劉婷 韓慧子 向磊 趙夢(mèng)涵 俞琦
【摘要】目的探究黃連調(diào)控巨噬細(xì)胞干預(yù)動(dòng)脈粥樣硬化斑塊穩(wěn)定性的潛在機(jī)制。方法對(duì)GEO數(shù)據(jù)庫(kù)中的動(dòng)脈斑塊相關(guān)數(shù)據(jù)集進(jìn)行差異分析得到巨噬細(xì)胞干預(yù)動(dòng)脈粥樣硬化斑塊相關(guān)基因。從TCMSP數(shù)據(jù)庫(kù)獲取黃連的有效成分和潛在靶點(diǎn)。對(duì)兩者取交集后找出發(fā)揮作用的化學(xué)成分和潛在靶點(diǎn)。對(duì)潛在靶點(diǎn)進(jìn)行蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)、基因本體(GO)、京都基因與基因組百科全書(KEGG)分析,探究黃連調(diào)控巨噬細(xì)胞干預(yù)動(dòng)脈粥樣硬化斑塊穩(wěn)定性的作用機(jī)制。結(jié)果穩(wěn)定斑塊組和破裂斑塊組差異分析共找到892個(gè)差異基因。通過(guò)TCMSP共找出黃連中的11個(gè)化學(xué)成分,251個(gè)靶點(diǎn)。兩者取交集后得到16個(gè)黃連調(diào)控巨噬細(xì)胞的潛在靶點(diǎn)。PPI結(jié)果顯示,DPP4、TNFAIP6、IL6ST、POR、RUNX1T1、HMOX1、CAV1等16個(gè)交集基因之間有較強(qiáng)的相互作用關(guān)系,且DPP4、HMOX1、CAV1和VCAM1處于PPI網(wǎng)絡(luò)的樞紐位置。GO結(jié)果表明,生物學(xué)過(guò)程(BP)與對(duì)脂多糖的反應(yīng)、對(duì)細(xì)菌來(lái)源分子的反應(yīng)、對(duì)T細(xì)胞激活的正向調(diào)節(jié)等有關(guān)。細(xì)胞組成(CC)與膜筏、膜微區(qū)、膜區(qū)等細(xì)胞器有關(guān)。分子功能(MF)參與肽酶活化劑活性、趨化因子活性等分子功能的調(diào)節(jié)。KEGG結(jié)果與流體剪切應(yīng)力及動(dòng)脈粥樣硬化、NF-kappa B信號(hào)傳導(dǎo)途徑有關(guān)。結(jié)論黃連內(nèi)槲皮素可能通過(guò)調(diào)節(jié)DPP4、HMOX1、CAV1等靶點(diǎn)影響斑塊內(nèi)巨噬細(xì)胞的信號(hào)傳導(dǎo)途徑,進(jìn)而干預(yù)斑塊穩(wěn)定性。
【關(guān)鍵詞】黃連;巨噬細(xì)胞;動(dòng)脈粥樣硬化;斑塊穩(wěn)定性;網(wǎng)絡(luò)藥理學(xué)
中圖分類號(hào):R543.5文獻(xiàn)標(biāo)志碼:ADOI:10.3969/j.issn.1003-1383.2023.08.002
Exploration on the potential mechanism of Coptis chinensis Franch in regulating macrophages
to intervene the stability of atherosclerosis plaque based on network pharmacology
LIU Ting, HAN Huizi, XIANG Lei, ZHAO Menghan, YU Qi
(School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China)
【Abstract】ObjectiveTo investigate the potential mechanisms of Coptis chinensis Franch in regulating macrophages to intervene the stability of atherosclerosis plaque. MethodsDifferential analysis of arterial plaque related datasets from GEO database was performed to obtain macrophage intervention in atherosclerotic plaque related genes. The active ingredients and potential targets of Coptis chinensis Franch were obtained from TCMSP database, and the intersection of the two was taken to identify the chemotactic components and potential targets that play a role. Protein-protein interactions (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the potential targets to investigate the mechanism of action of Coptis chinensis Franch in regulating macrophages to intervene the stability of atherosclerosis plaque. ResultsA total of 892 differential genes were found in the differential analysis of the stable and ruptured plaque groups. 11 chemical components and 251 targets in Coptis chinensis Franch were identified by TCMSP, and 16 potential targets of Coptis chinensis Franch were obtained after taking the intersection of the two. PPI results showed that there were strong interactions between 16 intersecting genes, including DPP4, TNFAIP6, IL6ST, POR, RUNX1T1, HMOX1 and CAV1, etc. And DPP4, HMOX1, CAV1 and VCAM1 were at the pivotal position of the PPI network. GO results showed that biological process (BP) was associated with response to lipopolysaccharide, response to molecules of bacterial origin, and positive regulation of T cell activation. Cell composition (CC) was associated with organelles such as membrane rafts, membrane microregions, and membrane zones. Molecular function (MF) was involved in the regulation of molecular functions such as peptidase activator activity and chemokine activity. KEGG results were related to fluid shear stress and signal transduction of atherosclerosis and NF-kappa B signal transduction pathway. ConclusionQuercetin within Coptis chinensis Franch may affect the intraplaque macrophage signaling pathway by regulating DPP4, HMOX1, CAV1 and other targets, and thus intervene plaque stability.
