戚行江 梁森苗 陳海豹 俞浙萍 孫鸝 鄭錫良 張淑文
摘 要:【目的】探究促早栽培對楊梅葉片形態(tài)、果實(shí)成熟與品質(zhì)的影響?!痉椒ā恳詵|魁和荸薺種楊梅為試材,設(shè)置雙膜、單膜促早設(shè)施及露地三種不同栽培模式,連續(xù)監(jiān)測不同栽培模式中的溫度變化,調(diào)查試驗(yàn)地區(qū)的物候期,比較對應(yīng)的有效積溫和活動積溫,并測定葉片表型和果實(shí)品質(zhì)指標(biāo)?!窘Y(jié)果】與露地栽培相比,促早栽培設(shè)施中日平均氣溫和活動積溫顯著提高,其中雙膜栽培作用更明顯,活動積溫達(dá)2 592.1 ℃·d,提高74.3%;設(shè)施促早栽培下楊梅物候期和成熟期顯著提前,雙膜、單膜栽培楊梅成熟期分別比同地區(qū)的露地栽培提早40 d和22 d以上,采收期可長達(dá)57 d;設(shè)施促早栽培顯著提高了單果質(zhì)量、可溶性固形物含量和類黃酮含量等指標(biāo),商品果率提高1.6倍以上,經(jīng)濟(jì)效益顯著提高?!窘Y(jié)論】楊梅設(shè)施促早栽培技術(shù)是一種不影響楊梅正常生長,可顯著提早成熟期、延長采收期、提升果實(shí)品質(zhì)并大幅提高經(jīng)濟(jì)效益的栽培技術(shù)。
關(guān)鍵詞:楊梅;促早栽培;果實(shí)品質(zhì);雙膜大棚;單膜大棚
中圖分類號:S667.6 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2023)11-2403-10
Effects of forcing cultivation on the leaf morphology, fruit ripening and quality of Myrica rubra
QI Xingjiang1, 2, LIANG Senmiao1, CHEN Haibao3, 4, YU Zheping1, SUN Li1, ZHENG Xiliang1, ZHANG Shuwen1*
(1Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; 2Xianghu Lab., Hangzhou 311231, Zhejiang, China; 3Zhejiang College of Agronomists, Hangzhou 310021, Zhejiang, China; 4Songmen Bayberry Professional Cooperative of Sanmen County, Taizhou 317111, Zhejiang, China)
Abstract: 【Objective】 Chinese bayberry (Myrica rubra) is an unique and valuable fruit crop cultured in southern China. As the most characteristic and prized fruit cultivated in Zhejiang province, it exhibits high levels of both nutritional benefits and economic value, which has significantly improved its market competitiveness. Main cultivated varieties of bayberry, like Dongkui and Biqizhong, mature from early June to early July. However, the bayberry during the maturation period usually encounters the rainy season, which results in severe decline in both yield and quality of bayberry, and further constrains the development of the bayberry industry. Thus, efforts to facilitate more reliable bayberry cultivation have the potential to improve its quality and output. Compared to traditional open-field cultivation, approaches to enhanced cultivation can increase temperatures and reduce the phenological periods for each stage of development, thus mitigating the potential harm caused by the plum rains. In addition, these approaches to protected cultivation can further improve commercial bayberry fruit outputs and promote its economic benefits. 