国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

石墨烯類超導(dǎo)體的單磁性雜質(zhì)效應(yīng)*

2023-11-16 10:43:40趙宗陽李銘周濤
物理學(xué)報 2023年20期
關(guān)鍵詞:能隙超導(dǎo)體格點(diǎn)

趙宗陽 李銘 周濤

(華南師范大學(xué)物理學(xué)院,廣東省量子調(diào)控工程與材料重點(diǎn)實(shí)驗(yàn)室,粵港量子物質(zhì)聯(lián)合實(shí)驗(yàn)室,廣州 510006)

超導(dǎo)體的磁性雜質(zhì)效應(yīng)以及其中存在的束縛態(tài)(即Yu-Shiba-Rusinov 態(tài))一直受到較多的關(guān)注.最近,在實(shí)驗(yàn)室中,成功發(fā)現(xiàn)了石墨烯類超導(dǎo)材料中Yu-Shiba-Rusinov 態(tài)的存在.本文在實(shí)空間建立描述石墨烯材料超導(dǎo)態(tài)的有效哈密頓量,考慮單個磁性雜質(zhì),構(gòu)造Bogoliubov-de Gennes(BdG)方程,并對超導(dǎo)序參量做自洽計算,在此基礎(chǔ)上,理論研究了石墨烯類超導(dǎo)體的磁性雜質(zhì)效應(yīng).計算結(jié)果顯示,僅當(dāng)超導(dǎo)的配對對稱性是傳統(tǒng)的s 波配對時,能隙內(nèi)會出現(xiàn)Yu-Shiba-Rusinov 束縛態(tài),束縛態(tài)的位置以及強(qiáng)度和雜質(zhì)的磁矩有關(guān),且強(qiáng)度顯示出了明顯的正負(fù)非對稱性,但對于p+ip 和d+id 配對對稱性,則不存在能隙內(nèi)的束縛態(tài).本文的理論計算結(jié)果一方面對實(shí)驗(yàn)現(xiàn)象做了合理解釋,另一方面指出了石墨烯和傳統(tǒng)超導(dǎo)組成的異質(zhì)結(jié)系統(tǒng),石墨烯層由于臨近效應(yīng)誘導(dǎo)出來的超導(dǎo)配對項(xiàng)仍然是s 波配對.

1 引言

由于二維的石墨烯材料具有獨(dú)特的物理特性以及廣闊的應(yīng)用前景,近20 年來其物理性質(zhì)受到了廣泛的關(guān)注[1].一個重要的研究方向是在石墨烯類材料中實(shí)現(xiàn)超導(dǎo)電性.理想的石墨烯材料是一種半金屬材料.沒有超導(dǎo)電性,但近年來在實(shí)驗(yàn)室中已通過多種輔助途徑在石墨烯類材料中成功實(shí)現(xiàn)超導(dǎo)電性,有效的手段包括:通過插入其他原子層的方法實(shí)現(xiàn)超導(dǎo)電性[2,3],在雙層和三層石墨烯材料中通過外加電場和磁場的方法誘導(dǎo)出超導(dǎo)電性[4,5],在雙層和三層魔角石墨烯中實(shí)現(xiàn)超導(dǎo)電性[6,7],以及用超導(dǎo)材料和石墨烯材料構(gòu)成異質(zhì)結(jié),通過鄰近效應(yīng)在石墨烯材料中實(shí)現(xiàn)有效的超導(dǎo)配對項(xiàng)[8,9].