【Key words】Coptis chinensis Franch; macrophages; atherosclerosis; plaque stability; network pharmacology
動(dòng)脈粥樣硬化(atherosclerosis,AS)是一種慢性炎癥性疾病,是心腦血管疾病、外周動(dòng)脈疾病等的病理基礎(chǔ)[1]。巨噬細(xì)胞是調(diào)控炎癥反應(yīng)、調(diào)節(jié)免疫的重要角色,可通過(guò)分泌基質(zhì)金屬蛋白酶,降解斑塊細(xì)胞外基質(zhì)中的膠原纖維,導(dǎo)致AS患者斑塊破裂、出血、血栓形成[2],并釋放大量介質(zhì)和酶,影響動(dòng)脈粥樣硬化患者的預(yù)后[3]。在臨床實(shí)踐中,現(xiàn)有治療手段重在改善臨床癥狀及防止不良事件發(fā)生,多采用介入或使用他汀類藥物降低患者血脂水平[4]。但由于介入手術(shù)價(jià)格較為昂貴,他汀類藥物有較高的毒副作用,因此患者多傾向于中醫(yī)保守治療。中國(guó)傳統(tǒng)醫(yī)學(xué)治療AS有獨(dú)到的見(jiàn)解和優(yōu)勢(shì),中醫(yī)理論將AS歸于“脈痹”“脫疽”“胸痹”等范疇。治療上秦景明、李中梓等眾多醫(yī)家重視火熱之邪所致胸痹而痛,反復(fù)強(qiáng)調(diào)寒涼之品的使用。黃連(Coptis chinensis Franch)是臨床中治療AS的常見(jiàn)配伍藥材,雖在診治過(guò)程中取得了較好的療效,但具體作用機(jī)制不清楚[5]。網(wǎng)絡(luò)藥理學(xué)可基于“藥物-成分-靶基因-疾病”交互作用網(wǎng)絡(luò),系統(tǒng)性觀察藥物及其有效成分對(duì)疾病靶基因的干預(yù)與影響,從而揭示中藥作用于人體的機(jī)理。因此,本文采用網(wǎng)絡(luò)藥理分析方法[6]探索黃連作用于AS患者動(dòng)脈斑塊內(nèi)巨噬細(xì)胞所介導(dǎo)的斑塊破裂的分子機(jī)制。
1材料與方法
1.1活性成分的藥代動(dòng)力學(xué)評(píng)價(jià)通過(guò)中藥系統(tǒng)藥理學(xué)分析平臺(tái)TCMSP(https://www.tcmsp-e.com/)檢索并收集黃連中各個(gè)藥物所含的化學(xué)成分,根據(jù)毒藥物動(dòng)力學(xué)(ADME)原理,以TCMSP最新篩選標(biāo)準(zhǔn):口服利用度(OB)≥30%,類藥性(DL)≥0.18為篩選條件,篩選組方中所含有的有效化學(xué)成分[7]?;赥CMSP將篩選得到的有效成分進(jìn)行靶點(diǎn)蛋白獲取,去重后借助Uniprot數(shù)據(jù)庫(kù)(https://www.uniprot.org/)對(duì)靶點(diǎn)蛋白標(biāo)準(zhǔn)化處理。
1.2巨噬細(xì)胞在不同狀態(tài)斑塊中的基因表達(dá)差異GEO數(shù)據(jù)庫(kù)(http://www.ncbi.nlm.nih.gov/geo/)的GSE41571數(shù)據(jù)集含有5個(gè)穩(wěn)定斑塊組織和6個(gè)破裂斑塊組織內(nèi)巨噬細(xì)胞的表達(dá)譜數(shù)據(jù)。通過(guò)“l(fā)imma”包,找出兩組樣本的差異基因。并繪制火山圖和熱圖。對(duì)藥物靶點(diǎn)及差異基因取交集找出黃連影響巨噬細(xì)胞介導(dǎo)斑塊穩(wěn)定性的潛在靶點(diǎn)。
1.3繪制成分-靶點(diǎn)網(wǎng)絡(luò)圖將交集基因與所對(duì)應(yīng)的化學(xué)成分導(dǎo)入Cytoscape 3.8.1進(jìn)行可視化。
1.4蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò)通過(guò)STRING數(shù)據(jù)庫(kù)(https://www.string-db.org/)對(duì)交集基因進(jìn)行蛋白互作分析,找出不同蛋白間的相互作用。