【Methods】 In order to testify the benefits of protected cultivation for M. rubra, the leaf morphology, fruit ripening and quality of Biqizhong and Dongkui were studied, which were subjected to three different cultivation methods: open field (OF), single-layer-film-covered greenhouse (SLFG), and double-layer-film-covered greenhouse (DLFG). The cultivation of SLFG entailed the construction of a steel frame structure covered by a transparent plastic film based on the shape of the mountain slope, using triangular, arched, or flat roof multi-span steel frames as appropriate. The cultivation of DLFG entailed a novel and efficient cultivation method based on the use of SLFG triangular or arched roof multi-span steel frames on slopes, together with the introduction of a steel frame beam at a distance of 1.0 m from the top, followed by fixing a second transparent plastic film layer. After these protected cultivation models were established, temperature changes, phenological periods, and the relationships between temperature changes and phenological periods were assessed, and the leaf phenotypes and fruit quality were also measured.【Results】 Compared to traditional OF cultivation, the average temperatures under DLFG and SLFG cultivation were 5.1 ℃ and 2.5 ℃ higher, respectively, significantly above the ambient temperatures. The forcing cultivation results in higher daily average temperatures, with a daily average temperature ≥ 10 ℃ lasting for 147 days under DLFG, as compared to 115 days under DLFG and only 90 days under OF cultivation. The cumulative temperature under DLFG cultivation (2 592.1 ℃) also significantly increased, compared to SLFG and OF cultivation, with the increase reaching 74.3%. The phenological and maturation periods for M. rubra were significantly earlier under these forcing cultivations, with the maturation periods of DLFG and SLFG being 40 and 22 days earlier than those of OF cultivation. The harvest time under DLFG and SLFG cultivation was up to 57 days, which was 3.4 times longer than that under OF cultivation. These forcing cultivation methods also significantly improved single fruit weight, soluble solid and flavonoid contents, taste, nutritional value, as well as storage and transportation capacity. Although these forcing cultivation methods reduced light intensity, the available light was sufficient to meet the needs for these bayberry trees. Thus, the normal plant growth and photosynthetic activity were not adversely impacted under either DLFG or SLFG cultivation. Moreover, the leaf morphology, including leaf length, width, area, perimeter, relative chlorophyll content, and chlorophyll fluorescence parameters increased with both Biqizhong and Dongkui. In addition, forcing cultivation significantly improved the fruit yields and quality. The results displayed that the average yields of Biqizhong under DLFG and SLFG cultivation were 2 312.5 