱形細(xì)胞構(gòu)成,排列較為緊密;海綿組織位于柵欄組織與下表皮之間,細(xì)胞為短柱形,排列不規(guī)則且胞間隙較大;葉脈維管束由木質(zhì)部、韌皮部和形成層構(gòu)成,外部由薄壁細(xì)胞構(gòu)成的維管束鞘細(xì)胞包圍。
由圖1和表1可知,不同品種(系)的葉片厚度、上表皮厚度、下表皮厚度、柵欄組織厚度與海綿組織厚度、葉片組織結(jié)構(gòu)緊密度、葉片組織結(jié)構(gòu)疏松度和柵海比等結(jié)構(gòu)參數(shù)都存在較大差異。葉片厚度最小的是大優(yōu)佳杏,為111.1 μm,最大的是青密沙杏(222.5 μm)。柵欄組織和海綿組織的厚度變幅分別為16.0~63.6 μm、52.8~90.0 μm。柵海比變幅為0.30~0.81。上表皮細(xì)胞比對(duì)應(yīng)的下表皮細(xì)胞厚,兩類表皮細(xì)胞在品種間的變異幅度分別為27.7~39.7 μm、12.3~21.8 μm。葉片組織結(jié)構(gòu)緊密度和疏松度的變幅分別為14.4%~31.6%、37.4%~54.9%。這8個(gè)參數(shù)中,變異系數(shù)由大到小排序?yàn)門P>P/S>TLTS>LT>TS>TLE>LLTS>TUE,柵欄組織厚度在品種間的差異最大,變異系數(shù)為34.58%,而上表皮細(xì)胞厚度和組織結(jié)構(gòu)疏松度差異較小,變異系數(shù)分別為10.73%和11.71%。由表1還可以看出,除了柵海比、組織結(jié)構(gòu)緊密度和疏松度,其余5個(gè)參數(shù)指標(biāo)均是青密沙杏數(shù)值最大,而大優(yōu)佳杏的葉片各參數(shù)值都相對(duì)較小。與此相對(duì)應(yīng)的是,青密沙杏的葉片表現(xiàn)為平展?fàn)顟B(tài),大優(yōu)佳杏的葉片呈翻卷狀。
通過掃描電鏡觀察,杏葉片的氣孔只分布于下表皮,橢圓形或近圓形,氣孔器由2個(gè)腎形保衛(wèi)細(xì)胞構(gòu)成(圖2)。由表2可知,不同品種(系)的氣孔密度表現(xiàn)出較大差異。氣孔密度最大的是駱駝黃杏,為396個(gè)·μm-2,最小的是G 4-25,氣孔密度為102個(gè)·μm-2,前者是后者的3.88倍。氣孔密度在10個(gè)品種(系)間的變異系數(shù)較高,為34.00%。這10個(gè)品種的氣孔密度基本可以分為高、中、低3類,圖2顯示分屬于不同氣孔密度等級(jí)的3個(gè)代表品種的氣孔特征。大多為中等水平,氣孔密度為218~269個(gè)·μm-2,包括7個(gè)品種(系),高密度(396個(gè)·μm-2左右)的僅1個(gè)品種,低密度(102~135個(gè)·μm-2)的有2個(gè)品系。
2.2 基于葉片解剖結(jié)構(gòu)的主成分分析
以上研究結(jié)果表明,10個(gè)杏品種(系)在LT、TP、TS、P/S、TUE、TLE、TLTS、LLTS 和SD這9個(gè)指標(biāo)上均有較大的差異,其變異系數(shù)為10.73%~34.58%,表明植物葉片的解剖結(jié)構(gòu)均具有較高的靈敏度,可用來評(píng)價(jià)杏不同品種(系)的抗旱性。但有時(shí)運(yùn)用過多密切相關(guān)的指標(biāo)進(jìn)行評(píng)價(jià)不僅不利于揭示類型特征,還可能產(chǎn)生認(rèn)識(shí)上的偏差,因此,筆者在本研究中進(jìn)一步運(yùn)用主成分分析法對(duì)9項(xiàng)指標(biāo)進(jìn)行篩選,根據(jù)因子特征值大于1和累計(jì)貢獻(xiàn)率≥ 80%的原則抽取主成分,再根據(jù)每個(gè)指標(biāo)的載荷量、貢獻(xiàn)率及變異系數(shù)篩選出具有代表性的指標(biāo)。由表3可見,第1主成分和第2主成分的貢獻(xiàn)率分別為49.61%和30.65%,前2個(gè)主成分的累積貢獻(xiàn)率達(dá)到80.26%,能較好地保留9個(gè)指標(biāo)的大部分信息,因此提取前2個(gè)主成分。