對于超導(dǎo)體材料,一個核心的研究內(nèi)容是探索其配對對稱性.對于石墨烯類超導(dǎo)體,過去十幾年來,很多研究組理論探索了它可能的配對對稱性.目前主要候選配對對稱性是p+ip 配對[10,11]和d+id 配對[12-15].另一方面,對于超導(dǎo)體和普通金屬組成的異質(zhì)結(jié)系統(tǒng),由于鄰近效應(yīng),通常會在普通金屬材料中誘導(dǎo)出有效的超導(dǎo)配對項(xiàng).一般認(rèn)為,誘導(dǎo)出的超導(dǎo)配對項(xiàng)對稱性應(yīng)與原超導(dǎo)體的配對對稱性相同.但是,在石墨烯材料中,實(shí)驗(yàn)測量得到結(jié)果卻并非必然如此.實(shí)驗(yàn)中,將石墨烯材料放在電子型摻雜銅氧化合物超導(dǎo)體Pr2-xCexCuOx上形成異質(zhì)結(jié),通過掃描隧道光譜實(shí)驗(yàn)得到其局域電子態(tài)密度的信息,結(jié)果顯示石墨烯中誘導(dǎo)出了p 波對稱性[9],而原銅氧化合物超導(dǎo)體卻是d 波對稱性,兩者的配對對稱性并不相同,因此,即使對于石墨烯-超導(dǎo)的異質(zhì)結(jié)系統(tǒng),其配對對稱性也是一個值得研究的課題.

雜質(zhì)效應(yīng)往往可以用來作為判斷超導(dǎo)體配對對稱性的有力工具,比如在某些對稱性下,雜質(zhì)可以導(dǎo)致能隙內(nèi)的束縛態(tài)[16].在過去幾年,理論研究者對石墨烯材料中的雜質(zhì)效應(yīng)有過一定的關(guān)注[17-19],其中的束縛態(tài)的存在被建議可以用來判斷石墨烯材料的配對對稱性.而本文主要關(guān)注石墨烯超導(dǎo)體的磁性雜質(zhì)效應(yīng).事實(shí)上,超導(dǎo)體中的磁性雜質(zhì)效應(yīng)一直是一個重要的研究方向,早在1960 年代,于祿[20],Shiba[21]和Rusinov[22]分別獨(dú)立地通過理論計算提出超導(dǎo)體中磁性雜質(zhì)周圍會存在能隙內(nèi)的束縛態(tài),Yu-Shiba-Rusinov態(tài)(簡稱為YSR 態(tài)).需要指出的是,YSR 態(tài)與雜質(zhì)原子的局域磁矩密切相關(guān),所以YSR 態(tài)背后的物理原因與上述非磁性雜質(zhì)誘導(dǎo)出的束縛態(tài)完全不同[16-18].1997年,YSR 態(tài)的存在被實(shí)驗(yàn)證實(shí)[23].在石墨烯類超導(dǎo)體中,理論預(yù)測可以通過氫化的方法引入局域磁矩,進(jìn)一步的計算預(yù)測了YSR 態(tài)的存在[24].最近,實(shí)驗(yàn)上對石墨烯類超導(dǎo)體的YSR 的觀測也有了進(jìn)展,在一個石墨烯和傳統(tǒng)的鉛超導(dǎo)體的耦合系統(tǒng)中,在晶界附近觀測到了YSR 態(tài)的存在[25].

理論計算顯示,在石墨烯材料的晶界附近會引入磁性的點(diǎn)缺陷[26-28],因此,理論上可以通過單個磁性雜質(zhì)附近的局域電子結(jié)構(gòu)來定性模擬晶界附近的電子結(jié)構(gòu)并進(jìn)一步研究YSR 態(tài).對超導(dǎo)體的單個雜質(zhì)效應(yīng)的研究通常有兩種有效的方法,一種是忽略雜質(zhì)對超導(dǎo)序參量的影響,近似認(rèn)為超導(dǎo)序參量均勻分布,將哈密頓量分為均勻項(xiàng)和雜質(zhì)項(xiàng)兩個部分,其中均勻部分可以進(jìn)行傅里葉變換到動量空間,雜質(zhì)項(xiàng)可以視作微擾或者一個散射中心處理,在T 矩陣或者微擾論結(jié)合戴遜方程的基礎(chǔ)上獲得系統(tǒng)的格林函數(shù),進(jìn)一步可以研究系統(tǒng)的其他性質(zhì)[16,17,24].這種方法的缺點(diǎn)是忽略了序參量的空間漲落,尤其是我們通常關(guān)心雜質(zhì)附近的局域特性,而雜質(zhì)附近的超導(dǎo)序參量往往被壓制了.優(yōu)點(diǎn)是格林函數(shù)有很好的解析形式,可以根據(jù)格林函數(shù)分母的零點(diǎn)分析能隙內(nèi)束縛態(tài)產(chǎn)生的原因,且在動量空間處理問題,不存在尺寸效應(yīng).

