禹方方 張穎 姜建?!O磊 劉崇懷 樊秀彩
摘? ? 要:【目的】炭疽病是葡萄的主要病害之一,極易造成大規(guī)模的病害流行,嚴(yán)重影響葡萄產(chǎn)量及品質(zhì),篩選抗病種質(zhì)及挖掘抗病基因有利于葡萄抗病機(jī)制研究及抗病育種的開展?!痉椒ā坷檬覂?nèi)離體葉片接種法,對(duì)60份中國(guó)野生葡萄種質(zhì)、122份歐亞種質(zhì)、76份歐美雜種以及美人指×刺葡萄0940的F1代雜交群體進(jìn)行炭疽病抗性鑒定與評(píng)價(jià),并利用SNP標(biāo)記構(gòu)建的遺傳圖譜對(duì)炭疽病抗性進(jìn)行QTL定位?!窘Y(jié)果】經(jīng)抗性鑒定,共篩選出1份高抗、43份抗病和75份中抗種質(zhì),分別占總鑒定種質(zhì)的0.39%、16.67%和29.07%。以篩選出的抗病種質(zhì)刺葡萄0940和感病種質(zhì)美人指的雜交后代為分離群體進(jìn)行QTL定位,在第8號(hào)連鎖群上檢測(cè)到一個(gè)與抗炭疽病相關(guān)的QTL位點(diǎn),可解釋14.7%的表型變異。根據(jù)QTL定位區(qū)間基因注釋結(jié)果,篩選出15個(gè)抗病相關(guān)基因,推測(cè)它們?cè)谄咸芽固烤也≈邪l(fā)揮一定作用?!窘Y(jié)論】明確了不同葡萄種質(zhì)的炭疽病抗性水平,定位到1個(gè)抗炭疽病QTL位點(diǎn)并篩選出15個(gè)抗病相關(guān)基因。
關(guān)鍵詞:葡萄炭疽病;離體葉片接種鑒定;QTL定位;候選基因
中圖分類號(hào):S663.1? A436.631 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)11-2325-15
Identification of resistance to anthracnose in leaves of grape resources and QTL localization of disease resistance genes
YU Fangfang, ZHANG Ying, JIANG Jianfu, SUN Lei, LIU Chonghuai, FAN Xiucai*
(Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China)
Abstract: 【Objective】 Grape anthracnose is one of the main diseases of grape, which mainly infects the fruits, young leaves and new branches of grape, causing fruit rot, shedding, or water loss and shrinkage into stiff fruits. Breeding disease-resistant grape varieties is the most economical, effective, and environmentally friendly long-term control strategy for the prevention of the anthracnose disease. There have been a few studies on the identification of the resistance to anthracnose and the QTL localization of relative disease resistant genes so far. The study aimed to identify the resistance to the anthracnose disease of different grape germplasms and seek for new QTL locus for the resistance and provide germplasm materials and basis for the breeding and research on the disease resistance mechanism. 【Methods】 The indoor ex vivo leaf inoculation method was used to identify and evaluate the resistance to anthracnose in 60 strains of Chinese wild grapes, 122 accessions of V. vinifera and 76 accessions of V. vinifera-V. labrusca, and the hybrid offsprings of Manicure Finger (susceptible)×Ciputao0940 (resistant), and the QTL localization of grape anthracnose resistance was carried out using the genetic map constructed by SNP markers. 【Results】 A total of 1 germplasm with high resistance, 43 germplasms with resistance and 75 germplasms with medium resistance were screened out, accounting for 0.39%, 16.67% and 29.07% of the total identified accessions, respectively. There were great differences in the resistance to anthracnose in different germplasm populations. 63.34% of the East Asian population 56.57% of the V. vinifera-V. labrusca population, and 31.15% of the Eurasian population had the resistance to anthracnose. In the identification of anthracnose resistance in Chinese wild grape germplasms, it was found that the resistance of different strains in the same population varied greatly, and the species with strong resistance on the whole included V. davidii, V. pseudoreticulata, V. amurensis, and V. piasezkii. The strong resistance of the strains include Shanputao♀, Longyuwanfuye1♀, Duolieye-yingyu♂, Shanputao-shanyang1807, Mianmaoputao-chayu1955, and Ciputao0940. The resistance of the hybrid offsprings of Manicure Finger (susceptible)×Ciputao0940 (resistant) were distributed in five grades. According to the normality test and single-sample Kolmogorov-Smirnov test based on the resistance level distribution of the F1 population, it was found that the hybrid offsprings of Finger (susceptible) × Ciputao0940 (resistant) showed continuous variation in anthracnose resistance, which was a typical quantitative trait controlled by polygens, and the phenotypic distribution of disease resistance identification results showed a trend of partial normal distribution, which could be analyzed by QTL localization. In the positioning of QTL related to grape resistance to anthracnose, the interval or site of LOD≥3.0 was used as the threshold value for QTL, and when the above conditions were met, the site corresponding to the highest LOD value in the interval was considered to be one QTL of grape anti-anthracnose. In this experiment, a QTL interval associated with grape anthracnose resistance was detected on the 8th linkage group, and the locus with the highest LOD value in this interval was located at 140.682 cM, and the tightly linked label was Maker1675910, which could explain the 14.7% of the phenotypic variation. Based on the gene annotation results of the QTL locus interval, 15 resistance-related genes were screened out, and they were hypothesized to play a role in grape anthracnose resistance. 【Conclusion】 The resistance level of different grape germplasms to anthracnose was clarified, one QTL site against anthracnose was located and 15 resistant-related genes were screened.