由表4和圖3可以看出,各指標(biāo)在2個(gè)主成分的荷載值差異較大,荷載值越大表明其對(duì)主成分的貢獻(xiàn)率越大,越能作為評(píng)價(jià)抗旱性的重要依據(jù)。第1主成分中,柵欄組織厚度(TP)、葉片厚度(LT)、柵海比(P/S)和組織結(jié)構(gòu)緊密度(TLTS)的荷載值較大,均高于0.8,這些指標(biāo)反映了植物葉片的光合能力和抗旱能力;第2主成分中葉片下表皮厚度(TLE)的荷載值較大,反映了植物葉片的保護(hù)性能特征。通過主成分分析,選取TP、LT、P/S、TLTS和TLE這5個(gè)指標(biāo)作為評(píng)價(jià)杏抗旱性的典型指標(biāo)。
2.3 基于葉片結(jié)構(gòu)對(duì)不同杏品種(系)抗旱性的綜合評(píng)價(jià)
杏樹葉片各解剖結(jié)構(gòu)參數(shù)與抗旱性之間并沒有絕對(duì)一致的相關(guān)性,采用單一指標(biāo)不能客觀、全面地反映植物的抗旱能力,因此需要采用多個(gè)指標(biāo)進(jìn)行綜合評(píng)價(jià)。為了防止單一指標(biāo)的局限性,利用隸屬函數(shù)法進(jìn)行綜合評(píng)價(jià)。根據(jù)主成分分析結(jié)果,確定TP、LT、P/S、TLTS和TLE這5個(gè)指標(biāo)作為評(píng)價(jià)杏抗旱性的典型指標(biāo),進(jìn)一步采用隸屬函數(shù)法對(duì)這5個(gè)特征參數(shù)進(jìn)行計(jì)算,對(duì)10個(gè)杏品種(系)的5項(xiàng)抗旱性指標(biāo)的隸屬函數(shù)值累加并求均值,綜合評(píng)價(jià)杏資源的抗旱能力,結(jié)果見表5。比較不同杏品種的抗旱性隸屬函數(shù)均值,該值越大代表抗旱能力越強(qiáng)。由表5可知,10個(gè)杏品種(系)的抗旱能力強(qiáng)弱依次為青密沙>G 4-25>皮乃孜>駱駝黃>串枝紅>G 4-43>G 4-40>G 4-26>紅金榛>大優(yōu)佳。葉片表現(xiàn)為平展?fàn)顟B(tài)的品種一般抗旱能力較強(qiáng),除了G 4-40外,其余4個(gè)葉片平展的品種的抗旱能力排在前4位,卷葉品種的抗旱能力相對(duì)較弱。
3 討 論
3.1 植物的抗旱能力與葉片的組織結(jié)構(gòu)特征密切相關(guān)
已有研究表明,植物的抗旱能力與其葉片的組織結(jié)構(gòu)特征密切相關(guān),尤其是葉片的厚度、柵欄組織厚度、氣孔特征等對(duì)其抗旱性影響較為顯著[5, 12-13]。
植物抗旱性與葉片的厚度密切相關(guān)。較厚的葉片、表皮細(xì)胞和柵欄組織可以貯藏更多的水分,從而提高葉片的儲(chǔ)水性能,增強(qiáng)耐旱能力[12-13]。丁祥等[8]研究指出,不同品種葡萄砧木的葉片厚度有所不同,抗旱性較強(qiáng)的砧木葉片厚度較大,能夠抵抗較嚴(yán)重的干旱脅迫。干旱也增加了甘蔗葉片的厚度[14]。本文研究結(jié)果表明,青密沙、G 4-25杏的葉片厚度較大,分別為222.5 μm和197.9 μm,綜合評(píng)價(jià)結(jié)果顯示二者的抗旱能力分別排在第1和第2位;而大優(yōu)佳杏的葉片厚度最小,僅為111.1 μm,評(píng)價(jià)結(jié)果顯示其抗旱能力排在最后的第10位。