早期,針對石墨烯超導(dǎo)態(tài),有研究組運(yùn)用T 矩陣的方法研究了單個磁性雜質(zhì)效應(yīng)[19],計算結(jié)果表明:僅僅在雜質(zhì)原子的磁交換作用大于石墨烯的能帶寬度時,YSR 態(tài)才出現(xiàn).這一條件在實(shí)際材料中比較難滿足.但是由于T 矩陣方法忽略了雜質(zhì)對超導(dǎo)序參量的壓制,所以該方法雖然可以定性地研究雜質(zhì)效應(yīng),但是,雜質(zhì)的作用有可能會被低估.理論上存在著另一種研究雜質(zhì)效應(yīng)的方法,就是實(shí)空間的 BdG 方程方法[18,29,30],采用這種方法需要在實(shí)空間寫出整個哈密頓量,自洽求解實(shí)空間所有格點(diǎn)的超導(dǎo)序參量,進(jìn)一步用實(shí)空間對角化的方法求解系統(tǒng)的實(shí)空間格林函數(shù).這種方法的缺點(diǎn)是只能在有限大小的系統(tǒng)中計算,具有一定的尺寸效應(yīng),且沒有辦法進(jìn)一步理論分析束縛態(tài)產(chǎn)生的原因,優(yōu)點(diǎn)是進(jìn)行了全空間對角化,且充分考慮了雜質(zhì)對序參量的影響,結(jié)果較為精確.在過去石墨烯超導(dǎo)體的非磁性雜質(zhì)的理論研究中,這兩種方法都被采用[17,18],結(jié)果定性上大體相同,但細(xì)節(jié)處仍然有較多的差異.

本文采用了實(shí)空間BdG 方程的方法結(jié)合自洽計算來對石墨烯材料的磁性雜質(zhì)效應(yīng)進(jìn)行理論研究.由于實(shí)驗(yàn)上YSR 是在石墨烯和傳統(tǒng)超導(dǎo)體耦合系統(tǒng)中發(fā)現(xiàn)了YSR態(tài),可判斷該實(shí)驗(yàn)中石墨烯材料誘導(dǎo)出的配對對稱性有比較大的概率也是傳統(tǒng)的s 波配對.所以本文主要研究也是基于傳統(tǒng)的s 波配對.計算結(jié)果顯示,s 波配對的石墨烯超導(dǎo)體具有明顯的YSR 束縛態(tài),其性質(zhì)定性符合實(shí)驗(yàn)結(jié)果.另一方面,也研究了p+ip 和d+id 配對的石墨烯超導(dǎo)體的磁性雜質(zhì)效應(yīng),計算結(jié)果和s 波配對有非常大的區(qū)別,對于這兩種配對對稱性,并沒有出現(xiàn)明顯的YSR 態(tài).結(jié)果一方面表明,磁性雜質(zhì)效應(yīng)可以作為判斷石墨烯類超導(dǎo)體配對對稱性的一個有力的工具,另一方面,和最近發(fā)表的實(shí)驗(yàn)結(jié)果相比較,本文結(jié)果說明,石墨烯和傳統(tǒng)超導(dǎo)體組成的異質(zhì)結(jié)其鄰近效應(yīng)誘導(dǎo)出來的石墨烯中的超導(dǎo)配對仍然是傳統(tǒng)的s 波配對.這一結(jié)果有別于石墨烯-電子型銅氧超導(dǎo)體異質(zhì)結(jié)的情況.

2 理論模型

我們的出發(fā)模型包含正常態(tài)項(xiàng)、超導(dǎo)配對項(xiàng)和磁性雜質(zhì)項(xiàng),總的哈密頓量可表示為

其中,tij表示i格點(diǎn)和j格點(diǎn)之間的跳躍,實(shí)際計算中,取最近鄰格點(diǎn)之間的跳躍,σ表示電子的自旋,μ是化學(xué)勢.

如果是d+id 或者p+ip 配對,超導(dǎo)配對項(xiàng)可表示為近鄰格點(diǎn)之間的配對:

〈ij〉表示j格點(diǎn)在i格點(diǎn)的最近鄰.

Js為雜質(zhì)點(diǎn)自旋和石墨烯格點(diǎn)上傳導(dǎo)電子的交換耦合常數(shù)[29,30].

考慮實(shí)空間共有N個格點(diǎn),超導(dǎo)態(tài)總的哈密頓量可以寫成 2N×2N的矩陣形式,可以列出如下的BdG 方程:

其中,Hij-tij-μδij,來自正常態(tài)哈密頓量的貢獻(xiàn),如果是d+id 和p+ip 配對,配對項(xiàng)需滿足額外的約束條件,即ΔjiξΔij,其中,ξ+1 或者ξ-1,分別對應(yīng)d+id 配對和p+ip 配對.ujm和vjm是哈密頓量矩陣的本征矢中的分量,Em是哈密頓矩陣的本征值,均可通過對角化哈密頓量矩陣求得.

根據(jù)BdG 方程,可以自洽地求解超導(dǎo)序參量,如果考慮超導(dǎo)項(xiàng)是起源于同一個格點(diǎn)上的電子間的有效吸引相互作用,吸引勢為V,這種情況是s 波配對,自洽方程可以表示為

對于p+ip 配對和d+id 配對,超導(dǎo)項(xiàng)是來自最近鄰格點(diǎn)之間的有效吸引相互作用,同樣考慮吸引勢為V,自洽方程可以表示為

在自洽地求解得出每一個格點(diǎn)的超導(dǎo)序參量之后,可以進(jìn)一步計算格點(diǎn)上的粒子數(shù)ni,以及局域磁矩mi,由于自旋磁矩和自旋角動量成正比,可采用自旋角動量z方向平均值Sz表示局域磁矩:

最后,可以得出格點(diǎn)i處的局域電子態(tài)密度ρi(ω)的表達(dá)式:

在下文計算結(jié)果展示中,取最近鄰格點(diǎn)的躍遷常數(shù)為能量的單位,即tijt1(i和j為最近鄰格點(diǎn)).在自洽計算中,配對勢V的大小決定了超導(dǎo)能隙的大小,兩者是單調(diào)遞增的關(guān)系.通常來說,超導(dǎo)能隙大小不改變雜質(zhì)效應(yīng)的定性行為,但是超導(dǎo)能隙越小,Γ就需要越小,這樣才能使得能隙內(nèi)的特征被更好的展示.但是Γ太小,會使得LDOS 曲線急劇振蕩,所以,通常理論計算會取一個相對大的配對勢,這樣Γ也可以取得較大,使得曲線平滑且能隙內(nèi)的特征更加明顯[17],本文取V2.15和Γ0.01.化學(xué)勢取值決定了電子濃度的大小,由于實(shí)驗(yàn)中運(yùn)用鄰近效應(yīng)在石墨烯中實(shí)現(xiàn)超導(dǎo)電性[25],可以預(yù)計摻雜濃度較小,這里也考慮低摻雜的情況,選取化學(xué)勢μ0.4.在計算局域電子態(tài)密度的時候,采用 10×10 的超原胞.我們已經(jīng)通過數(shù)值計算進(jìn)行仔細(xì)驗(yàn)證,當(dāng)參數(shù)在實(shí)驗(yàn)允許的范圍發(fā)生合理的變化時,結(jié)果定性的行為不發(fā)生變化.