Key words: Grape anthracnose; Identification of ex vivo leaf inoculation; QTL localization; Candidate genes
收稿日期:2023-05-15 接受日期:2023-08-17
基金項(xiàng)目:國(guó)家園藝種質(zhì)資源庫(kù)(NHGRC2022-NH00-2);國(guó)家葡萄農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-29-yc-1);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程專項(xiàng)(CAAS-ASTIP-2022-ZFRI)
作者簡(jiǎn)介:禹方方,在讀碩士研究生,研究方向?yàn)槠咸堰z傳資源。E-mail:937456624@qq.com
*通信作者Author for correspondence. Tel:13676997369,E-mail:fanxiucai@caas.cn
葡萄炭疽病又名葡萄晚腐病,是葡萄真菌性病害之一,主要侵染葡萄的果實(shí)、幼葉和新枝,表現(xiàn)為局部出現(xiàn)病斑、果粒腐爛、脫落、或失水干縮為僵果,造成果實(shí)減產(chǎn)最高可達(dá)20%[1]。我國(guó)各地區(qū)引起葡萄炭疽病的致病菌種類并不完全相同,新疆、遼寧、云南、福建、貴州、浙江等葡萄產(chǎn)區(qū)的病原菌經(jīng)鑒定為膠孢炭疽菌(Colletotrichum gloeosporioides)[2-8],廣西、臺(tái)灣等地分離菌株后發(fā)現(xiàn)病原菌為葡萄炭疽菌(C. viniferum)[9-10]。
抗病性鑒定是抗病育種的重要組成部分,從雜交親本的選擇到雜交后代的篩選均起著重要作用。葡萄真菌性病害的抗性鑒定方法主要包括自然鑒定和接種鑒定,自然鑒定即田間自然鑒定,而接種鑒定則分為田間接種鑒定和室內(nèi)離體接種鑒定。田間自然鑒定和田間接種鑒定易受環(huán)境、時(shí)間、土地等因素影響,因此,為避免抗性鑒定試驗(yàn)受上述因素限制,導(dǎo)致鑒定效率較低,可采用室內(nèi)離體接種鑒定法,該方法能精確控制接種環(huán)境、時(shí)間等試驗(yàn)條件,更加便捷地設(shè)置試驗(yàn)材料的對(duì)照組及重復(fù)組,確保試驗(yàn)結(jié)果的準(zhǔn)確性,提高試驗(yàn)效率。
為深入挖掘葡萄種質(zhì)對(duì)炭疽病的抗性基因,可利用QTL定位技術(shù)進(jìn)行候選基因篩選。迄今為止,有關(guān)葡萄抗炭疽病的QTL定位研究較少,高曉銘等[11]以感病的歐亞種質(zhì)里扎馬特為母本、高抗的中國(guó)野生種質(zhì)黑珍珠為父本進(jìn)行雜交,鑒定F1代群體對(duì)炭疽病抗性并利用SSR和SRAP分子標(biāo)記構(gòu)建遺傳圖譜,最后采用區(qū)間作圖法在12號(hào)染色體上檢測(cè)到一個(gè)主效QTL,可解釋37.07%的表型變異。Fu等[12]利用Cabernet Sauvignon和Shuang Hong雜交的F1代群體通過3 a(年)炭疽病抗性鑒定,最終在14號(hào)染色體上得到一個(gè)與抗病相關(guān)的QTL位點(diǎn)Cgr1,該位點(diǎn)解釋了19.9%的表型變異,富含NBS-LRR基因,并鑒定出了一個(gè)與Cgr1的峰值密切相關(guān)的分子標(biāo)記np19345。筆者通過對(duì)自然群體內(nèi)不同葡萄種質(zhì)的炭疽病抗性進(jìn)行鑒定,篩選出抗炭疽病的優(yōu)異種質(zhì),同時(shí)利用雜交群體抗炭疽病鑒定結(jié)果結(jié)合已構(gòu)建的遺傳圖譜,開展葡萄抗炭疽病相關(guān)QTL分析,挖掘葡萄炭疽病抗性基因。
1 材料和方法
1.1 試驗(yàn)材料
自然群體:供試的258份葡萄種質(zhì)均采自國(guó)家葡萄種質(zhì)資源圃(鄭州),包括60份中國(guó)野生葡萄種質(zhì)、122份歐亞種質(zhì)和76份歐美雜種。
雜交群體:母本美人指(V. vinifera,感病)和父本刺葡萄0940(V. davidii,抗?。┓N植于國(guó)家葡萄種質(zhì)資源圃(鄭州),于2015年在國(guó)家葡萄種質(zhì)資源圃(鄭州)進(jìn)行雜交試驗(yàn),同年10月從果實(shí)中收集種子,并采用層積法對(duì)種子進(jìn)行保存。2016年春季將保存的種子進(jìn)行催芽以及播種,隨后將存活的101株實(shí)生苗定植于田間并進(jìn)行管理。
1.2 病菌培養(yǎng)
試驗(yàn)所用葡萄炭疽病病原菌來(lái)自中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹研究所新鄉(xiāng)基地葡萄園,從表現(xiàn)炭疽病癥狀的葡萄果實(shí)上分離、純化得到。通過測(cè)序,得到試驗(yàn)菌株的ACT、GAPDH和ITS區(qū)段堿基編碼序列,將測(cè)序結(jié)果進(jìn)行Blast比對(duì),結(jié)果顯示該病原菌為葡萄炭疽菌(C. viniferum),是炭疽菌屬膠胞炭疽菌復(fù)合種(C. gloeosporioides species complex)。將供試菌株菌絲體挑至于馬鈴薯葡萄糖瓊脂培養(yǎng)基(Potato Dextrose Agar,PDA)上,28 ℃黑暗條件下倒置培養(yǎng)5 d,待菌絲體布滿平板后,使用5 mm打孔器在菌落邊緣打孔備用。
1.3 葉片抗性鑒定