與此相反,也有研究指出長(zhǎng)期干旱減小了番茄幼苗葉片的厚度[15],番茄幼苗在長(zhǎng)期干旱條件下,降低了葉片的氣孔導(dǎo)度,減小葉脈寬度和導(dǎo)水性,同時(shí)氣孔開度減小、葉肉厚度減小。主成分分析表明,葉片的導(dǎo)水率、氣孔開度、分支小葉脈密度、葉片厚度與葉肉厚度和葉綠體占比呈正相關(guān),而與柵海比呈負(fù)相關(guān)。Khan等[16]通過轉(zhuǎn)錄組和葉片解剖結(jié)構(gòu)分析的結(jié)果表明,煙草在長(zhǎng)期干旱脅迫下,葉片厚度會(huì)隨著干旱脅迫時(shí)間長(zhǎng)短發(fā)生波動(dòng)性改變,主要是由于葉片的柵欄組織和海綿組織厚度及其膨脹率發(fā)生了變化,干旱處理18 d時(shí),通過誘導(dǎo)與細(xì)胞壁重塑(纖維素、擴(kuò)張蛋白、木葡聚糖)和細(xì)胞擴(kuò)增(生長(zhǎng)素響應(yīng)因子和水通道蛋白)相關(guān)基因的差異表達(dá),引起淀粉和蔗糖的代謝、甘油脂類代謝和蛋白質(zhì)加工能力的增強(qiáng),最終引起葉片厚度的增加。可見,葉片厚度的變化可能與植物種類、干旱程度和干旱脅迫時(shí)間長(zhǎng)短等因素有一定的相關(guān)性。
柵欄組織內(nèi)存在大量的葉綠體供植株進(jìn)行光合作用,葉片柵欄組織越發(fā)達(dá),光合能力越強(qiáng),光合產(chǎn)物的增加能使葉片的水分調(diào)節(jié)能力增強(qiáng),植物的抗旱性就越強(qiáng)[17]??购的芰?qiáng)的品種一般表現(xiàn)為柵欄組織較厚,而氣孔密度的變化因物種而異。葉片柵欄組織中存在大量的葉綠體,有利于植物的光合作用,耐旱的蘋果品種,維管束細(xì)胞數(shù)目減少、下表皮細(xì)胞間隙減小、氣孔數(shù)減少,柵欄組織和海綿組織厚度增加[7]。在文冠果上的研究表明,隨著干旱脅迫程度的加劇,氣孔變得小而多[18]。Xso-miR5149通過調(diào)節(jié)轉(zhuǎn)錄因子XsGTL1的表達(dá),調(diào)控葉片的組織結(jié)構(gòu)和氣孔密度的變化,增強(qiáng)文冠果的水分利用效率,提高耐旱性[19]。Zhu等[20]在油菜上的研究表明,相對(duì)不耐旱類型T88,耐旱品系P287的柵欄組織較厚,氣孔密度大,在干旱條件下氣孔關(guān)閉率高,干旱脅迫解除后葉片的各種生理機(jī)能恢復(fù)較快。筆者研究的10個(gè)杏品種(系)中,青密沙杏的柵欄組織和海綿組織的厚度都最大,綜合評(píng)價(jià)結(jié)果也是抗旱能力相應(yīng)最強(qiáng),但是氣孔密度與抗旱性沒有顯著的相關(guān)性。杏氣孔特征的相關(guān)性結(jié)果與解斌等[21]在梨砧木上的研究結(jié)果相一致。氣孔密度的變化與抗旱性的關(guān)系在蘋果、梨砧木、杏和油菜等不同植物種類中的研究結(jié)果各不相同,可能是不同物種通過氣孔調(diào)節(jié)抗旱性的機(jī)制不同,有待于進(jìn)一步研究。
3.2 抗旱性評(píng)價(jià)指標(biāo)的選擇
不同物種選用的抗旱性評(píng)價(jià)指標(biāo)有所不同,但葉片厚度、柵欄組織厚度、下表皮厚度是評(píng)價(jià)植物抗旱性通常選用的參數(shù)。宋捷和田青[2]通過主成分分析,從10個(gè)葉片解剖結(jié)構(gòu)參數(shù)中選取柵欄組織厚度、葉片厚度、葉片結(jié)構(gòu)緊密度、上(下)角質(zhì)層厚度等5個(gè)參數(shù)作為評(píng)價(jià)4種園林植物抗旱性的指標(biāo)。郭燕等[22]經(jīng)主成分分析從18項(xiàng)指標(biāo)中篩選出6項(xiàng)典型抗旱指標(biāo),即葉片厚度、柵欄組織厚度、單位面積氣孔總周長(zhǎng)、葉柄長(zhǎng)、上表皮細(xì)胞厚度和葉脈間距作為評(píng)價(jià)板栗品種的抗旱性指標(biāo)。丁祥等[8]通過對(duì)不同葡萄砧木品種葉片解剖結(jié)構(gòu)的觀察和分析,選出評(píng)價(jià)新疆葡萄砧木葉片抗旱性的6個(gè)指標(biāo),分別為葉片厚度、柵欄組織厚度、角質(zhì)層厚度、海綿組織厚度、下表皮厚度、上表皮厚度。馬勝等[23]運(yùn)用隸屬函數(shù)法對(duì)葉片厚度、柵欄組織厚度、海綿組織厚度、柵海比、柵欄組織結(jié)構(gòu)緊密度、海綿組織結(jié)構(gòu)疏松度、中脈厚度、氣孔寬度和氣孔密度等抗旱相關(guān)的葉片解剖結(jié)構(gòu)特征參數(shù)的隸屬函數(shù)值進(jìn)行累加求平均值,綜合評(píng)價(jià)了馬鈴薯品種的抗旱能力。筆者通過對(duì)杏葉片解剖結(jié)構(gòu)和氣孔密度的觀察、計(jì)算、方差分析、主成分分析等,選取柵欄組織厚度、葉片厚度、柵海比、葉片結(jié)構(gòu)緊密度以及葉片下表皮厚度這5個(gè)指標(biāo)作為評(píng)價(jià)杏抗旱性的典型指標(biāo)。王乃江和趙忠[11]通過對(duì)大扁杏、梅杏和山杏4年生幼樹的光合作用和抗旱性指標(biāo)進(jìn)行比較研究表明,山杏因葉片中的葉綠素、脯氨酸和可溶性糖含量較高而具有較強(qiáng)的抗旱性。劉君娣等[24]對(duì)3個(gè)杏品種葉片主要抗旱生理指標(biāo)進(jìn)行比較研究,結(jié)果表明凱特杏因具有高光效低蒸騰的光合特性,耐旱保水能力最強(qiáng)。筆者在本研究中通過分析確定的評(píng)價(jià)杏品種抗旱性的葉片結(jié)構(gòu)特征指標(biāo)均與葉片光合作用、抗旱調(diào)節(jié)物質(zhì)合成密切相關(guān)。進(jìn)一步通過對(duì)這5個(gè)葉片結(jié)構(gòu)特征值進(jìn)行隸屬函數(shù)均值的計(jì)算,判定10個(gè)杏品種(系)的抗旱能力強(qiáng)弱依次為:青密沙>G 4-25>皮乃孜>駱駝黃>串枝紅>G 4-43>G 4-40>G 4-26>紅金榛>大優(yōu)佳。這一結(jié)果與其在果園干旱條件下葉片的平展與葉片外緣向上卷曲程度的直觀特征基本一致,一方面說明了評(píng)價(jià)結(jié)果的準(zhǔn)確性,另一方面可實(shí)現(xiàn)簡(jiǎn)單、快速地通過觀察葉片特征進(jìn)行杏品種資源的抗旱性差異的初步評(píng)價(jià)和篩選。要客觀準(zhǔn)確評(píng)價(jià)某個(gè)杏品種(系)的抗旱性,最好在參照本研究結(jié)果的前提下,再結(jié)合與抗旱相關(guān)的生理生化等指標(biāo)測(cè)定綜合考慮,以取得更加精準(zhǔn)的結(jié)果。
4 結(jié) 論
筆者在本研究中通過對(duì)10個(gè)杏品種(系)的抗旱性進(jìn)行綜合評(píng)價(jià),從中篩選出葉片厚度、柵欄組織厚度、柵海比、葉片結(jié)構(gòu)緊密度、下表皮厚度等5個(gè)指標(biāo)作為評(píng)價(jià)杏抗旱能力的主要指標(biāo)。綜合來看,以葉片5個(gè)典型指標(biāo)隸屬函數(shù)均值>0.6作為參考閾值,青密沙、G 4-25、皮乃孜、駱駝黃和串枝紅杏等幾個(gè)品種(系)的抗旱能力較強(qiáng)。
參考文獻(xiàn) References:
[1] LIU J,DENG J L,TIAN Y. Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress[J]. Phytochemistry,2020,171:112226.
[2] 宋捷,田青. 4種園林植物葉片的解剖結(jié)構(gòu)及抗旱性[J]. 蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,58(2):262-269.
SONG Jie,TIAN Qing. Leaf anatomical structures of 4 garden plants and their drought resistance[J]. Journal of Lanzhou University (Natural Sciences),2022,58(2):262-269.
[3] 曾雯珺,王東雪. 基于葉片解剖結(jié)構(gòu)的岑軟系列油茶抗旱性綜合評(píng)價(jià)[J]. 西南農(nóng)業(yè)學(xué)報(bào),2019,32(11):2492-2501.
ZENG Wenjun,WANG Dongxue. Comprehensive evaluation of drought resistance based on leaf anatomical structure of Camellia oleifera ‘Cenruan series superior clones[J]. Southwest China Journal of Agricultural Sciences,2019,32(11):2492-2501.
[4] 王新語,任倩倩,孫紀(jì)霞,張英杰,姜良寶,張德順,張京偉. 不同抗旱性繡球品種葉片解剖結(jié)構(gòu)的比較[J/OL]. 分子植物育種,2022:1-7. (2022-06-30). https://kns.cnki.net/kcms/detail/46.1068.S.20220629.0957.002.html.
WANG Xinyu,REN Qianqian,SUN Jixia,ZHANG Yingjie,JIANG Liangbao,ZHANG Deshun,ZHANG Jingwei. Comparison on leaf anatomical structure of different drought-resistant Hydrangea varieties[J/OL]. Molecular Plant Breeding,2022:1-7. (2022-06-30). https://kns.cnki.net/kcms/detail/46.
1068.S.20220629.0957.002.html.
[5] HAJNAJARI H,AKBARI H,ABDOSSI V. Genesis of ultra-specialized histology with stable traits in mesophyll of drought tolerant apple cultivars[J]. Scientia Horticulturae,2019,249:168-176.
[6] 郭燕,張樹航,李穎,張馨方,王廣鵬. 中國(guó)板栗238份品種(系)葉片形態(tài)、解剖結(jié)構(gòu)及其抗旱性評(píng)價(jià)[J]. 園藝學(xué)報(bào),2020,47(6):1033-1046.
GUO Yan,ZHANG Shuhang,LI Ying,ZHANG Xinfang,WANG Guangpeng. Studies on the leaf morphology,anatomical structure and drought resistance evaluation of 238 Chinese chestnut varieties (strains)[J]. Acta Horticulturae Sinica,2020,47(6):1033-1046.
[7] 王兆成,王磊,周夢(mèng)鈺,何的明,畢慧慧,葛翔,沈軍城,傅松玲. 3個(gè)薄殼山核桃品種葉片結(jié)構(gòu)特征和枝條導(dǎo)水功能比較[J]. 植物資源與環(huán)境學(xué)報(bào),2021,30(3):38-45.