kg·666.7 m-2 and 2 261.7 kg·666.7 m-2, respectively, 40.0% and 37.0% higher than those under OF cultivation. Furthermore, the average commercial fruit rates were 85.1% and 79.8% under DLFG and SLFG cultivation, 2.8- and 2.6-times higher than those under OF cultivation. Similarly, the average yields of Dongkui under DLFG and SLFG cultivation were 1 655.2 kg·666.7 m-2 and 1 568.5 kg·666.7 m-2, respectively, 2.9- and 2.8-times higher than those under OF cultivation. The commodity fruit rates and economic benefits surpassed 1.6- and 7.1-fold under DLFG and SLFG cultivation, respectively.【Conclusion】 The forcing cultivation of M. rubra is an effective technique that can significantly advance the maturity period, extend the harvest period, improve fruit quality and promote economic benefits, without affecting the normal growth of M. rubra. Based on the above benefis of DLFG and SLFG cultivation, it is of a great value to further popularize and apply these bayberry cultivation techniques throughout China.
Key words: Myrica rubra; Forcing cultivation; Fruit quality; Double-layer-film-covered greenhouse; Single-layer-film-covered greenhouse
收稿日期:2023-02-14 接受日期:2023-09-20
基金項(xiàng)目:浙江省“領(lǐng)雁”研發(fā)攻關(guān)計劃(2023C02031、2022C02055);浙江省農(nóng)業(yè)(果品)新品種選育重大科技專項(xiàng)(2021C02066-2);溫州市環(huán)大羅山科技支撐項(xiàng)目(WZDLS2021-07、WZDLS2021-16);甌??苿?chuàng)中心項(xiàng)目(20021OHKC0003)
作者簡介:戚行江,男,研究員,從事果樹科學(xué)研究工作。Tel:0571-86404568,E-mail:qixj@zaas.ac.cn
*通信作者Author for correspondence. Tel:0571-86404021,E-mail:hizhangshuwen@163.com
楊梅是我國南方特產(chǎn)珍果,為浙江省最具特色的優(yōu)勢水果之一,具有較高的營養(yǎng)與經(jīng)濟(jì)價值[1],市場競爭力逐年提升。但楊梅大多種植于山嶺坡地,地形地勢較為復(fù)雜,且樹體高大,難以開展設(shè)施促早栽培,導(dǎo)致花期凍害、成熟期集中、梅雨影響嚴(yán)重[2],存在豐產(chǎn)不豐收的情況,已成為影響楊梅產(chǎn)業(yè)健康發(fā)展的主要因子之一。當(dāng)前,為加快推進(jìn)農(nóng)業(yè)高質(zhì)量發(fā)展,楊梅產(chǎn)業(yè)已逐漸從傳統(tǒng)粗放型向綠色精品化轉(zhuǎn)變[3]。近年來設(shè)施栽培在楊梅生產(chǎn)上得到了快速發(fā)展和廣泛應(yīng)用。目前,楊梅主要設(shè)施栽培方式有三種:一是以促早成熟為目的促早設(shè)施栽培模式,二是以防蟲為主的網(wǎng)室設(shè)施栽培模式,三是以避雨為主的避雨設(shè)施栽培模式。以上三種設(shè)施栽培方式均能改善楊梅品質(zhì),提高栽培經(jīng)濟(jì)效益,其中,設(shè)施促早栽培模式提高效益最為顯著。然而不同促早栽培設(shè)施對楊梅生長環(huán)境的改變,及其對樹體生長與果實(shí)產(chǎn)量和品質(zhì)形成的影響尚缺少較為系統(tǒng)的研究。
研究表明,促早設(shè)施栽培對楊梅生長和果實(shí)品質(zhì)提升具有顯著促進(jìn)作用[4-7]。與傳統(tǒng)的露地模式相比,楊梅設(shè)施栽培顯著提升棚內(nèi)溫度,各發(fā)育階段物候期整體提前,避開了梅雨危害,單果質(zhì)量、可食率、可溶性固形物含量等指標(biāo)得到提升[5-6],同時設(shè)施栽培提高了楊梅商品果率和精品果率,經(jīng)濟(jì)效益顯著提升[6-7]。目前,在果樹的設(shè)施栽培生產(chǎn)上,主要采用單層透明塑料膜,比如枇杷[8]、桃[9]、櫻桃[10]、梨[11]等。已有研究者針對葡萄開展雙膜試驗(yàn)[12-14],與單膜處理相比,雙膜處理增溫保溫效果更好,成熟期進(jìn)一步提前,果實(shí)品質(zhì)指標(biāo)提升顯著。