選取1年生枝條上第6至第9片成齡葉,用75%乙醇清洗1 min,再用10%次氯酸鈉清洗1 min,最后用無(wú)菌水清洗3次進(jìn)行表面滅菌。使用無(wú)菌針頭對(duì)葉片的上下左右進(jìn)行針刺以損傷葉片的上表皮層,隨后將含有真菌菌絲體的PDA菌塊(直徑5 mm)放置在傷口上,無(wú)菌PDA塊(直徑5 mm)放置在被刺破的葉片上作為對(duì)照處理,最后將葉片放在培養(yǎng)皿內(nèi)的濕濾紙上,在28 °C下進(jìn)行培育。每份種質(zhì)處理12枚葉片,每片葉根據(jù)面積大小接種2~4處,7 d后采用十字交叉法測(cè)量病斑大小。
1.4 統(tǒng)計(jì)及分析方法
病癥等級(jí)根據(jù)病斑面積占葉面積的百分比分為0~5等級(jí):0級(jí),葉片無(wú)病斑;1級(jí),0.1%~10.0%;2級(jí),10.1%~30.0%;3級(jí),30.1%~60.0%;4級(jí),60.1%~80.0%;5級(jí),80.1%~100.0%。葉面積用ImageJ計(jì)算,病癥等級(jí)轉(zhuǎn)化為病情指數(shù)(DI),計(jì)算公式如下:
根據(jù)病情指數(shù)對(duì)每個(gè)品種進(jìn)行抗性分級(jí),參考劉崇懷等[13]的分級(jí)標(biāo)準(zhǔn),將抗性分為5級(jí):高抗(HR),DI=0~5.0;抗(R),DI=5.1~20.0;中抗(MR),DI=20.1~30.0;感(S),DI=30.1~45.0;高感(HS),DI=45.1~100.0。
1.5 QTL定位
基于課題組已構(gòu)建出的一張葡萄分子遺傳圖譜[14],結(jié)合雜交后代對(duì)葡萄炭疽病的抗性表型分析,選擇MQM mapping進(jìn)行葡萄抗炭疽病相關(guān)QTL定位分析。以圖中LOD≥3.0的區(qū)間或位點(diǎn)作為QTL的入選臨界值,當(dāng)某區(qū)間LOD≥3.0時(shí),認(rèn)為該區(qū)間最高處對(duì)應(yīng)的位點(diǎn)為該性狀的1個(gè)QTL。利用定位區(qū)間所對(duì)應(yīng)的物理位置,參考葡萄基因組PN40024(https://www.ncbi.nlm.nih.gov/genome/401)找到對(duì)應(yīng)區(qū)間,結(jié)合基因功能注釋篩選與炭疽病抗性相關(guān)的候選基因。
2 結(jié)果與分析
2.1 不同葡萄種質(zhì)炭疽病抗性鑒定
在環(huán)境條件一致的情況下,采用離體葉片接種法,以歐美雜種紅奧林和歐亞種里扎馬特為對(duì)照種質(zhì),對(duì)122份歐亞種質(zhì)、76份歐美雜種以及60份中國(guó)野生葡萄種質(zhì)進(jìn)行了抗炭疽病鑒定。鑒定結(jié)果如表1和圖1所示,258份葡萄種質(zhì)的病情指數(shù)在5.00~60.00之間,不同種質(zhì)的病情指數(shù)差異較大。病情指數(shù)介于0~5.0之間的葡萄種質(zhì)僅有1份,即山葡萄♀,表現(xiàn)為高抗,占供試種質(zhì)的0.39%;病情指數(shù)介于5.1~20.0之間的種質(zhì)有43份,表現(xiàn)為抗病,占供試種質(zhì)的16.67%;病情指數(shù)介于20.1~30.0之間的種質(zhì)有75份,表現(xiàn)為中抗,占供試種質(zhì)的29.07%;病情指數(shù)介于30.1~45.0之間的種質(zhì)有128份,表現(xiàn)為感病,占供試種質(zhì)的49.61%;病情指數(shù)介于45.1~100.0之間的種質(zhì)有11份,表現(xiàn)為高感,占供試種質(zhì)的4.26%。
2.2 不同種群葡萄種質(zhì)炭疽病抗性鑒定
不同種群葡萄種質(zhì)的抗炭疽病鑒定結(jié)果見表2,東亞種群種質(zhì)對(duì)炭疽病的整體抗性最強(qiáng),在鑒定的60份種質(zhì)中,抗病種質(zhì)占比為63.34%;其次為歐美雜種,在鑒定的76份種質(zhì)中,抗病種質(zhì)占比為56.57%;歐亞種群種質(zhì)的整體抗性最弱,在鑒定的122份種質(zhì)中,抗病種質(zhì)占比僅為31.15%。
2.3 中國(guó)野生葡萄種質(zhì)炭疽病抗性鑒定結(jié)果
起源于中國(guó)、俄羅斯等國(guó)家的東亞種群葡萄常被用作育種的原始材料和砧木,本試驗(yàn)中供試的東亞種群葡萄均為起源于中國(guó)的野生葡萄。在對(duì)中國(guó)野生葡萄16個(gè)種60個(gè)株系進(jìn)行抗炭疽病鑒定中發(fā)現(xiàn),同一種群內(nèi)不同種質(zhì)間抗性差異較大(表3),像桑葉葡萄、變?nèi)~葡萄、華東葡萄等種內(nèi)均存在抗病和感病的株系。但從整體上看,抗病性相對(duì)較強(qiáng)的種有刺葡萄、華東葡萄、山葡萄和變?nèi)~葡萄。經(jīng)鑒定,篩選出抗性較強(qiáng)的種質(zhì)有山葡萄♀、龍峪灣復(fù)葉1♀、多裂葉-蘡薁♂、山葡萄-山陽(yáng)1807、綿毛葡萄-察隅1955、福安刺葡萄等。
2.4 QTL定位分析
采用室內(nèi)離體葉片接種法對(duì)父本刺葡萄0940與母本美人指及F1代分離群體進(jìn)行抗病性鑒定,結(jié)果顯示刺葡萄0940分布在2級(jí),美人指分布在4級(jí),子代在5個(gè)等級(jí)中均有分布。根據(jù)F1代群體的抗性級(jí)別分布進(jìn)行正態(tài)檢驗(yàn)(圖2)和單樣本Kolmogorov-Smirnov檢驗(yàn)(表4),發(fā)現(xiàn)刺葡萄0940和美人指雜交后代在炭疽病抗性方面表現(xiàn)出了連續(xù)變異,是典型的多基因控制的數(shù)量性狀,抗病鑒定結(jié)果的表型分布呈現(xiàn)偏正態(tài)分布的走勢(shì),可進(jìn)行QTL定位分析。