WANG Zhaocheng,WANG Lei,ZHOU Mengyu,HE Diming,BI Huihui,GE Xiang,SHEN Juncheng,F(xiàn)U Songling. Comparison on leaf structure characteristics and branch hydraulic function of three Carya illinoinensis cultivars[J]. Journal of Plant Resources and Environment,2021,30(3):38-45.
[8] 丁祥,鐘海霞,王西平,宋軍陽,吳久赟,劉國(guó)宏,張付春,胡鑫,潘明啟,伍新宇. 新疆葡萄砧木葉片解剖結(jié)構(gòu)觀察及抗旱性評(píng)價(jià)[J/OL]. 分子植物育種,2022:1-18. (2022-04-29). https://kns.cnki.net/kcms/detail/46.1068.S.20220429.1131.010.html.
DING Xiang,ZHONG Haixia,WANG Xiping,SONG Junyang,WU Jiuyun,LIU Guohong,ZHANG Fuchun,HU Xin,PAN Mingqi,WU Xinyu. Observation on leaf anatomical structure and evaluation of drought resistance of grape rootstocks in Xinjiang[J/OL]. Molecular Plant Breeding,2022:1-18. (2022-04-29). https://kns.cnki.net/kcms/detail/46.1068.S.20220429.1131.010.html.
[9] 張海燕,解備濤,姜常松,馮向陽,張巧,董順旭,汪寶卿,張立明,秦楨,段文學(xué). 不同抗旱性甘薯品種葉片生理性狀差異及抗旱指標(biāo)篩選[J]. 作物學(xué)報(bào),2022,48(2):518-528.
ZHANG Haiyan,XIE Beitao,JIANG Changsong,F(xiàn)ENG Xiangyang,ZHANG Qiao,DONG Shunxu,WANG Baoqing,ZHANG Liming,QIN Zhen,DUAN Wenxue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance[J]. Acta Agronomica Sinica,2022,48(2):518-528.
[10] 董英山,郝瑞,林鳳起. 西伯利亞杏普通杏?xùn)|北杏抗旱性研究[J]. 北方園藝,1990(S1):39-40.
DONG Yingshan,HAO Rui,LIN Fengqi. Study on drought resistance of Siberian apricot common apricot in northeast China[J]. Northern Horticulture,1990(S1):39-40.
[11] 王乃江,趙忠. 三種杏抗旱生理特性比較研究[J]. 西北林學(xué)院學(xué)報(bào),2001,16(1):1-4.
WANG Naijiang,ZHAO Zhong. Comparison of drought resistance and photosynthesis of three apricot varieties[J]. Journal of Northwest Forestry University,2001,16(1):1-4.
[12] LI Z Y,LI H Y,SHI W G,LI X Y,LIU L. Progress in relationship between anatomical structures of vegetative organs and drought resistance in forage germplasm resources[J]. Animal Husbandry and Feed Science,2010,2(2):45-48.
[13] 秦茜,朱俊杰,關(guān)心怡,于天卉,曹坤芳. 七個(gè)甘蔗品種葉片解剖結(jié)構(gòu)特征與光合能力和耐旱性的關(guān)聯(lián)[J]. 植物生理學(xué)報(bào),2017,53(4):705-712.
QIN Xi,ZHU Junjie,GUAN Xinyi,YU Tianhui,CAO Kunfang. The correlations of leaf anatomical characteristics with photosynthetic capacity and drought tolerance in seven sugarcane cultivars[J]. Plant Physiology Journal,2017,53(4):705-712.
[14] J?NIOR S O M,ANDRADE J R,DOS SANTOS C M,SILVA J A C,DOS SANTOS K P O,SILVA J V,ENDRES L. Leaf thickness and gas exchange are indicators of drought stress tolerance of sugarcane[J]. Emirates Journal of Food and Agriculture,2019,31(1):29-38.
[15] LI S,HAMANI A K M,ZHANG Y Y,LIANG Y P,GAO Y,DUAN A. Coordination of leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long?term drought[J]. BMC Plant Biology,2021,21:536.