筆者在本試驗(yàn)中綜合利用以單膜和雙膜為主的設(shè)施促早栽培技術(shù),通過監(jiān)測設(shè)施中光照、溫度的動態(tài)變化,分析設(shè)施栽培中主要品種東魁和荸薺種樹體生長情況、開花和果實(shí)發(fā)育物候期,綜合不同促早栽培產(chǎn)量和經(jīng)濟(jì)效益,探究促早栽培對楊梅樹體生長和果實(shí)成熟與品質(zhì)的影響,為提早、延長楊梅果實(shí)成熟期,提升果實(shí)品質(zhì),降低凍害與梅雨危害,提高栽培經(jīng)濟(jì)效益奠定理論和技術(shù)基礎(chǔ)。
1 材料和方法
1.1 試驗(yàn)材料
試驗(yàn)于浙江省三門縣松門楊梅專業(yè)合作社進(jìn)行,該基地為丘陵地形,沙質(zhì)弱酸性土壤,海拔247.5 m,坡度25°,全年平均氣溫16.1 ℃、平均相對濕度78.3%,楊梅栽培面積共有13.33 hm2,其中單膜大棚2.67 hm2、雙膜大棚2 hm2。本試驗(yàn)開始于2021年11月,選擇樹齡10~12年、長勢一致的荸薺種和東魁楊梅開展研究。共分6組處理,即荸薺種露地、單膜、雙膜和東魁露地、單膜、雙膜,每組處理取10株,以單株作為重復(fù)。相同品種的各組處理土肥管理和修剪等日常管理措施基本一致,分別于成熟期進(jìn)行取樣,每株按東、南、西、北方位隨機(jī)采30個果實(shí)和50枚葉片,用于后續(xù)表型和果實(shí)品質(zhì)測定。
1.2 試驗(yàn)方法
1.2.1 設(shè)施促早栽培模式 本試驗(yàn)采用單膜、雙膜兩種設(shè)施栽培方式,單、雙膜棚高均為4.5 m,株間距為5 m,楊梅樹冠與大棚頂部間距1.5~2.0 m。其中,單膜設(shè)施促早栽培主要根據(jù)楊梅園山地形態(tài),搭建鋼架結(jié)構(gòu),覆蓋透明塑料膜,主要有三角形頂架坡地連棟鋼架大棚、拱形頂架坡地連棟鋼架大棚、平頂架坡地連棟鋼架大棚等模式(圖1-a);雙膜設(shè)施促早栽培是在單膜三角形頂架坡地連棟鋼架大棚、拱形頂架坡地連棟鋼架大棚的基礎(chǔ)上,距頂部1 m處架設(shè)鋼架橫梁,鋪設(shè)第二層透明塑料膜(圖1-b),是一種新型、高效促早栽培模式。
1.2.2 光溫濕度測定和葉型鑒定 利用便攜式數(shù)字照度計(希瑪,型號AS813),在晴天12:00—14:00測定不同處理下光照度;利用精創(chuàng)AGlog100溫濕度記錄儀,實(shí)時監(jiān)測記錄露地、單膜和雙膜設(shè)施下的溫濕度數(shù)據(jù);綜合利用“芽膨大前10 d平均氣溫”法、最小二乘法和直線回歸方程式[15-17],計算生物學(xué)零度值,有效積溫公式K=(T-T0)N[16-17],K為有效積溫(℃·d),T為日平均氣溫(℃),T0為生物學(xué)零度,N為生長發(fā)育時間(d);活動積溫計算公式為日平均氣溫≥ 10 ℃的日平均氣溫之和[18]。
利用葉綠素?zé)晒獬上裣到y(tǒng)Plant Explorer儀,測定葉綠素?zé)晒鈪?shù)(Fv/Fm)、非光化學(xué)淬滅系數(shù)(NPQ)、葉寬(cm)、葉長(cm)、周長(cm)和面積(cm2);利用便攜式葉綠素測定儀SPAD-502PLUS測定葉綠素相對含量(SPAD值)。
1.2.3 果實(shí)表型鑒定和品質(zhì)指標(biāo)測定 將每組處理共10株的果實(shí)混勻,利用電子天平隨機(jī)稱取15個果實(shí)質(zhì)量,3次重復(fù),取平均數(shù)即為平均單果質(zhì)量,用游標(biāo)卡尺測定果實(shí)的縱徑和橫徑;利用TA -XT plus質(zhì)構(gòu)儀,測定不同處理下的果實(shí)硬度,選擇5.0 mm直徑探頭,單位為N。
參考GB 12295—1990[19],測定果實(shí)的可溶性固形物含量,試驗(yàn)均設(shè)置3次重復(fù),下同;根據(jù)GB/T 5009.8—2009[20],利用蒽酮比色法測定總糖含量;參考GB/T 12456—2008[21],利用酸堿滴定法測定總酸含量。糖酸比=可溶性固形物含量/總酸含量。參考Wang等[22]的方法測定維生素C含量;采用紫外吸收法[23]測定果實(shí)中類黃酮和總酚含量。
1.2.4 數(shù)據(jù)統(tǒng)計分析 利用Excel 2019針對測定的表型數(shù)據(jù),進(jìn)行數(shù)據(jù)統(tǒng)計分析和表格繪制;采用軟件SPSS 18.0進(jìn)行單因素方差分析,利用T-test法進(jìn)行差異顯著性測驗(yàn)。
2 結(jié)果與分析
2.1 設(shè)施內(nèi)光溫變化規(guī)律及其對楊梅物候期的影響
溫度是影響果樹生長、繁衍的重要條件之一。果樹發(fā)芽生長、開花結(jié)果以及樹體內(nèi)一系列的生理生化活動和變化,均需要在一定溫度范圍內(nèi)進(jìn)行。在2021年12月21日至2022年5月28日之間,利用溫濕度記錄儀記錄了雙膜、單膜設(shè)施內(nèi)溫度變化情況,與露地栽培相比,雙膜設(shè)施平均溫度高5.1 ℃,單膜設(shè)施平均溫度高2.5 ℃,設(shè)施內(nèi)溫度明顯高于露地溫度(圖2),設(shè)施栽培中雌花開放的積溫提前到達(dá),促進(jìn)了雌花開放,為果實(shí)提前成熟奠定了基礎(chǔ)。
綜合利用生物學(xué)零度公式進(jìn)行計算,荸薺種和東魁的生物學(xué)零度值分別為7.78 ℃和7.41 ℃(表1)?;谳┧j種和東魁不同發(fā)育階段的氣溫數(shù)據(jù),利用有效積溫公式,計算得到荸薺種生長至花期、幼果期、硬核期、轉(zhuǎn)色期、成熟期的有效積溫,分別為190.27、297.97、620.84、988.75和1 191.73 ℃·d。東魁生長至花期的有效積溫為150.21 ℃·d,低于荸薺種(190.27 ℃·d),但后續(xù)5個生長時期的有效積溫均高于荸薺種。在本研究統(tǒng)計的2021年12月21日—2022年5月28日時間段內(nèi),雙膜設(shè)施條件下,日平均氣溫≥10 ℃天數(shù)達(dá)到147 d,明顯高于單膜設(shè)施的115 d和露地的90 d;雙膜設(shè)施下的活動積溫達(dá)到2 592.1 ℃·d,明顯高于單膜設(shè)施和露地(表2)。