利用整合的遺傳圖譜,結(jié)合F1代分離群體葡萄抗炭疽病鑒定結(jié)果,在第8號(hào)連鎖群上檢測(cè)到1個(gè)與葡萄抗炭疽病相關(guān)的QTL(表5),LOD值所對(duì)應(yīng)的峰位為140.682 cM處,可解釋14.7%的表型變異。
2.5 抗病候選基因篩選
根據(jù)QTL定位結(jié)果,在抗性區(qū)間內(nèi)注釋到了244個(gè)基因,結(jié)合基因功能注釋,篩選出15個(gè)抗病候選基因(表6)。其中100243697和100256914為MYB(V-myb avian myeloblastosis viral)基因家族轉(zhuǎn)錄因子,100259062、100259037、104880030、100253914和100260239為轉(zhuǎn)錄因子,100852650、100248811、100247292、100243128、100258428、100248331均屬于Leucine-rich repeat receptor-like kinases(LRR-RLKs)基因家族,109123048和100255013均屬于WRKY基因家族,該家族是抗病基因家族中的一員。
3 討 論
我國(guó)是葡萄屬植物的起源地之一,野生葡萄種類豐富,近年來(lái)許多研究者開展了多種葡萄種質(zhì)對(duì)炭疽病的抗性評(píng)價(jià)工作?;诙嗄陙?lái)對(duì)葡萄炭疽病的抗性鑒定試驗(yàn),發(fā)現(xiàn)葡萄屬不同種群間、種群內(nèi)的抗病性存在較大差異,其中,中國(guó)野生葡萄對(duì)炭疽病抗性普遍較強(qiáng)。賀普超等[15]在對(duì)我國(guó)野生葡萄炭疽病抗性研究中發(fā)現(xiàn),山葡萄、刺葡萄和秦巴野葡萄不感炭疽病,秋葡萄、毛葡萄、復(fù)葉葡萄、華東葡萄和麥黃葡萄也表現(xiàn)出極強(qiáng)抗性,其中果實(shí)不感炭疽病的株系有毛葡萄泰山-12、山葡萄泰山-11、寧-6等9個(gè)株系。徐炎[16]田間自然鑒定發(fā)現(xiàn)刺葡萄、山葡萄、毛葡萄等8個(gè)野生種共32個(gè)株系對(duì)炭疽病均表現(xiàn)出極強(qiáng)抗病性。與野生種質(zhì)相比,歐亞種質(zhì)抗性普遍較弱。曾蓓[17]對(duì)野生種質(zhì)刺葡萄和歐亞種質(zhì)紅地球分別進(jìn)行炭疽病抗性鑒定,結(jié)果顯示刺葡萄抗性明顯強(qiáng)于紅地球;郝雨[18]對(duì)野生變?nèi)~葡萄留壩-8和歐亞種質(zhì)無(wú)核白進(jìn)行炭疽病抗性鑒定,留壩-8表現(xiàn)為高抗,無(wú)核白為高感,變?nèi)~葡萄抗性強(qiáng)于歐亞種。筆者在本試驗(yàn)中基于離體葉片接種法對(duì)60份中國(guó)野生葡萄種質(zhì)、122份歐亞種質(zhì)和76份歐美雜種進(jìn)行了炭疽病抗性鑒定,發(fā)現(xiàn)中國(guó)野生葡萄種質(zhì)整體抗性最強(qiáng),其次為歐美雜種,而歐亞種群的整體抗性最弱,與前人研究結(jié)果相符。
近年來(lái),有關(guān)葡萄抗病性狀的QTL定位研究迅速發(fā)展,已有多個(gè)抗病的QTL位點(diǎn)被報(bào)道。Merdinoglu等[19]通過區(qū)間作圖發(fā)現(xiàn)了一個(gè)位于抗病親本28-8-78的12號(hào)染色體上的抗霜霉病的QTL位點(diǎn)并將其命名為Rpv1,該位點(diǎn)可解釋F1代73%的表型變異。在后續(xù)的研究中,又于4、5、6、7、8、9、10、11、12、14、15、18號(hào)染色體上鑒定出了27個(gè)與葡萄抗霜霉病有關(guān)的QTL位點(diǎn),命名為Rpv2-28[20-30]。此外,Rpv1還被證明與抗白粉病的顯性基因Run1緊密相連。Run或Ren均為葡萄抗白粉病的QTL位點(diǎn),除位于12號(hào)染色體上的Rpv1外,還發(fā)現(xiàn)11個(gè)白粉病抗性QTL位點(diǎn),分別被命名為Ren1-10、Run2.2和Run2.3,分布于2、13、14、15、16、18、19號(hào)染色體上[31-39]。為進(jìn)一步研究與葡萄炭疽病抗性相關(guān)的基因,筆者利用課題組已構(gòu)建的美人指與刺葡萄0940雜交群體遺傳圖譜,進(jìn)行葡萄炭疽病抗性QTL定位,僅在8號(hào)連鎖群上定位到一個(gè)與葡萄抗炭疽病相關(guān)的QTL位點(diǎn),可解釋14.7%的表型變異。目前,國(guó)內(nèi)外有關(guān)葡萄對(duì)炭疽病抗性QTL定位的研究較少,僅在12和14兩個(gè)連鎖群上定位到有關(guān)葡萄抗炭疽病的QTL位點(diǎn),而在其他連鎖群上尚未明確報(bào)道。使用不同的群體往往會(huì)定位到不同的QTL位點(diǎn),例如在葡萄抗霜霉病QTL定位中,親本為Syrah和28-8-78時(shí)定位到了12號(hào)染色體10.3 Mb處,當(dāng)親本為Cabernet Sauvignon和Gloire De Montpellie時(shí)則定位到了9號(hào)染色體4.0 Mb處[40]。