1.5基因本體(gene ontology,GO)和京都基因與基因組百科全書(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析黃連的潛在作用靶點(diǎn)通過(guò)“org.Hs.eg.db”包進(jìn)行ID轉(zhuǎn)換后,使用“clusterProfiler”包進(jìn)行GO分析與KEGG富集分析。其中GO分類富集分析包括生物學(xué)過(guò)程(biological process,BP)、分子功能(molecular function,MF)、細(xì)胞組成(cellular component,CC),選取BP、MF、CC排名前20的條目進(jìn)行可視化,KEGG通路富集根據(jù)富集在通路上基因數(shù)目以及與疾病的相關(guān)性,用“ggplot2”包進(jìn)行可視化。
2結(jié)果
2.1黃連成分和靶點(diǎn)的提取通過(guò)TCMSP共找出黃連中的11個(gè)化學(xué)成分,251個(gè)靶點(diǎn)。見(jiàn)表1。
2.2GEO芯片差異分析通過(guò)“l(fā)imma”包對(duì)穩(wěn)定斑塊組和破裂斑塊組差異分析,我們共找到892個(gè)差異基因。其中,上調(diào)基因376個(gè),下調(diào)基因516個(gè)。分別提取上調(diào)基因和下調(diào)基因的前20個(gè)基因繪制熱圖(見(jiàn)圖1A),對(duì)所有差異基因繪制火山圖(見(jiàn)圖1B)。
2.3韋恩圖的繪制通過(guò)對(duì)藥物靶點(diǎn)和巨噬細(xì)胞在不同斑塊間的差異基因去交集后,得到16個(gè)黃連調(diào)控巨噬細(xì)胞的潛在靶點(diǎn)(見(jiàn)圖2)。
2.4繪制成分-靶點(diǎn)網(wǎng)絡(luò)圖繪制成分-靶點(diǎn)網(wǎng)絡(luò)圖后發(fā)現(xiàn),黃連治療巨噬細(xì)胞的潛在成分主要為槲皮素。槲皮素可通過(guò)調(diào)節(jié)DPP4、TNFAIP6、IL6ST、POR、RUNX1T1、HMOX1、CAV1、GJA1、VCAM1、CXCL8、ABCG2、GSTP1、COL3A1、CXCL2、CTSD、PCOLCE影響AS患者體內(nèi)斑塊的穩(wěn)定性(見(jiàn)圖3)。
2.5PPI繪制PPI結(jié)果顯示,DPP4、TNFAIP6、IL6ST、POR、RUNX1T1、HMOX1、CAV1、GJA1、VCAM1、CXCL8、ABCG2、GSTP1、COL3A1、CXCL2、CTSD、PCOLCE之間有較強(qiáng)的相互作用關(guān)系,且DPP4、HMOX1、CAV1和VCAM1處于PPI網(wǎng)絡(luò)的樞紐位置,表明這些基因可能是影響動(dòng)脈粥樣硬化斑塊穩(wěn)定性的核心(見(jiàn)圖4)。
2.6富集分析GO結(jié)果表明,BP與對(duì)脂多糖的反應(yīng)、對(duì)細(xì)菌來(lái)源分子的反應(yīng)、對(duì)T細(xì)胞激活的正向調(diào)節(jié)、對(duì)白細(xì)胞-細(xì)胞黏附的正向調(diào)節(jié)、對(duì)營(yíng)養(yǎng)物質(zhì)的反應(yīng)、氣體穩(wěn)態(tài)、T細(xì)胞激活、縫隙連接組裝、白細(xì)胞遷移、細(xì)胞-細(xì)胞黏附的積極調(diào)節(jié)等生物學(xué)過(guò)程有關(guān)(見(jiàn)圖5A)。CC與膜筏、膜微區(qū)、膜區(qū)、三級(jí)顆粒管腔、小窩、早期內(nèi)體、細(xì)胞頂端、質(zhì)膜筏等細(xì)胞器有關(guān)(見(jiàn)圖5B)。MF參與肽酶活化劑活性、趨化因子活性等分子功能的調(diào)節(jié)(見(jiàn)圖5C)。KEGG結(jié)果與流體剪切應(yīng)力及動(dòng)脈粥樣硬化、病毒蛋白與細(xì)胞因子和細(xì)胞因子受體的相互作用、糖尿病并發(fā)癥中的AGE-RAGE信號(hào)通路、阿米巴病、NF-kappa B信號(hào)傳導(dǎo)途徑、瘧疾、卡波西肉瘤相關(guān)的皰疹病毒感染、軍團(tuán)菌病、脂質(zhì)和動(dòng)脈硬化、幽門螺桿菌感染中的上皮細(xì)胞信號(hào)傳導(dǎo)有關(guān)(見(jiàn)圖5D)。
3討論
斑塊由免疫細(xì)胞、間充質(zhì)細(xì)胞、脂質(zhì)和細(xì)胞外基質(zhì)組成,隨著病情的發(fā)展,斑塊會(huì)逐漸破壞血管的內(nèi)部彈性層、中膜、外部彈性層和外膜[8]。巨噬細(xì)胞在AS斑塊穩(wěn)定性方面有決定性作用[9]。有研究表明,巨噬細(xì)胞是動(dòng)脈粥樣硬化斑塊中炎癥和代謝信號(hào)的關(guān)鍵整合者,它可通過(guò)巨胞飲作用、吞噬作用和清道夫受體介導(dǎo)脂蛋白的攝取和轉(zhuǎn)運(yùn),其內(nèi)部的脂質(zhì)含量通過(guò)增加Toll樣受體對(duì)其配體的敏感性和激活NLRP3炎性體來(lái)促進(jìn)先天免疫反應(yīng)和炎癥[10]。而易損斑塊具有脆弱的薄纖維帽、擴(kuò)張的脂質(zhì)核心、斑塊內(nèi)出血、免疫激活、促炎介質(zhì)(細(xì)胞因子、趨化因子、金屬蛋白酶)的產(chǎn)生增加,以及某些巨噬細(xì)胞亞型的強(qiáng)活性等特性[11-13]。因此,巨噬細(xì)胞可通過(guò)多種方式影響斑塊的穩(wěn)定性。
本研究表明,黃連干預(yù)不同狀態(tài)動(dòng)脈斑塊內(nèi)巨噬細(xì)胞的成分為槲皮素(Quercetin)。槲皮素是一種黃酮類化合物,已被證明具有心血管保護(hù)作用和抗動(dòng)脈粥樣硬化作用[15]。槲皮素可通過(guò)抑制活性氧(ROS)產(chǎn)生和激活PI3K/AKT信號(hào)通路來(lái)抑制高果糖喂養(yǎng)的C57BL/6小鼠的動(dòng)脈粥樣硬化斑塊發(fā)展[15],也可明顯改善高脂肪飲食的APOE-/-小鼠的動(dòng)脈粥樣硬化斑塊的面積、脂質(zhì)積累水平,并增加了動(dòng)脈粥樣硬化斑塊中的膠原纖維[16]。此外,槲皮素還可調(diào)節(jié) MST1介導(dǎo)的RAW264.7細(xì)胞自噬,抑制氧化型低密度脂蛋白(ox-LDL)誘導(dǎo)的泡沫細(xì)胞形成[17]。這些證據(jù)表明,槲皮素不僅對(duì)AS的斑塊有改善作用,還對(duì)巨噬細(xì)胞有較好的調(diào)節(jié)作用。
PPI顯示,DPP4、HMOX1、CAV1和VCAM1是槲皮素調(diào)節(jié)斑塊內(nèi)巨噬細(xì)胞的核心基因。其中二肽基肽酶4(DPP4)是炎癥和代謝的調(diào)節(jié)劑,可能與動(dòng)脈粥樣硬化疾病的發(fā)展有關(guān)[18]。抑制DPP4可減少單核細(xì)胞在TNF-α和可溶性DPP4的作用下向動(dòng)脈粥樣硬化斑塊遷移[19]。它還上調(diào)發(fā)揮抗炎作用的脂聯(lián)素表達(dá)[20]。HMOX1在動(dòng)脈粥樣硬化中的高表達(dá)與鐵死亡的發(fā)生有關(guān),并導(dǎo)致MMP釋放和M0巨噬細(xì)胞浸潤(rùn)[21]。小窩蛋白-1(CAV1)是小窩細(xì)胞器的標(biāo)記蛋白,可直接結(jié)合膽固醇,在小窩功能中起著復(fù)雜的作用[22]。CAV1具有促進(jìn)腫瘤生長(zhǎng)和遷移、脂質(zhì)轉(zhuǎn)運(yùn)和炎癥調(diào)節(jié)等多種生物學(xué)功能[23]。先前的研究確定CAV1是脂肪細(xì)胞中主要的質(zhì)膜脂肪酸結(jié)合蛋白,與AS動(dòng)脈斑塊的形成有關(guān)[24]。VCAM1是參與嗜酸性粒細(xì)胞、基底細(xì)胞、單核細(xì)胞和淋巴細(xì)胞黏附的細(xì)胞黏附分子,它使單核細(xì)胞與內(nèi)皮細(xì)胞黏合,單核細(xì)胞進(jìn)入內(nèi)皮下[25]。不僅能加重體內(nèi)的炎癥損傷,還能影響斑塊的狀態(tài),促進(jìn)AS的發(fā)生和發(fā)展[26]。因此,槲皮素調(diào)節(jié)DPP4、HMOX1、CAV1等基因有利于改善患者的斑塊穩(wěn)定性。KEGG結(jié)果與流體剪切應(yīng)力及動(dòng)脈粥樣硬化、NF-kappa B信號(hào)傳導(dǎo)途徑、脂質(zhì)和動(dòng)脈硬化等信號(hào)傳導(dǎo)有關(guān)。易損AS斑塊是隨時(shí)間動(dòng)態(tài)變化的不穩(wěn)定結(jié)構(gòu)。它們更常發(fā)生在頸動(dòng)脈或冠狀動(dòng)脈的分叉處等剪應(yīng)力不均勻的狹窄區(qū)域[27-28],因此流體剪切應(yīng)力會(huì)對(duì)已經(jīng)生成的斑塊直接施加生物應(yīng)力。NF-κB主要通過(guò)調(diào)節(jié)逆向膽固醇轉(zhuǎn)運(yùn)參與膽固醇穩(wěn)態(tài)和斑塊的炎癥反應(yīng)[29]。故這些通路均對(duì)動(dòng)脈斑塊穩(wěn)定性和患者的炎癥反應(yīng)高度相關(guān)。
綜上所述,本研究運(yùn)用網(wǎng)絡(luò)藥理學(xué)和生物信息學(xué)的方法在一定程度上揭示了AS患者的穩(wěn)定斑塊與破裂斑塊巨噬細(xì)胞的相關(guān)基因以及黃連發(fā)揮延緩或抑制這一生物學(xué)過(guò)程的功效作用機(jī)制。未來(lái)本課題組將持續(xù)關(guān)注這一學(xué)術(shù)領(lǐng)域,開展相關(guān)體內(nèi)體外實(shí)驗(yàn),對(duì)這一結(jié)果進(jìn)行驗(yàn)證??傊?,黃連內(nèi)部的槲皮素可能通過(guò)調(diào)節(jié)DPP4、HMOX1、CAV1等靶點(diǎn)影響斑塊內(nèi)巨噬細(xì)胞的信號(hào)傳導(dǎo)途徑,進(jìn)而干預(yù)斑塊穩(wěn)定性。參考文獻(xiàn)[1] FAN J L, WATANABE T. Atherosclerosis:known and unknown[J].Pathol Int, 2022, 72(3):151-160.
[2] TABARES-GUEVARA J H, VILLA-PULGARIN J A, HERNANDEZ J C. Atherosclerosis:immunopathogenesis and strategies for immunotherapy[J].Immunotherapy, 2021, 13(14):1231-1244.
[3] KONG P, CUI Z Y, HUANG X F, et al. Inflammation and atherosclerosis:signaling pathways and therapeutic intervention[J].Signal Transduct Target Ther, 2022, 7(1):131.
[4] LIBBY P, BURING J E, BADIMON L, et al. Atherosclerosis[J].Nat Rev Dis Primers, 2019, 5(1):56.
[5] 趙立鳳,于紅紅,田維毅.中藥單體調(diào)控血管內(nèi)皮細(xì)胞自噬干預(yù)動(dòng)脈粥樣硬化的研究進(jìn)展[J].中華中醫(yī)藥學(xué)刊,2021,39(11):117-120.
[6] NOGALES C, MAMDOUH Z M, LIST M, et al. