朱楨
【摘? 要】數(shù)學(xué)表達(dá)結(jié)構(gòu)化是使思維和表達(dá)呈現(xiàn)一種系統(tǒng)和結(jié)構(gòu)的活動(dòng),學(xué)生結(jié)構(gòu)化的表達(dá)對提升學(xué)生的數(shù)學(xué)素養(yǎng)有著重要的作用,還有利于轉(zhuǎn)變教師的教學(xué)觀念,促進(jìn)學(xué)生的深度學(xué)習(xí)。本文從“做數(shù)學(xué)”“畫數(shù)學(xué)”和“說數(shù)學(xué)”三個(gè)方面引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)結(jié)構(gòu)化表達(dá),從而提升學(xué)生數(shù)學(xué)結(jié)構(gòu)化表達(dá)的能力。
【關(guān)鍵詞】數(shù)學(xué);表達(dá);結(jié)構(gòu)化
數(shù)學(xué)表達(dá)是指學(xué)生在數(shù)學(xué)學(xué)習(xí)過程中產(chǎn)生的認(rèn)識、思考問題的過程、解決問題的思路、方法等都通過不同的表征形式進(jìn)行傳遞,課堂教學(xué)中,教師需要有意識地培養(yǎng)學(xué)生的數(shù)學(xué)表達(dá)能力,讓學(xué)生通過結(jié)構(gòu)化的表達(dá),用多種方式清晰、準(zhǔn)確、連貫地向他人表達(dá)自己的觀點(diǎn)。
一、以“做”為橋:支撐結(jié)構(gòu)化表達(dá)
數(shù)學(xué)概念的歸納、規(guī)律的總結(jié)、模型的建構(gòu)都需要學(xué)生經(jīng)歷“做”的過程,然后借助數(shù)學(xué)語言的表達(dá)實(shí)現(xiàn)對數(shù)學(xué)知識的理解。因此,在教學(xué)中教師要?jiǎng)?chuàng)設(shè)條件讓學(xué)生經(jīng)歷數(shù)學(xué)知識的產(chǎn)生過程,讓學(xué)生在“做”中感知,在“做”中感悟,最終學(xué)會(huì)用結(jié)構(gòu)化表達(dá)。
例如:教授《筆算兩位數(shù)加兩位數(shù)進(jìn)位加法》的
過程
師:24+15怎樣算呢?請同桌兩人交流算法,可以借助小棒擺一擺,全班交流算法,根據(jù)學(xué)生的口述用小棒進(jìn)行演示。
追問:小棒怎樣拿?合起來的時(shí)候先把哪一部分合起來,再合哪一部分?個(gè)位合起來滿十怎么辦?
師:你能根據(jù)擺小棒的過程敘述口算過程嗎?
師:除了用口算的方法還可以怎樣算?
師:你會(huì)嘗試筆算嗎?
交流并追問:筆算時(shí)先寫什么,再寫什么?計(jì)算是從哪一位算起?1為什么寫在個(gè)位,十位上的4是怎樣得來的?
……
課堂教學(xué)中,教師首先讓學(xué)生利用小棒計(jì)算24+15,同時(shí)在匯報(bào)的過程中通過追問的形式讓學(xué)生借助小棒明確為什么這樣算。接著,教師又提出要求“你能根據(jù)擺小棒的過程口述口算的過程嗎?”學(xué)生借助小棒的操作,用規(guī)范的語言表達(dá)口算過程。最后教師又提出要求讓學(xué)生進(jìn)行筆算,學(xué)生在“擺”“說”“算的過程中建立了小棒、口算和筆算之間的關(guān)系,更好地理解兩位數(shù)加兩位數(shù)進(jìn)位加法的算理,掌握了算法,這樣“做”數(shù)學(xué)的過程,既讓學(xué)生掌握了數(shù)學(xué)知識,也為學(xué)生的結(jié)構(gòu)化表達(dá)提供了支撐。
二、以“畫”為基:深化結(jié)構(gòu)化表達(dá)
畫畫是學(xué)生最重要、最喜愛、最常用的表達(dá)方式,在數(shù)學(xué)學(xué)習(xí)中可以用“畫數(shù)學(xué)”的方式,將抽象的數(shù)學(xué)概念、數(shù)學(xué)規(guī)律、較復(fù)雜的數(shù)量關(guān)系等通過形象的圖示、表格等看得見的形式表示出來,從而對數(shù)學(xué)學(xué)習(xí)對象有比較形象、直觀、整體的認(rèn)識和理解,深化學(xué)生的結(jié)構(gòu)化表達(dá)。
(一)畫概念圖:表達(dá)概念的理解
概念圖,是指利用圖示方法表示數(shù)學(xué)知識的本質(zhì)屬性,畫概念圖便于學(xué)生理解表征概念,使抽象的概念更加形象,更加可視化,便于學(xué)生思考、交流和表達(dá)。
例如:學(xué)習(xí)了《分?jǐn)?shù)的初步認(rèn)識》之后,讓學(xué)生用分?jǐn)?shù)表示1/4。
……
在畫出“各種各樣”的1/4之后,學(xué)生更加深刻地感受到不管是一個(gè)圖形、一個(gè)物體還是一個(gè)計(jì)量單位,只要把它平均分成四份,每份就是它的1/4,學(xué)生在“畫”數(shù)學(xué)的過程中把抽象的語義表征轉(zhuǎn)化成了形象的圖像表征,深度理解了分?jǐn)?shù)概念的本質(zhì)。
(二)畫示意圖:表達(dá)解題的思路
示意圖,主要是表示實(shí)際問題中的數(shù)量關(guān)系,畫示意圖的過程,就是讓學(xué)生把抽象的文字轉(zhuǎn)化成直觀圖示,從而幫助學(xué)生分析題意,解決問題。
例如:《解決問題的策略(畫線段圖)》
教師出示例題:小寧和小春共有72枚郵票,小春比小寧多12枚。兩人各有多少枚郵票?
提出要求:你能畫線段圖來表示題意嗎?
學(xué)生畫圖:
師:你能用完整的語言表達(dá)圖意嗎?
生:從圖中我們知道:小寧和小春共有72枚郵票,小春比小寧多12枚,兩人各有多少枚郵票?
師:根據(jù)線段圖,你能說說怎樣求兩人各有的郵票嗎?
生:我們可以先求小寧的枚數(shù),只要把一共的郵票減去多的12枚,然后再除以2。
生:我們也可以先求小春的郵票,只要把一共的郵票加上12枚郵票,然后再除以2。
……
在教學(xué)片段中,教師先讓學(xué)生畫圖表示圖意,進(jìn)行從文字到示意圖的精準(zhǔn)表達(dá),根據(jù)直觀的示意圖更加便于學(xué)生分析數(shù)量關(guān)系,厘清解決問題的思路。在這樣的過程中,學(xué)生明確解決問題的一般思路:理解題意—畫圖(文字表達(dá)轉(zhuǎn)化圖示表達(dá))—分析數(shù)量關(guān)系(圖示表達(dá)轉(zhuǎn)化成文字表達(dá))—列式解答—檢驗(yàn)
反思。
(三)畫思維導(dǎo)圖:表達(dá)知識的聯(lián)系