迄今為止,研究者從植物中分離到許多具有抗病功能的基因,如WRKY、MYB、LRR-RLKs等。WRKY轉(zhuǎn)錄因子在葡萄抗生物脅迫、非生物脅迫等抗逆過程中發(fā)揮重要的轉(zhuǎn)錄調(diào)控作用,如啟動(dòng)子PR4b與轉(zhuǎn)錄因子WRKY40和WRKY75互作可提高葡萄對(duì)霜霉菌的防御能力[41],WRKY22和WRKY48與葡萄抗炭疽病有關(guān)[42]。筆者在本研究中共篩選到2個(gè)葡萄WRKY基因,分別為WRKY26和WRKY70。PyWRKY26為葡萄WRKY26的同源基因,已有研究證明,PyWRKY26可通過與PybHLH3相互作用參與調(diào)控梨花青苷的合成,從而提高梨對(duì)黑曲霉病原菌的抗性[43]。葡萄中VvWRKY26基因的啟動(dòng)子區(qū)域含有水楊酸途徑的順式作用元件,在外源SA處理后該基因的表達(dá)量顯著提高,說(shuō)明VvWRKY26與水楊酸信號(hào)通路有關(guān),而SA途徑與植物抗病免疫反應(yīng)緊密相關(guān),因此推測(cè)VvWRKY26可能與葡萄抗病有關(guān)[44-45]。此外,WRKY70在植物抗病反應(yīng)中也發(fā)揮著重要作用,該基因位于SA和JA相互拮抗作用的交匯點(diǎn),可正向調(diào)節(jié)SA途徑、負(fù)向調(diào)節(jié)JA途徑并平衡2種途徑的關(guān)系[46]。MYB轉(zhuǎn)錄因子家族數(shù)量龐大,多種MYB轉(zhuǎn)錄因子都參與調(diào)控葡萄的抗病性,如VaMYB306在葡萄葉片中過表達(dá)可提高葡萄對(duì)灰霉病的抗性[47],VqMYB154可通過調(diào)控VqSTS9等靶基因增強(qiáng)葡萄對(duì)白粉病的抗病能力[48]。PHL7為MYB基因家族轉(zhuǎn)錄因子,是類黃酮途徑中的重要組成部分,而類黃酮途徑是植物抵御病原菌侵害的防衛(wèi)反應(yīng)之一,因此推測(cè)PHL7與植物抗病反應(yīng)有關(guān)[49]。LRR-RLKs是RLKs基因家族中最大的亞家族,廣泛地參與植物的發(fā)育過程和抗病反應(yīng)[50]。擬南芥FLS2是最早發(fā)現(xiàn)的具有抗病功能的LRR-RLKs基因,該基因通過其胞外LRR結(jié)構(gòu)域感知病原菌的鞭毛蛋白,從而察覺病原菌的侵染并激活免疫反應(yīng)[51-52]。Xa21為水稻白葉枯病抗性基因,也是典型的LRR-RLKs基因,它可通過識(shí)別病原菌分泌物來(lái)觸發(fā)寄主的免疫反應(yīng)[53]。在定位區(qū)間內(nèi)篩選出的100852650、100248811等6個(gè)基因均屬于LRR-RLKs基因家族,根據(jù)其結(jié)構(gòu)特性以及前人對(duì)此類基因的研究基礎(chǔ),推測(cè)這些基因與葡萄抗炭疽病有關(guān)。
4 結(jié) 論
筆者利用室內(nèi)離體葉片接種法,對(duì)不同葡萄資源葉片抗炭疽病進(jìn)行鑒定,共篩選出1份高抗、43份抗病和75份中抗葡萄種質(zhì);不同種群種質(zhì)的炭疽病抗性存在較大差異,東亞種群對(duì)炭疽病的整體抗性最強(qiáng),其次為歐美雜種,歐亞種群的整體抗性最弱。基于課題組已構(gòu)建的一張葡萄分子遺傳圖譜,結(jié)合美人指和刺葡萄0940雜交后代群體對(duì)葡萄炭疽病的抗性鑒定結(jié)果,在第8號(hào)連鎖群上檢測(cè)到1個(gè)與葡萄抗炭疽病相關(guān)的QTL位點(diǎn),可解釋14.7%的表型變異。根據(jù)QTL定位區(qū)域內(nèi)的基因注釋結(jié)果,在抗性區(qū)間內(nèi)篩選出15個(gè)抗病相關(guān)基因。
參考文獻(xiàn) References:
[1] 劉梅,JAYAWARDENA R S,劉陽(yáng),邢啟凱,燕繼曄,李興紅. 北京市葡萄炭疽病病原菌的分子鑒定[J]. 植物保護(hù)學(xué)報(bào),2018,45(2):393-394.
LIU Mei,JAYAWARDENA R S,LIU Yang,XING Qikai,YAN Jiye,LI Xinghong. Molecular identification of the pathogen causing grape anthracnose in Beijing[J]. Journal of Plant Protection,2018,45(2):393-394.
[2] 雷百戰(zhàn),李國(guó)英. 新疆葡萄炭疽病病原的鑒定及其生物學(xué)特性的研究[J]. 石河子大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,22(4):298-300.
LEI Baizhan,LI Guoying. Identification and biological characteristics of the pathogen of Colletotrichum gloeosporioides on grape in Xinjiang[J]. Journal of Shihezi University (Natural Science),2004,22(4):298-300.
[3] 李洋,劉長(zhǎng)遠(yuǎn),陳秀蓉,趙奎華,苗則彥,梁春浩,王輝. 遼寧省葡萄炭疽菌鑒定及對(duì)多菌靈敏感性研究[J]. 植物保護(hù),2009,35(4):74-77.
LI Yang,LIU Changyuan,CHEN Xiurong,ZHAO Kuihua,MIAO Zeyan,LIANG Chunhao,WANG Hui. Identification of the grape anthracnose and its sensitivity to carbendazim in Liaoning[J]. Plant Protection,2009,35(4):74-77.
[4] 鄧維萍,楊敏,杜飛,楊積忠,朱書生. 云南葡萄產(chǎn)區(qū)葡萄炭疽病病原鑒定及致病力分析[J]. 植物保護(hù)學(xué)報(bào),2013,40(1):61-67.