楊梅的光補(bǔ)償點(diǎn)較低,約為30 μmol·m-2·s-1,光飽和點(diǎn)約為550 μmol·m-2·s-1,即外界光照度為30 μmol·m-2·s-1(即光照度1668 lx)時,葉片的光合作用和呼吸作用處于平衡狀態(tài),光合作用合成的干物質(zhì)等于呼吸作用所需要消耗的干物質(zhì)[24-25]。雙膜設(shè)施中,晴天12:00—14:00的光照度在2 887.8~4 222.0 lx之間;單膜設(shè)施中,同時段光照度在4 664.2~7 196.0 lx之間;露地條件下,同時段光照度在8 471.0~11 900.0 lx之間。設(shè)施栽培中光照度雖明顯降低,但已滿足楊梅光補(bǔ)償點(diǎn)需要,兩種設(shè)施栽培均不會影響楊梅正常光合作用和植株生長。
2.2 設(shè)施栽培對楊梅葉片性狀的影響
雙膜、單膜設(shè)施栽培中,樹體葉片顏色明顯變深,荸薺種葉綠素相對含量、葉綠素?zé)晒鈪?shù),與露地栽培相比分別提高50.6%、20.8%,11.4%、7.1%(表3、圖3);東魁葉綠素相對含量、葉綠素?zé)晒鈪?shù),與露地栽培相比分別提高20.8%、7.2%,25.4%、32.2%(表3、圖4);設(shè)施栽培有利于提高樹體光合效率。
葉片大小等形態(tài)影響著植株的有效光合面積,與產(chǎn)量和品質(zhì)密切相關(guān)。設(shè)施栽培中荸薺種、東魁葉片長度、寬度、面積、周長等指標(biāo),與露地栽培相比顯著增大(表3),如:雙膜、單膜栽培中,荸薺種葉片面積于露地栽培條件下分別增加54.9%、16.9%;東魁葉片面積分別增加42.1%、13.6%;設(shè)施栽培有利于樹體葉片形態(tài)建成,為產(chǎn)量與品質(zhì)的提升提供必備條件。
2.3 設(shè)施栽培對果實(shí)成熟進(jìn)程的影響
2022年三門地區(qū),雙膜設(shè)施中荸薺種果實(shí)硬核期、轉(zhuǎn)色期、轉(zhuǎn)紅期、初熟期、成熟期、采摘結(jié)束期分別是3月27日、4月24日、4月29日、5月6日、5月8日、5月26日;與單膜、露地栽培的對應(yīng)時期相比,雙膜栽培下成熟期分別提前19 d、41 d。雙膜設(shè)施中東魁果實(shí)硬核期、轉(zhuǎn)色期、轉(zhuǎn)紅期、初熟期、成熟期、采摘結(jié)束期分別是3月31日、4月28日、5月3日、5月15日、5月18日、6月3日;與單膜、露地栽培相比,雙膜栽培下成熟期分別提前16 d、40 d(表4);設(shè)施栽培可顯著促進(jìn)果實(shí)成熟,尤其是雙膜設(shè)施栽培比露地栽培提早成熟40 d左右。露地東魁和荸薺種的采摘期為6月14日至7月1日,共17 d;兩種設(shè)施搭配后,采摘期可從5月6日延續(xù)至7月1日,時長共57 d,采收時長為露地栽培的3.4倍。
2.4 設(shè)施栽培對果實(shí)品質(zhì)的影響
設(shè)施栽培下尤其是雙膜栽培下,荸薺種單果質(zhì)量為12.65 g、東魁平均單果質(zhì)量為22.2 g,與露地栽培的11.4 g、20.9 g相比,分別提高11.4%、6.2%;荸薺種硬度為2.5 N、東魁硬度為2.9 N,與露地栽培的2.4 N、2.7 N相比,分別提高5.1%、7.4%。設(shè)施栽培下楊梅單果質(zhì)量與硬度明顯提高(表5)。
雙膜、單膜栽培下荸薺種可溶性固形物含量(w,后同)分別為12.1%、11.0%,與露地相比分別提高20.8%、10.3%;總糖含量分別為58.7 mg·g-1、64.8 mg·g-1,與露地栽培相比分別提高19.9%、32.6%;總酸含量分別為8.8 g·kg-1、7.1 g·kg-1,與露地栽培相比分別升高15.8%、降低了6.1%;單膜栽培下固酸比最高為15.4。雙膜、單膜栽培下東魁可溶性固形物含量分別為13.5%、13.2%,與露地相比分別提高5.6%、3.0%;總糖含量分別為56.7 mg·g-1、61.7 mg·g-1,與露地栽培相比分別提高1.3%、10.4%;總酸含量分別為11.2 g·kg-1、7.2 g·kg-1,與露地栽培相比分別升高10.8%、降低28.8%;單膜栽培下固酸比最高為18.3(表6)。設(shè)施栽培有利于楊梅果實(shí)品質(zhì)與口感的提升。
雙膜、單膜栽培下荸薺種維生素C含量均為2.0 mg·g-1,與露地栽培相比降低8.3%;類黃酮含量分別為2.9 mg·g-1、3.1 mg·g-1,與露地栽培相比分別提高23.0%、29.7%;總酚含量分別為1.8 mg·g-1、2.0 mg·g-1,與露地栽培相比分別提高2.9%、15.8%;雙膜、單膜栽培下東魁維生素C含量均為1.4 mg·g-1,與露地栽培相比降低8.7%;類黃酮含量分別為1.7 mg·g-1、1.6 mg·g-1,與露地栽培相比分別提高65.4%、49.0%;總酚含量均為1.4 mg·g-1,與露地栽培相比降低15.3%(表7)。設(shè)施栽培有利于楊梅果實(shí)類黃酮營養(yǎng)物質(zhì)含量的提高。
2.5 設(shè)施栽培的商品果率與經(jīng)濟(jì)效益
2022年三門楊梅基地,荸薺種雙膜、單膜設(shè)施栽培平均每666.7 m2產(chǎn)量分別是2 312.5 kg、2 261.7 kg,與露地栽培相比分別提高40.0%、37.0%;平均商品果率分別是85.1%、79.8%,分別是露地栽培的2.8倍、2.6倍;平均售價在100元·kg-1,每666.7 m2產(chǎn)值為14.4萬~23.6萬元;每666.7 m2利潤分別為16.5萬元、10.1萬元,分別是露地栽培的8.2倍、5.0倍。東魁雙膜、單膜設(shè)施栽培平均每666.7 m2產(chǎn)量分別是1 655.2 kg、1 568.5 kg,分別是露地栽培的2.9倍、2.8倍;平均商品果率分別是84.5%、81.3%,分別是露地栽培的2.9倍、2.8倍;平均售價在210元·kg-1,每666.7 m2產(chǎn)值為25.5萬~30.8萬元;每666.7 m2利潤分別為21.5萬元、17.9萬元,分別是露地栽培的9.8倍、8.1倍(表8)。雙膜、單膜設(shè)施栽培大幅提高了產(chǎn)量和栽培效益,成為保障梅農(nóng)增收的支柱產(chǎn)業(yè)。
3 討 論
設(shè)施栽培改變了楊梅生長發(fā)育的小氣候環(huán)境,在果實(shí)發(fā)育成熟時期減少外界不利氣候因素的影響,促進(jìn)果實(shí)成熟期提前,有效避開梅雨危害,顯著提升果實(shí)品質(zhì)[5-7]。目前,在楊梅和其他果樹的設(shè)施栽培生產(chǎn)中[26-27],主要采用單膜設(shè)施大棚栽培模式,本研究首次在楊梅上應(yīng)用雙膜設(shè)施促早栽培技術(shù),分析比較露地、單膜設(shè)施、雙膜設(shè)施下荸薺種和東魁楊梅樹體生長和果實(shí)發(fā)育及果實(shí)品質(zhì)情況。楊梅屬于耐陰植物,其光補(bǔ)償點(diǎn)和光飽和點(diǎn)較低,表明楊梅對光照需求較低[25],雙膜設(shè)施中光照度低于單膜,但已滿足楊梅光飽和點(diǎn)需求;雙膜設(shè)施中荸薺種和東魁SPAD值分別比單膜提高24.7%和12.8%,增加了楊梅葉片葉綠素含量,增大了葉片面積,有利于植物捕獲較多的光能和增加有效光合面積,而彌補(bǔ)外界光照的不足。因此,促早設(shè)施對楊梅光合作用和正常生長發(fā)育不會產(chǎn)生負(fù)面影響。
促早栽培設(shè)施中氣溫顯著高于露地栽培,其中與單膜設(shè)施相比,雙膜設(shè)施棚內(nèi)日平均氣溫更高;基于試驗(yàn)期間統(tǒng)計的氣溫數(shù)據(jù),首次明確荸薺種、東魁物候期的積溫情況,為精準(zhǔn)調(diào)控楊梅物候期提供了溫度參數(shù);雙膜設(shè)施日平均溫度比單膜設(shè)施高2.6 ℃;雙膜設(shè)施栽培也提高了活動積溫,數(shù)據(jù)顯示,雙膜條件下日平均氣溫≥10 ℃天數(shù)和活動積溫均顯著高于單膜,表明雙膜的增溫保溫效果更為明顯,更利于物候期的提前,雙膜設(shè)施下荸薺種和東魁的初花時間、果實(shí)成熟期均比單膜提早15 d左右,這與葡萄雙膜試驗(yàn)中可提前成熟期一致[13-14];對于楊梅而言,更解決了采收期集中、成熟期受梅雨危害等產(chǎn)業(yè)瓶頸問題。
設(shè)施栽培對楊梅果實(shí)發(fā)育和品質(zhì)提升具有重要作用。單膜和雙膜栽培下,荸薺種和東魁果實(shí)縱橫徑、單果質(zhì)量、硬度、可溶性固形物含量、總糖含量、類黃酮含量等指標(biāo)均高于露地栽培,其中雙膜栽培的作用更顯著,顯著提高了產(chǎn)量和商品果率。雙膜、單膜荸薺種和東魁的利潤達(dá)到每666.7 m2 21.5萬元,遠(yuǎn)高于露地栽培的每666.7 m2 2.2萬元,其中雙膜栽培的作用更明顯,大幅提高栽培經(jīng)濟(jì)效益,是保障梅農(nóng)增收、促進(jìn)共富建設(shè)的有效途徑。
4 結(jié) 論
楊梅雙膜、單膜促早栽培成熟期分別比露地提早40 d和22 d,延長采收期3.4倍,顯著改善了果實(shí)品質(zhì),商品果率提高1.6倍以上。楊梅促早設(shè)施可降低花期凍害、梅雨危害,延長采收期,提高經(jīng)濟(jì)效益,保障高品質(zhì)生產(chǎn)。
參考文獻(xiàn) References:
[1] 張淑文,梁森苗,鄭錫良,任海英,朱婷婷,戚行江. 楊梅優(yōu)株果實(shí)品質(zhì)的主成分分析及綜合評價[J]. 果樹學(xué)報,2018,35(8):977-986.
ZHANG Shuwen,LIANG Senmiao,ZHENG Xiliang,REN Haiying,ZHU Tingting,QI Xingjiang. Principal component analysis and comprehensive evaluation of fruit quality in some advanced selections of Chinese bayberry[J]. Journal of Fruit Science,2018,35(8):977-986.
[2] 梁森苗,張淑文,鄭錫良,任海英,戚行江. 延遲栽培對楊梅果實(shí)成熟期和品質(zhì)的影響[J]. 中國農(nóng)學(xué)通報,2019,35(4):33-39.
LIANG Senmiao,ZHANG Shuwen,ZHENG Xiliang,REN Haiying,QI Xingjiang. Delayed cultivation affects fruit mature period and quality of Myrica rubra[J]. Chinese Agricultural Science Bulletin,2019,35(4):33-39.
[3] 張建斌,應(yīng)錚崢. 仙居縣楊梅產(chǎn)業(yè)綠色化發(fā)展主要做法及成效[J]. 現(xiàn)代農(nóng)業(yè)科技,2020(22):214-216.
ZHANG Jianbin,YING Zhengzheng. Main practice and effect of Myrica rubra industry green development in Xianju County[J]. Modern Agricultural Science and Technology,2020(22):214-216.
[4] 湯曉美. 設(shè)施栽培楊梅生理特點(diǎn)與成熟期調(diào)節(jié)試驗(yàn)小結(jié)[J]. 中國南方果樹,2019,48(3):44-46.