3 計算結(jié)果和討論

本文重點(diǎn)討論石墨烯材料在s 波超導(dǎo)態(tài)下的磁性雜質(zhì)效應(yīng),首先根據(jù)(7)式的超導(dǎo)序參量的自洽方程,考慮同一個格點(diǎn)上存在有效吸引勢V,在Js0.6時,自洽求解得到超導(dǎo)序參量的空間分布.結(jié)果展示在圖1,其中,序參量的大小用格點(diǎn)的顏色表示,藍(lán)色點(diǎn)是雜質(zhì)所在位置.

圖1 根據(jù)(7)式自洽計算得到的s 波超導(dǎo)序參量的空間分布Fig.1.Spatial distribution of the superconducing order parameter based on the self-consistent calculation [Eq.(7)].

如圖1 所示,在雜質(zhì)點(diǎn)附近,超導(dǎo)序參量在一定程度上被壓制.序參量在雜質(zhì)點(diǎn)處達(dá)到最小值,在這里,雜質(zhì)對超導(dǎo)序的壓制,主要是由于局域磁矩的影響.通常,超導(dǎo)序和磁性總是互相競爭的關(guān)系,局域磁矩的存在一定會壓制超導(dǎo)電性.但另一方面,根據(jù)自洽結(jié)果可以看出,雜質(zhì)對超導(dǎo)序的影響范圍并不大,當(dāng)格點(diǎn)遠(yuǎn)離雜質(zhì)點(diǎn)時,序參量慢慢增加,當(dāng)格點(diǎn)距雜質(zhì)點(diǎn)超過兩個晶格常數(shù)的距離之后,序參量大小恢復(fù)為均勻值.因此,可以合理地預(yù)期,不需要太大的格點(diǎn)系統(tǒng)就可以得到比較準(zhǔn)確的結(jié)果.本文通過數(shù)值驗(yàn)證了這一點(diǎn),在考慮的原胞數(shù)從 6×6 慢慢增加到 20×20 之后,得到的結(jié)果并沒有明顯差別.

我們進(jìn)一步研究雜質(zhì)對粒子數(shù)以及局域磁矩的影響,根據(jù)(8)式和(9)式,計算了平均粒子數(shù)和局域磁矩在實(shí)空間的分布,計算結(jié)果在圖2 展示.對于粒子數(shù)和雜質(zhì)的關(guān)系,如圖2(a)所示,雜質(zhì)的存在對粒子數(shù)影響很小,整個空間粒子數(shù)分布接近均勻(均在1.04—1.05 之間).這是因?yàn)樵谟嬎阒袃H僅考慮了雜質(zhì)帶來的磁效應(yīng),忽略了雜質(zhì)的非磁散射項(xiàng).另一方面,從圖2(b)可以看出,在雜質(zhì)點(diǎn)上,有明顯的局域磁矩存在,在雜質(zhì)最近鄰點(diǎn),局域磁矩急劇減小.在距離更遠(yuǎn)的地方,局域磁矩消失.眾所周知,超導(dǎo)體中局域磁矩的存在可能會導(dǎo)致YSR 態(tài)的出現(xiàn)[20-22].但是目前根據(jù)局域磁矩在空間的分布,我們可以預(yù)期,如果單個磁性雜質(zhì)確實(shí)可以誘導(dǎo)出YSR態(tài),則僅僅在雜質(zhì)點(diǎn)以及雜質(zhì)的最近鄰點(diǎn)可以看到明顯的YSR 共振峰.

圖2 (a) 平均粒子數(shù) ni 的空間分布;(b) 局域磁矩 mi 的空間分布Fig.2.(a) Spatial distribution of the on-site particle number ni ;(b) spatial distribution of the local magnetic moment mi.

我們展示磁性雜質(zhì)附近局域電子態(tài)密度的計算結(jié)果.首先看s 波配對的情況,圖3(a),(b)分別展示了雜質(zhì)點(diǎn)以及雜質(zhì)最近鄰格點(diǎn)處局域電子態(tài)密度和能量之間的關(guān)系.在雜質(zhì)點(diǎn)處,如圖3(a)所示,隨著雜質(zhì)項(xiàng)的引入,當(dāng)Js0.6時,在能隙內(nèi),出現(xiàn)了額外的共振峰,隨著Js變大,共振峰往費(fèi)米能處移動,在Js2時,共振峰出現(xiàn)在非常接近費(fèi)米能的低能位置.此外,研究結(jié)果顯示,共振峰總是成對出現(xiàn)的,并且出現(xiàn)的能量始終是正負(fù)對稱的,這是起源于超導(dǎo)體的電子空穴對稱性.另一方面,共振峰的強(qiáng)度是正負(fù)不對稱的.

圖3 s 波配對情況下磁性雜質(zhì)附近的局域電子態(tài)密度的計算結(jié)果(a) 雜質(zhì)點(diǎn)位置的局域電子態(tài)密度;(b) 雜質(zhì)最近鄰格點(diǎn)上的局域電子態(tài)密度Fig.3.Numerical results of the local density of states near the magnetic impurity site for the s-wave graphene based superconductor:(a) The local density of states at the impurity site;(b) the local density of states at the nearest neighbor site of the impurity.

在雜質(zhì)的近鄰格點(diǎn),如圖3(b)所示,和雜質(zhì)點(diǎn)的局域電子態(tài)密度類似,當(dāng)Js0時,出現(xiàn)了明顯的能隙內(nèi)的共振峰.和雜質(zhì)點(diǎn)上的計算結(jié)果相比,共振峰的位置沒有發(fā)生變化,但是,共振峰的強(qiáng)度明顯減小.通過數(shù)值驗(yàn)證了在距離雜質(zhì)更遠(yuǎn)的格點(diǎn),共振峰幾乎消失,這一結(jié)果也與圖2(b)所展示的局域磁矩的計算結(jié)果一致.以上共振峰的性質(zhì)符合YSR 態(tài)的特性[20-22].最近,實(shí)驗(yàn)上在石墨烯超導(dǎo)材料的晶界附近觀測到了YSR 態(tài)的特征[25],實(shí)驗(yàn)結(jié)果顯示:共振峰的強(qiáng)度具有正負(fù)不對稱的特性,且共振峰的位置依賴于磁交換作用J的大小,圖3 中展示的理論計算結(jié)果和實(shí)驗(yàn)結(jié)果定性一致.

之前,在T-矩陣的基礎(chǔ)上,針對石墨烯超導(dǎo)材料的磁性和非磁性雜質(zhì)效應(yīng)有過系統(tǒng)的理論研究.有必要將計算結(jié)果與T 矩陣的結(jié)果進(jìn)行定性的比較.對于磁性雜質(zhì),基于T 矩陣的理論計算顯示,在磁性雜質(zhì)勢不是足夠強(qiáng)時,不存在能隙內(nèi)雜質(zhì)態(tài),能隙內(nèi)的雜質(zhì)態(tài)僅僅在雜質(zhì)勢超過能帶寬度W(石墨烯的能帶寬度約為6),雜質(zhì)態(tài)才會出現(xiàn),并且雜質(zhì)態(tài)的位置和雜質(zhì)勢大小密切相關(guān).在本文計算中,在雜質(zhì)勢J=0.6 的時候,雜質(zhì)態(tài)已經(jīng)出現(xiàn),顯然,基于BdG 方程方法得到的雜質(zhì)效應(yīng)要顯著得多.由于BdG 方程是全空間的自洽計算,充分考慮了雜質(zhì)對序參量的影響,所以分析認(rèn)為,BdG 方程的計算結(jié)果更加接近于實(shí)際情況.

進(jìn)一步研究d+id 和p+ip 配對對稱性情況下的磁性雜質(zhì)效應(yīng),考慮最近鄰格點(diǎn)之間存在有效吸引勢V,根據(jù)(8)式自洽計算超導(dǎo)配對序參量,在自洽計算基礎(chǔ)上進(jìn)一步根據(jù)(11)式計算局域電子態(tài)密度.圖4(a)和圖4(b)分別展示了d+id配對時,雜質(zhì)點(diǎn)上和雜質(zhì)近鄰格點(diǎn)的局域電子態(tài)密度的計算結(jié)果,圖4(c)和圖4(d)是相應(yīng)的p+ip 配對對稱性時的計算結(jié)果.如圖所示,對于這兩種配對對稱性,始終沒有YSR 態(tài)的出現(xiàn).本文結(jié)果表明,對于單層石墨烯超導(dǎo)體,僅僅在s 波超導(dǎo)態(tài)中存在YSR態(tài),這一方面解釋了最近的實(shí)驗(yàn)結(jié)果[25],另一方面,也明確了該實(shí)驗(yàn)中石墨烯材料中由于臨近效應(yīng)導(dǎo)致的有效配對是s 波對稱.

圖4 d+id 波和p+ip 波配對情況下磁性雜質(zhì)附近的局域電子態(tài)密度的計算結(jié)果(a) d+id 配對雜質(zhì)點(diǎn)位置的局域電子態(tài)密度;(b) d+id 配對雜質(zhì)最近鄰格點(diǎn)上的局域電子態(tài)密度;(c) p+ip 配對雜質(zhì)點(diǎn)位置的局域電子態(tài)密度;(d) p+ip 配對雜質(zhì)最近鄰格點(diǎn)上的局域電子態(tài)密度Fig.4.Numerical results of the local density of states near the magnetic impurity site for the d+id-wave and p+ip-wave graphene based superconductor:(a) The local density of states at the impurity site for the d+id pairing symmetry;(b) the local density of states at the nearest neighbor site of the impurity for the d+id pairing symmetry;(c) the local density of states at the impurity site for the p+ip pairing symmetry;(d) the local density of states at the nearest neighbor site of the impurity for the p+ip pairing symmetry.

我們有必要討論石墨烯超導(dǎo)中磁性雜質(zhì)效應(yīng)和非磁性雜質(zhì)效應(yīng)的不同.本文主要討論的是低摻雜濃度的石墨烯超導(dǎo)體,在這一摻雜區(qū)域下,對于非磁性雜質(zhì),根據(jù)之前T 矩陣的理論計算結(jié)果[17],當(dāng)配對對稱性為s 波和p+ip 波時,均不存在能隙內(nèi)的雜質(zhì)態(tài),當(dāng)配對對稱性為d+id 配對時,非磁性雜質(zhì)會誘導(dǎo)出能隙內(nèi)的共振態(tài),但是其性質(zhì)和磁性雜質(zhì)誘導(dǎo)的YSR 態(tài)具有明顯區(qū)別.非磁性雜質(zhì)誘導(dǎo)出來的共振態(tài),共振峰的位置相對比較穩(wěn)定,隨著雜質(zhì)勢的變化僅僅有輕微的移動.

雜質(zhì)態(tài)產(chǎn)生的位置和原因,通常可以根據(jù)T矩陣的方法來分析,對于超導(dǎo)體,由于能隙的存在,通常T 矩陣分母的虛部在能隙內(nèi)會很小,如果在低能量時T 矩陣分母實(shí)部也穿過零點(diǎn),就會出現(xiàn)能隙內(nèi)的共振態(tài).在過去基于T 矩陣方法對雜質(zhì)效應(yīng)的研究中,已經(jīng)廣泛地通過研究T 矩陣分母來討論雜質(zhì)態(tài)產(chǎn)生的機(jī)制[16,17].但是,由于本文是基于BdG 方程的方法研究雜質(zhì)效應(yīng),目前無法進(jìn)一步給出雜質(zhì)態(tài)產(chǎn)生,以及s 波和其他兩種配對對稱性磁性雜質(zhì)效應(yīng)計算結(jié)果不同的物理原因,背后的物理機(jī)制需要進(jìn)一步研究.

4 結(jié)論

本文在實(shí)空間BdG 方程的基礎(chǔ)上,研究了石墨烯超導(dǎo)體的磁性雜質(zhì)效應(yīng).考慮磁性雜質(zhì)破壞了系統(tǒng)的平移對稱性,在平均場的基礎(chǔ)上自洽計算了超導(dǎo)序參量.在此基礎(chǔ)研究了磁性雜質(zhì)附近的局域電子態(tài)密度計算結(jié)果表明,在超導(dǎo)配對是傳統(tǒng)的s 波配對時,磁性雜質(zhì)附近出現(xiàn)了YSR 態(tài).但對于p+ip 配對和d+id 配對,則沒有出現(xiàn)任何能隙內(nèi)的共振態(tài).

針對s 波超導(dǎo)體的理論計算結(jié)果和近年來在石墨烯-傳統(tǒng)超導(dǎo)體組成的異質(zhì)結(jié)系統(tǒng)中發(fā)現(xiàn)的YSR 態(tài)的實(shí)驗(yàn)結(jié)果定性一致.一方面解釋了實(shí)驗(yàn)現(xiàn)象,另一方面促進(jìn)了我們對石墨烯類超導(dǎo)體的理解.同時本工作仍然存在一些不足,其中最主要的不足是在BdG 方程的框架下,無法對YSR 態(tài)的成因以及產(chǎn)生條件做進(jìn)一步的理論分析.這是BdG方法研究雜質(zhì)效應(yīng)的缺點(diǎn).我們預(yù)期,如果從T 矩陣的角度研究磁性雜質(zhì)效應(yīng),能夠解決這一不足,給出能隙內(nèi)束縛態(tài)的成因,并討論其產(chǎn)生條件,這也是我們下一步研究工作的方向.

猜你喜歡
能隙超導(dǎo)體格點(diǎn)
帶有超二次位勢無限格點(diǎn)上的基態(tài)行波解
一種電離層TEC格點(diǎn)預(yù)測模型
高效硫硒化銻薄膜太陽電池中的漸變能隙結(jié)構(gòu)*
Bogoliubov-Tolmachev-Shirkov模型臨界溫度和能隙解的數(shù)值方法
懸空
帶可加噪聲的非自治隨機(jī)Boussinesq格點(diǎn)方程的隨機(jī)吸引子
格點(diǎn)和面積
三甲基硅雙苯乙炔取代噻咯的合成及聚集態(tài)誘導(dǎo)發(fā)光
Hubbard模型在銅氧化物高溫超導(dǎo)體中的應(yīng)用
河南科技(2015年15期)2015-03-11 16:25:49
自旋三重態(tài)Sr2RuO4超導(dǎo)能隙的p波對稱性
福海县| 崇左市| 秦皇岛市| 蒙自县| 嘉峪关市| 东源县| 收藏| 忻城县| 库尔勒市| 萝北县| 南丹县| 澜沧| 云林县| 乡宁县| 金乡县| 镇雄县| 靖州| 固阳县| 青河县| 永登县| 绥阳县| 崇州市| 确山县| 西丰县| 清原| 聊城市| 建瓯市| 松江区| 定西市| 缙云县| 马尔康县| 临沭县| 武山县| 锦州市| 镇远县| 元氏县| 闻喜县| 南通市| 泰州市| 秦皇岛市| 景东|