DENG Weiping,YANG Min,DU Fei,YANG Jizhong,ZHU Shusheng. Identification of the pathogen causing grape anthracnose in Yunnan and its pathogenicity[J]. Journal of Plant Protection,2013,40(1):61-67.
[5] 雷龑,林雄杰,陳婷,劉鑫銘,蔡盛華,范國(guó)成. 福建葡萄炭疽病病原鑒定及致病性分析[J]. 果樹學(xué)報(bào),2014,31(6):1123-1127.
LEI Yan,LIN Xiongjie,CHEN Ting,LIU Xinming,CAI Shenghua,F(xiàn)AN Guocheng. Pathogen identification and pathogenicity analysis of grape ripe rot in Fujian[J]. Journal of Fruit Science,2014,31(6):1123-1127.
[6] 汪家勝,姜于蘭,王德鳳,楊亞曦,陳帝爐. 貴陽(yáng)地區(qū)葡萄炭疽病病原菌鑒定及室內(nèi)殺菌劑篩選[J]. 山地農(nóng)業(yè)生物學(xué)報(bào),2014,33(6):59-61.
WANG Jiasheng,JIANG Yulan,WANG Defeng,YANG Yaxi,CHEN Dilu. Pathogen identification of grape anthracnose in Guiyang area and fungicides screening in laboratory[J]. Journal of Mountain Agriculture and Biology,2014,33(6):59-61.
[7] 宗宇,吳志娟,朱友銀,郭衛(wèi)東,林佳佳,路梅. 葡萄炭疽病病原菌分離鑒定及其效用殺菌劑篩選[J]. 浙江師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,40(4):435-440.
ZONG Yu,WU Zhijuan,ZHU Youyin,GUO Weidong,LIN Jiajia,LU Mei. Separation and identification of pathogen inducing grape anthracnose and screening of available fungicides in laboratory[J]. Journal of Zhejiang Normal University (Natural Sciences),2017,40(4):435-440.
[8] 劉麗,劉長(zhǎng)遠(yuǎn),王輝,關(guān)天舒,于舒怡,李柏宏. 葡萄炭疽病菌鑒定及同源性分析[J]. 中國(guó)農(nóng)學(xué)通報(bào),2017,33(35):132-136.
LIU Li,LIU Changyuan,WANG Hui,GUAN Tianshu,YU Shuyi,LI Baihong. Identification and homology analysis of Colletotrichum gloeosporioides in grape[J]. Chinese Agricultural Science Bulletin,2017,33(35):132-136.
[9] 譚海蕓,吳林娜,張瑋,周詠梅,李興紅. 廣西南寧避雨栽培葡萄炭疽病的病原菌鑒定[J]. 植物保護(hù),2022,48(5):269-273.
TAN Haiyun,WU Linna,ZHANG Wei,ZHOU Yongmei,LI Xinghong. Identification of the pathogen of grape anthracnose in Nanning,Guangxi[J]. Plant Protection,2022,48(5):269-273.
[10] DUAN C H,CHEN G Y. First report of Colletotrichum viniferum causing ripe rot of grape berry in Taiwan [J]. Plant Disease,2022,106(2):764.
[11] 高曉銘,劉崇懷,張國(guó)海,張穎,姜建福,孫海生,樊秀彩. 葡萄抗炭疽病QTL的初步定位分析[J]. 園藝學(xué)報(bào),2016,43(12):2442-2450.
GAO Xiaoming,LIU Chonghuai,ZHANG Guohai,ZHANG Ying,JIANG Jianfu,SUN Haisheng,F(xiàn)AN Xiucai. Preliminary analysis of grape anthracnose resistance QTL[J]. Acta Horticulturae Sinica,2016,43(12):2442-2450.
[12] FU P N,TIAN Q Y,LAI G T,LI R F,SONG S R,LU J. Cgr1,a ripe rot resistance QTL in Vitis amurensis ‘Shuang Hong grapevine[J]. Horticulture Research,2019,6:67.
[13] 劉崇懷,沈育杰,陳俊. 葡萄種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2006.
LIU Chonghuai,SHEN Yujie,CHEN Jun. Descriptors and data standard for grape (Vitis L.)[M]. Beijing:China Agriculture Press,2006.
[14] LI P,TAN X B,LIU R T,RAHMAN F U,JIANG J F,SUN L,F(xiàn)AN X C,LIU J H,LIU C H,ZHANG Y. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape (Vitis vinifera L. × Vitis davidii Foex.) crossing[J]. Horticulture Research,2023,10(5):uhad063.
[15] 賀普超,任治邦. 我國(guó)葡萄屬野生種對(duì)炭疽病抗性的研究[J]. 果樹科學(xué),1990,7(1):7-12.
HE Puchao,REN Zhibang. Study on the resistances of wild vitis species native to China to grape ripe rot[J]. Journal of Fruit Science,1990,7(1):7-12.
[16] 徐炎. 中國(guó)野生葡萄抗白腐病、炭疽病基因RAPD標(biāo)記及其克隆[D]. 楊凌:西北農(nóng)林科技大學(xué),2000.
XU Yan. Clones and their RAPD Markers of the resistance to white rot & ripe rot in Chinese wild Vitis[D]. Yangling:Northwest A & F University,2000.
[17] 曾蓓. 刺葡萄對(duì)常見真菌性病害的抗性鑒定及誘變篩選抗霜霉病資源的研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2017.
ZENG Bei. Identifying the resistance of Vitis davidii Fo?x to common fungal diseases and studying the mutation screening of resistance resources[D]. Changsha:Hunan Agricultural University,2017.
[18] 郝雨. 葡萄炭疽菌與抗感葡萄種質(zhì)互作中的侵染特性及寄主防衛(wèi)反應(yīng)研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2022.
HAO Yu. Study on infection characteristics and host defense response in interactions between Colletotrichum on grape and grapes resistant and susceptible accessions[D]. Yangling:Northwest A & F University,2022.
[19] MERDINOGLU D,WIEDEMAN-MERDINOGLU S,COSTE P,DUMAS V,HAETTY S,BUTTERLIN G,GREIF C. Genetic analysis of downy mildew resistance derived from muscadinia rotundifolia[J]. Acta Horticulturae,2003,603:451-456.
[20] MARGUERIT E,BOURY C,MANICKI A,DONNART M,BUTTERLIN G,N?MORIN A,WIEDEMANN-MERDINOGLU S,MERDINOGLU D,OLLAT N,DECROOCQ S. Genetic dissection of sex determinism,inflorescence morphology and downy mildew resistance in grapevine[J]. Theoretical and Applied Genetics,2009,118(7):1261-1278.
[21] BELLIN D,PERESSOTTI E,MERDINOGLU D,WIEDEMANN-MERDINOGLU S,ADAM-BLONDON A F,CIPRIANI G,MORGANTE M,TESTOLIN R,DI GASPERO G. Resistance to Plasmopara viticola in grapevine ‘Bianca is controlled by a major dominant gene causing localised necrosis at the infection site[J]. Theoretical and Applied Genetics,2009,120(1):163-176.
[22] MOREIRA F M,MADINI A,MARINO R,ZULINI L,STEFANINI M,VELASCO R,KOZMA P,GRANDO M S. Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance[J]. Tree Genetics & Genomes,2011,7:153-167.
[23] BLASI P,BLANC S,WIEDEMANN-MERDINOGLU S,PRADO E,R?HL E H,MESTRE P,MERDINOGLU D. Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8,a locus conferring resistance to grapevine downy mildew[J]. Theoretical and Applied Genetics,2011,123(1):43-53.
[24] SCHWANDER F,EIBACH R,F(xiàn)ECHTER I,HAUSMANN L,ZYPRIAN E,T?PFER R. Rpv10:a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine[J]. Theoretical and Applied Genetics,2012,124(1):163-176.
[25] VENUTI S,COPETTI D,F(xiàn)ORIA S,F(xiàn)ALGINELLA L,HOFFMANN S,BELLIN D,CINDRI? P,KOZMA P,SCALABRIN S,MORGANTE M,TESTOLIN R,DI GASPERO G. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties[J]. PLoS One,2013,8(4):e61228.
[26] OCHSSNER I,HAUSMANN L,T?PFER R. Rpv14,a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea[J]. Vitis,2016,55(2):79-81.
[27] DIVILOV K,BARBA P,CADLE-DAVIDSON L,REISCH B I. Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines[J]. Theoretical and Applied Genetics,2018,131(5):1133-1143.
[28] SAPKOTA S,CHEN L L,YANG S S,HYMA K E,CADLE-DAVIDSON L,HWANG C F. Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived ‘Norton[J]. Theoretical and Applied Genetics,2019,132(1):137-147.
[29] LIN H,LENG H,GUO Y S,KONDO S,ZHAO Y H,SHI G L,GUO X W. QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. ×V. amurensis Rupr.) crossing[J]. Scientia Horticulturae,2019,244:200-207.
[30] BHATTARAI G,F(xiàn)ENNELL A,LONDO J P,COLEMAN C,KOVACS L G. A novel grape downy mildew resistance locus from Vitis rupestris[J]. American Journal of Enology and Viticulture,2021,72(1):12-20.
[31] DALBO? M A,YE G N,WEEDEN N F,WILCOX W F,REISCH B I. Marker-assisted selection for powdery mildew resistance in grapes[J]. Journal of the American Society for Horticultural Science,2001,126(1):83-89.
[32] BARKER C L,DONALD T,PAUQUET J,RATNAPARKHE M B,BOUQUET A,ADAM-BLONDON A F,THOMAS M R,DRY I. Genetic and physical mapping of the grapevine powdery mildew resistance gene,Run1,using a bacterial artificial chromosome library[J]. Theoretical and Applied Genetics,2005,111(2):370-377.
[33] RIAZ S,TENSCHER A C,RAMMING D W,WALKER M A. Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding[J]. Theoretical and Applied Genetics,2011,122(6):1059-1073.
[34] BLANC S,WIEDEMANN-MERDINOGLU S,DUMAS V,MESTRE P,MERDINOGLU D. A reference genetic map of Muscadinia rotundifolia and identification of Ren5,a new major locus for resistance to grapevine powdery mildew[J]. Theoretical and Applied Genetics,2012,125(8):1663-1675.
[35] VAN HEERDEN C J,BURGER P,VERMEULEN A,PRINS R. Detection of downy and powdery mildew resistance QTL in a ‘Regent × ‘Red Globe population[J]. Euphytica,2014,200(2):281-295.
[36] PAP D,RIAZ S,DRY I B,JERMAKOW A,TENSCHER A C,CANTU D,OL?H R,WALKER M A. Identification of two novel powdery mildew resistance loci,Ren6 and Ren7,from the wild Chinese grape species Vitis piasezkii[J]. BMC Plant Biology,2016,16(1):170.
[37] ZYPRIAN E,OCH?NER I,SCHWANDER F,?IMON S,HAUSMANN L,BONOW-REX M,MORENO-SANZ P,GRANDO M S,WIEDEMANN-MERDINOGLU S,MERDINOGLU D,EIBACH R,T?PFER R. Quantitative trait loci affecting pathogen resistance and ripening of grapevines[J]. Molecular Genetics and Genomics,2016,291(4):1573-1594.
[38] ZENDLER D,SCHNEIDER P,T?PFER R,ZYPRIAN E. Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine[J]. Euphytica,2017,213(3):68.
[39] TEH S L,F(xiàn)RESNEDO-RAM?REZ J,CLARK M D,GADOURY D M,SUN Q,CADLE-DAVIDSON L,LUBY J J. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps[J]. Molecular Breeding,2017,37(1):1-16.
[40] 李鵬,劉銳濤,譚西北,張穎,劉崇懷. 葡萄遺傳圖譜構(gòu)建與抗病QTL定位研究進(jìn)展[J]. 果樹學(xué)報(bào),2023,40(6):1245-1254.
LI Peng,LIU Ruitao,TAN Xibei,ZHANG Ying,LIU Chonghuai. Research progress in genetic map construction and QTL mapping for disease resistance in grapevine[J]. Journal of Fruit Science,2023,40(6):1245-1254.
[41] 劉兵,李夢(mèng)媛,張娜,尚博興,劉國(guó)甜,徐炎. 中國(guó)野生葡萄抗霜霉病相關(guān)基因VpPR4b及其啟動(dòng)子的克隆和功能分析[J]. 園藝學(xué)報(bào),2021,48(2):265-275.
LIU Bing,LI Mengyuan,ZHANG Na,SHANG Boxing,LIU Guotian,XU Yan. Cloning and functional analysis of the CDS and promoter of VpPR4b gene response to downy mildew in Chinese wild grape[J]. Acta Horticulturae Sinica,2021,48(2):265-275.
[42] 沈才琦,孫磊,張穎,姜建福,劉崇懷,樊秀彩. 膠孢炭疽菌侵染不同抗性葡萄葉片的轉(zhuǎn)錄組學(xué)分析[J]. 果樹學(xué)報(bào),2022,39(5):730-742.
SHEN Caiqi,SUN Lei,ZHANG Ying,JIANG Jianfu,LIU Chonghuai,F(xiàn)AN Xiucai. Transcriptomic analysis of different resistant leaves infected by Colletotrichum gloeosporioides in grape[J]. Journal of Fruit Science,2022,39(5):730-742.
[43] 李闖. WRKY26-bHLH3共促進(jìn)紅皮梨花青苷合成及花青苷抑制黑曲霉侵染的分子機(jī)制研究[D]. 合肥:合肥工業(yè)大學(xué),2020.
LI Chuang. Molecular mechanism of WRKY26-bHLH3 co-promoting red pear anthocyanin synthesis and anthocyanin inhibition of Aspergillus niger infection[D]. Hefei:Hefei University of Technology,2020.
[44] 于和平. 葡萄WRKY26、WRKY27基因啟動(dòng)子克隆及功能分析[D]. 大連:遼寧師范大學(xué),2013.
YU Heping. Cloning and functional analysis of Vitis vinifera WRKY26 and WRKY27 Promoters[D]. Dalian:Liaoning Normal University,2013.
[45] 張國(guó)蓉,梁長(zhǎng)梅,郭建勇,張澤寧,張鵬飛,趙旗峰,梁晉軍,溫鵬飛. 葡萄VvWRKY26基因克隆與表達(dá)分析[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2023,31(3):475-487.
ZHANG Guorong,LIANG Changmei,GUO Jianyong,ZHANG Zening,ZHANG Pengfei,ZHAO Qifeng,LIANG Jinjun,WEN Pengfei. Clone and expression analysis of VvWRKY26 gene in grape (Vitis vinifera)[J]. Journal of Agricultural Biotechnology,2023,31(3):475-487.
[46] 何樂. WRKY70與抗性相關(guān)轉(zhuǎn)錄因子的相互作用研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2015.
HE Le. Interaction between WRKY70 and plant resistance relative transcription factors[D]. Changsha:Hunan Agricultural University,2015.
[47] ZHU Y X,ZHANG X M,ZHANG Q H,CHAI S Y,YIN W C,GAO M,LI Z,WANG X P. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection[J]. Molecular Plant Pathology,2022,23(10):1415-1432.
[48] 姜長(zhǎng)岳. 中國(guó)野生毛葡萄VqMYB154轉(zhuǎn)錄因子調(diào)控抗白粉病機(jī)理研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2021.
JIANG Changyue. Mechanism analysis of transcription factor VqMYB154 regulating the resistance to powdery mildew in Chinese wild Vitis quinquangularis[D]. Yangling:Northwest A & F University,2021.
[49] ZHANG B D,ZHANG M Y,JIA X J,HU G J,REN F,F(xiàn)AN X D,DONG Y F. Integrated transcriptome and metabolome dissecting interaction between Vitis vinifera L. and grapevine fabavirus[J]. International Journal of Molecular Sciences,2023,24(4):3247.
[50] 王琪,吳允哲,劉學(xué)英,孫麗莉,廖紅,傅向東. 類受體激酶調(diào)控水稻生長(zhǎng)發(fā)育和環(huán)境適應(yīng)研究進(jìn)展[J]. 植物學(xué)報(bào),2023,58(2):199-213.
WANG Qi,WU Yunzhe,LIU Xueying,SUN Lili,LIAO Hong,F(xiàn)U Xiangdong. The rice receptor-like kinases function as key regulators of plant development and adaptation to the environment[J]. Chinese Bulletin of Botany,2023,58(2):199-213.
[51] G?MEZ-G?MEZ L,BOLLER T. FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Molecular Cell,2000,5(6):1003-1011.
[52] IMKAMPE J,HALTER T,HUANG S H,SCHULZE S,MAZZOTTA S,SCHMIDT N,MANSTRETTA R,POSTEL S,WIERZBA M,YANG Y,VAN DONGEN W M A M,STAHL M,ZIPFEL C,GOSHE M B,CLOUSE S,DE VRIES S C,TAX F,WANG X F,KEMMERLING B. The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1[J]. The Plant Cell,2017,29(9):2285-2303.
[53] 林悅龍,王昱澎,朱永生,鄭燕梅,蔡秋華,何煒,陳麗萍,謝鴻光,魏毅東,謝華安,張建福. 粳稻云引稻瘟病抗性近等基因系與免疫應(yīng)答相關(guān)的LRR-RLKs差異基因分析[J]. 科學(xué)通報(bào),2021,66(30):3873-3885.
LIN Yuelong,WANG Yupeng,ZHU Yongsheng,ZHENG Yanmei,CAI Qiuhua,HE Wei,CHEN Liping,XIE Hongguang,WEI Yidong, XIE Huaan,ZHANG Jianfu. Analysis of immune response-related LRR-RLKs differential genes in the rice blast resistance near-isogenic lines of Japonica variety Yunyin[J]. Chinese Science Bulletin,2021,66(30):3873-3885.