TANG Xiaomei. The test summary of physiological characteristics and fruit maturity regulation of Myrica rubra under greenhouse cultivation[J]. South China Fruits,2019,48(3):44-46.
[5] 柴春燕,徐紹清,房聰玲,孫桐軍,黃煒萍. 大棚栽培對楊梅物候期及經(jīng)濟(jì)效益的影響[J]. 亞熱帶農(nóng)業(yè)研究,2014,10(2):107-111.
CHAI Chunyan,XU Shaoqing,F(xiàn)ANG Congling,SUN Tongjun,HUANG Weiping. Phenological period,fruit quality and benefits of Myrica rubra by protected cultivation in greenhouse[J]. Subtropical Agriculture Research,2014,10(2):107-111.
[6] 陳新爐,張啟,胡佳卉. 大棚楊梅栽培技術(shù)研究[J]. 現(xiàn)代園藝,2019(21):7.
CHEN Xinlu,ZHANG Qi,HU Jiahui. Study on the cultivation technology of Myrica rubra in greenhouse[J]. Contemporary Horticulture,2019(21):7.
[7] 吳昌旺,程慧斌,林明明,吳海鋒,任海英,鄭碎微,趙斌. 浙南山區(qū)楊梅大棚促早栽培技術(shù)研究[J]. 中國南方果樹,2021,50(3):100-103.
WU Changwang,CHENG Huibin,LIN Mingming,WU Haifeng,REN Haiying,ZHENG Suiwei,ZHAO Bin. Study on early bearing cultivation techniques of Chinese bayberry in greenhouse in mountain areas of southern Zhejiang[J]. South China Fruits,2021,50(3):100-103.
[8] 王朝麗,何娟,徐紅霞. 軟條白沙枇杷設(shè)施栽培關(guān)鍵技術(shù)[J]. 現(xiàn)代園藝,2022,45(8):22-24.
WANG Zhaoli,HE Juan,XU Hongxia. Key cultivation technologies of Ruantiao Baisha Loquat in greenhouse[J]. Contemporary Horticulture,2022,45(8):22-24.
[9] 李勇,朱更瑞,方偉超,閆順杰,趙佩,趙娟. 桃設(shè)施栽培研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué),2014,42(7):162-166.
LI Yong,ZHU Gengrui,F(xiàn)ANG Weichao,YAN Shunjie,ZHAO Pei,ZHAO Juan. Research progress of protected cultivation of peach[J]. Jiangsu Agricultural Sciences,2014,42(7):162-166.
[10] 文沛. 大櫻桃設(shè)施栽培技術(shù)初步研究[J]. 現(xiàn)代農(nóng)業(yè),2016(4):6-7.
WEN Pei. Preliminary study on protected cultivation technology of sweet cherry[J]. Modern Agriculture,2016(4):6-7.
[11] 蔣利春,孫莉,朱慧,顧敏燕. 翠冠梨優(yōu)質(zhì)高效設(shè)施栽培技術(shù)[J]. 江蘇農(nóng)業(yè)科學(xué),2013,41(8):164-165.
JIANG Lichun,SUN Li,ZHU Hui,GU Minyan. High quality and efficient protected cultivation technology of Cuiguan pear[J]. Jiangsu Agricultural Sciences,2013,41(8):164-165.
[12] 馬立功,馬林倩,卜慶魏,杭大來. 金手指葡萄雙膜大棚夏栽綠苗促成栽培技術(shù)研究[J]. 江蘇農(nóng)業(yè)科學(xué),2010,38(3):172-175.
MA Ligong,MA Linqian,BU Qingwei,HANG Dalai. Study on forcing cultivation technology of summer green seedling in double membrane greenhouse of ‘Gold Finger grape[J]. Jiangsu Agricultural Sciences,2010,38(3):172-175.
[13] 楊治元. 大棚葡萄雙膜覆蓋栽培光照度變化的研究[J]. 中國南方果樹,2010,39(6):48-50.
YANG Zhiyuan. Study on illuminance change of grape under double membrane mulch cultivation in greenhouse[J]. South China Fruits,2010,39(6):48-50.
[14] 徐小菊,何風(fēng)杰,江海娥,高洪勤,徐春燕,陳青英,何桂娥. 雙膜和加溫對藤稔葡萄坐果及品質(zhì)的影響[J]. 浙江農(nóng)業(yè)學(xué)報,2013,25(6):1261-1266.
XU Xiaoju,HE Fengjie,JIANG Haie,GAO Hongqin,XU Chunyan,CHEN Qingying,HE Guie. Effects of double membrane mulching and heating on fruit set and fruit quality of Fujiminori grape[J]. Acta Agriculturae Zhejiangensis,2013,25(6):1261-1266.
[15] 陳鐵山,康永祥,張昌貴,周子富. 香椿種子培育芽菜有效積溫研究[J]. 西北農(nóng)業(yè)學(xué)報,2000,9(2):94-95.
CHEN Tieshan,KANG Yongxiang,ZHANG Changgui,ZHOU Zifu. Effective accumulated temperature of the Chinese Toona seeds germination[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2000,9(2):94-95.
[16] 楊秀武,程志東,郝壽青. 蘋果生物學(xué)零度組合模型的探討[J]. 果樹學(xué)報,2003,20(2):140-142.
YANG Xiuwu,CHENG Zhidong,HAO Shouqing. Probing into apple biological zero point-joint model[J]. Journal of Fruit Science,2003,20(2):140-142.
[17] 陳文. 粵東6種菊科植物種子萌發(fā)的生物學(xué)零度和積溫[J]. 西北師范大學(xué)學(xué)報(自然科學(xué)版),2016,52(4):93-98.
CHEN Wen. The biological zero and accumulated temperature for seed germination of six Asteraceae species in eastern Guangdong[J]. Journal of Northwest Normal University (Natural Science),2016,52(4):93-98.
[18] 王艷華,任傳友,韓亞東,張菁,張文忠,黃瑞冬. 東北地區(qū)活動積溫和極端持續(xù)低溫的時空分布特征及其對糧食產(chǎn)量的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2011,30(9):1742-1748.
WANG Yanhua,REN Chuanyou,HAN Yadong,ZHANG Jing,ZHANG Wenzhong,HUANG Ruidong. The tempo-spatial patterns of active accumulated and consecutive extreme low temperature and their impacts on grain crop yield in northeast China[J]. Journal of Agro-Environment Science,2011,30(9):1742-1748.
[19] 國家技術(shù)監(jiān)督局. 水果、蔬菜制品 可溶性固形物含量的測定 折射儀法:GB 12295—1990[S]. 北京:中國標(biāo)準(zhǔn)出版社,1990.
State Bureau of Quality and Technical Supervision of the Peoples Republic of China. Fruit and vegetable products—Determination of soluble solids-Refratometric method:GB 12295—1990[S]. Beijing:Standards Press of China,1990.
[20] 中華人民共和國衛(wèi)生部,中國國家標(biāo)準(zhǔn)化管理委員會. 食品中蔗糖的測定:GB/T 5009.8—2008[S]. 北京:中國標(biāo)準(zhǔn)出版社,2009.
Ministry of Health of the Peoples Republic of China,Standardization Administration of the Peoples Republic of China. Determination of saccharose in foods:GB/T 5009.8—2008[S]. Beijing:Standards Press of China,2009.
[21] 國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局,中國國家標(biāo)準(zhǔn)化管理委員會. 食品中總酸的測定:GB/T 12456—2008[S]. 北京:中國標(biāo)準(zhǔn)出版社,2009.
General Administration of Quality Supervision,Inspection and Quarantine of the Peoples Republic of China,Standardization Administration of the Peoples Republic of China. Determination of total acid in foods:GB/T 12456—2008[S]. Beijing:Standards Press of China,2009.
[22] WANG J S,ZHAO Z Q,SHENG X G,YU H F,GU H H. Influence of leaf-cover on visual quality and health-promoting phytochemicals in loose-curd cauliflower florets[J]. LWT-Food Science and Technology,2015,61(1):177-183.
[23] 梁森苗,徐云煥,王偉,鄭錫良,任海英,彭娟,張啟,戚行江. 楊梅果實(shí)發(fā)育過程中外觀及主要營養(yǎng)品質(zhì)形成規(guī)律研究[J]. 核農(nóng)學(xué)報,2016,30(6):1135-1140.
LIANG Senmiao,XU Yunhuan,WANG Wei,ZHENG Xiliang,REN Haiying,PENG Juan,ZHANG Qi,QI Xingjiang. Study on the formation discipline of fruit appearance and main nutrient quality in the fruit development of Chinese bayberry[J]. Journal of Nuclear Agricultural Sciences,2016,30(6):1135-1140.
[24] 金志鳳,李永秀,景元書,王立宏. 楊梅光合作用與生理生態(tài)因子的關(guān)系[J]. 果樹學(xué)報,2008,25(5):751-754.
JIN Zhifeng,LI Yongxiu,JING Yuanshu,WANG Lihong. Relationship between photosynthesis and physioecological factors of bayberry (Myrica rubra) tree[J]. Journal of Fruit Science,2008,25(5):751-754.
[25] 谷鏡. 東魁與荸薺種楊梅葉片光合特性研究[D]. 杭州:浙江林學(xué)院,2009.
GU Jing. Studies on photosynthetic characteristics of Dongkui and Biqi red bayberry[D]. Hangzhou:Zhejiang A & F University,2009.
[26] 郄紅麗,黃穎宏. 楊梅大棚栽培技術(shù)[J]. 現(xiàn)代園藝,2019(7):69-70.
QIE Hongli,HUANG Yinghong. Greenhouse cultivation technology of Myrica rubra[J]. Contemporary Horticulture,2019(7):69-70.
[27] 馮常斌,任海英. 大棚栽培對楊梅生產(chǎn)的影響[J]. 浙江農(nóng)業(yè)科學(xué),2020,61(8):1558-1562.
FENG Changbin, REN Haiying. Effect of greenhouse on production of Myrica rubra[J]. Journal of Zhejiang Agricultural Sciences,2020,61(8):1558-1562.