思維導(dǎo)圖,又稱腦圖,是一種利用圖像式思考輔助的工具。學(xué)生通過思維導(dǎo)圖對知識點(diǎn)進(jìn)行梳理,在加深對知識的理解與記憶的同時(shí),培養(yǎng)創(chuàng)造性思維能力。例如,在單元復(fù)習(xí)之前讓學(xué)生繪制思維導(dǎo)圖對單元知識進(jìn)行梳理和復(fù)習(xí),幫助學(xué)生厘清知識之間的聯(lián)系,在頭腦中形成知識網(wǎng)絡(luò),有助于學(xué)生對所學(xué)知識形成整體的認(rèn)識。
三、以“說”為路:完善結(jié)構(gòu)化表達(dá)
說數(shù)學(xué),就是引導(dǎo)學(xué)生用數(shù)學(xué)語言表達(dá)數(shù)學(xué)的思考過程、解題方法、學(xué)習(xí)感受等。說數(shù)學(xué)是學(xué)生數(shù)學(xué)學(xué)習(xí)的重要表達(dá)方式,能幫助學(xué)生厘清數(shù)學(xué)思考和表達(dá)的路徑。教師應(yīng)注重讓學(xué)生說數(shù)學(xué),使學(xué)生真正理解和掌握所學(xué)知識,完善學(xué)生的結(jié)構(gòu)化表達(dá)。
(一)數(shù)學(xué)閱讀,讓學(xué)生能說
數(shù)學(xué)語言具有抽象性、精確性和簡潔性的特點(diǎn),每個(gè)數(shù)學(xué)概念、符號、術(shù)語都有其精確的含義,要培養(yǎng)學(xué)生的語言表達(dá)能力,首先要讓學(xué)生理解數(shù)學(xué)語言,所以,在教學(xué)中,教師要鼓勵(lì)學(xué)生進(jìn)行數(shù)學(xué)閱讀,讀數(shù)學(xué)課本上的公式、定理、法則,讀課外的數(shù)學(xué)繪本、數(shù)學(xué)故事、數(shù)學(xué)報(bào)紙等,讓學(xué)生在閱讀中積累數(shù)學(xué)表達(dá)的經(jīng)驗(yàn),為“說數(shù)學(xué)”提供支撐。
(二)教師引導(dǎo),讓學(xué)生會(huì)說
課堂教學(xué)是當(dāng)前學(xué)生獲取知識的主渠道,教師應(yīng)充分利用這塊陣地,通過對學(xué)生的引導(dǎo)、交流,逐步培養(yǎng)學(xué)生的數(shù)學(xué)交流能力,發(fā)展學(xué)生數(shù)學(xué)語言的表達(dá)能力。
1.提供范式
數(shù)學(xué)學(xué)習(xí)的過程要注重語言表達(dá)的規(guī)范性,因此,教師在教學(xué)過程中可以提供數(shù)學(xué)表達(dá)的模式,讓學(xué)生明確表達(dá)的要求,強(qiáng)化學(xué)生的結(jié)構(gòu)化表達(dá)。
例如:《解決問題的策略——從條件想起時(shí)》
教師出示例題:小猴幫媽媽摘桃,第一天摘了30個(gè),以后每天都比前一天多摘5個(gè)桃。小猴第三天摘了多少個(gè)桃?第五天呢?
師:怎樣求第三天的桃子數(shù)?
生:第一天的20個(gè)加上5個(gè)桃子求出第二天的桃子數(shù),再把第二天的桃子數(shù)加上5個(gè)求出第三天的桃子數(shù)。
師:我們根據(jù)第一天摘了30個(gè)桃子和第二天比第一天多摘5個(gè),求出第二天摘的桃子數(shù),再根據(jù)第二天摘的桃子數(shù)和第三天比第二天多摘5個(gè),求出第三天的桃子數(shù)。
板書:根據(jù)(? ? ?)和(? ? ?)求出(? ? ?),再根據(jù)(? ? ?)和(? ? ?)求出(? ? ?)。
師:你能像這樣說一說怎樣求第三天摘的桃子數(shù)嗎?學(xué)生相互說一說。
師:怎樣求第五天摘的桃子數(shù)呢,你能也這樣說一說嗎?
……
課堂教學(xué)中,教師為學(xué)生表達(dá)思考過程提供了模式,學(xué)生通過這樣的模式不僅能規(guī)范地表達(dá),同時(shí)厘清了解決問題的思路。教師除了可以為學(xué)生提供解決具體的實(shí)際問題的模式,在平時(shí)的課堂教學(xué)中,教師還可以讓學(xué)生用“我是這樣想的……”“我不同意他的觀點(diǎn)……”“我還有補(bǔ)充……”“我們小組的方法是……”類似的語言完整地說出自己的思考過程。
2.適時(shí)引導(dǎo)
學(xué)生會(huì)說、能說離不開教師的引導(dǎo),教學(xué)中教師要引導(dǎo)學(xué)生先思考,然后再用自己的語言把過程說出來,從而不斷提高學(xué)生“說”的能力。
例如:教授《求比一個(gè)數(shù)多(少)幾的實(shí)際問題》
教師出示例題:“小松鼠和小兔子采蘑菇,小松鼠采了18個(gè),小兔子比小松鼠多采7個(gè),小兔子采了多少個(gè)?”
師:你能說說條件和問題各是什么嗎?
生:條件是“小松鼠采了18個(gè),小兔子比小松鼠多采7個(gè)。”問題是“小兔子采了多少個(gè)?”
師:關(guān)鍵句是什么?
生:小兔子比小松鼠多采7個(gè)。
師:求小兔子采的個(gè)數(shù)用什么方法?你能說說數(shù)量關(guān)系嗎?
生:求小兔子采的個(gè)數(shù)用加法計(jì)算,數(shù)量關(guān)系是松鼠采的個(gè)數(shù)+兔子比松鼠多采的個(gè)數(shù)=松鼠采的
個(gè)數(shù)
師:你能列出算式嗎?
生:18+6=24(個(gè))
師:回顧剛才的過程,你能完整地說一說是怎樣解決這個(gè)問題的嗎?
……
課堂教學(xué)中,教師通過“條件和問題各是什么?”“關(guān)鍵句是什么?”“問題求的是什么,用什么方法計(jì)算?”……這一系列的問題引導(dǎo)學(xué)生對題目進(jìn)行分析。說出數(shù)量關(guān)系,列出算式。最后讓學(xué)生把這一過程進(jìn)行整理并且用語言表述出來。通過教師的引導(dǎo),學(xué)生了解解題程序,掌握解題方法,同時(shí)培養(yǎng)了學(xué)生結(jié)構(gòu)化表達(dá)的能力。
(三)回顧反思,讓學(xué)生善說
回顧反思是課堂教學(xué)的重要組成部分。教師引導(dǎo)學(xué)生對所學(xué)內(nèi)容進(jìn)行回顧反思,用語言表達(dá)學(xué)習(xí)的過程,能提高學(xué)生的綜合概括能力,課堂教學(xué)中,教師只需正確引導(dǎo),堅(jiān)持訓(xùn)練學(xué)生,其概括能力就會(huì)不段
提升。
通過這樣的回顧反思,可以加深學(xué)生對知識的理解,同時(shí)讓學(xué)生掌握了一定的學(xué)習(xí)方法。而且,經(jīng)常進(jìn)行有目的的回顧總結(jié),可以不斷完善學(xué)生結(jié)構(gòu)化表達(dá)的能力。
四、結(jié)束語
綜上所述,在教學(xué)中教師要為學(xué)生提供各種機(jī)會(huì),讓學(xué)生以各種方式進(jìn)行結(jié)構(gòu)化的表達(dá),同時(shí)在整個(gè)過程中教師要進(jìn)行及時(shí)的鼓勵(lì)和引導(dǎo),不斷提升學(xué)生結(jié)構(gòu)化表達(dá)的能力。
(基金項(xiàng)目:本文系常州市教育科學(xué)“十四五”立項(xiàng)課題“小學(xué)生數(shù)學(xué)表達(dá)結(jié)構(gòu)化的實(shí)踐研究”的研究成果,課題編號:CJK-L2022095)