[16] KHAN R,MA X H,HUSSAIN Q,CHEN K L,F(xiàn)AROOQ S,ASIM M,REN X C,SHAH S,SHI Y. Transcriptome and anatomical studies reveal alterations in leaf thickness under long-term drought stress in tobacco[J]. Journal of Plant Physiology,2023,281:153920.
[17] 徐揚(yáng),陳小紅,趙安玖. 川西高原4種蘋果屬植物葉片解剖結(jié)構(gòu)與其抗旱性分析[J]. 西北植物學(xué)報(bào),2015,35(11):2227-2234.
XU Yang,CHEN Xiaohong,ZHAO Anjiu. Drought resistance evaluation and leaf anatomical structures of four species of Malus plants in western Sichuan Plateau[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35(11):2227-2234.
[18] 胡瀟予,于海燕,崔藝凡,范思琪,畢泉鑫,李迎超,王利兵. 不同種源文冠果葉片氣孔分布特征對(duì)水分脅迫的響應(yīng)[J]. 林業(yè)科學(xué)研究,2019,32(1):169-174.
HU Xiaoyu,YU Haiyan,CUI Yifan,F(xiàn)AN Siqi,BI Quanxin,LI Yingchao,WANG Libing. Influence of water stress on leaves stomatal distribution characteristics of yellow horn (Xanthoceras sorbifolium)[J]. Forest Research,2019,32(1):169-174.
[19] LI J B,ZHOU X D,XIONG C W,ZHOU H,LI H,RUAN C J. Yellowhorn Xso-miR5149-XsGTL1 enhances water-use efficiency and drought tolerance by regulating leaf morphology and stomatal density[J]. International Journal of Biological Macromolecules,2023,237:124060.
[20] ZHU J C,CAI D F,WANG J P,CAO J H,WEN Y C,HE J P,ZHAO L,WANG D G,ZHANG S F. Physiological and anatomical changes in two rapeseed (Brassica napus L.) genotypes under drought stress conditions[J]. Oil Crop Science,2021,6(2):97-104.
[21] 解斌,李俊豪,景淑怡,李舒然,郝瑞杰,李六林. 2種梨砧木葉片光合與氣孔形態(tài)特征研究[J]. 經(jīng)濟(jì)林研究,2019,37(2):126-133.
XIE Bin,LI Junhao,JING Shuyi,LI Shuran,HAO Ruijie,LI Liulin. Characteristics of photosynthesis and stomatal morphology in leaves from two species of pear rootstocks[J]. Non-Wood Forest Research,2019,37(2):126-133.
[22] 郭燕,張樹航,李穎,張馨方,王廣鵬. 基于葉片解剖結(jié)構(gòu)的京津冀主栽板栗品種抗旱性評(píng)價(jià)[J]. 核農(nóng)學(xué)報(bào),2021,35(8):1771-1782.
GUO Yan,ZHANG Shuhang,LI Ying,ZHANG Xinfang,WANG Guangpeng. Drought resistance evaluation based on leaf anatomical structure of major chestnut cultivars in Beijing-Tianjin-Hebei region[J]. Journal of Nuclear Agricultural Sciences,2021,35(8):1771-1782.
[23] 馬勝,齊恩芳,文國(guó)宏,李掌,曲亞英,鄭永偉,白永杰,賈小霞. 基于葉片顯微結(jié)構(gòu)綜合評(píng)價(jià)馬鈴薯不同品種的抗旱性[J]. 中國(guó)馬鈴薯,2021,35(6):500-506.
MA Sheng,QI Enfang,WEN Guohong,LI Zhang,QU Yaying,ZHENG Yongwei,BAI Yongjie,JIA Xiaoxia. Comprehensive evaluation of drought resistance of different potato varieties based on leaf microstructure[J]. Chinese Potato Journal,2021,35(6):500-506.
[24] 劉君娣,王有科,賀春燕,范慧萍. 三個(gè)杏品種葉片主要抗旱生理指標(biāo)的比較[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2007,42(6):71-75.
LIU Jundi,WANG Youke,HE Chunyan,F(xiàn)AN Huiping. Comparison of the drought-resistance among three apricot cultivars based on main physiological indexes of leaves[J]. Journal of Gansu Agricultural University,2007,42(6):71-75.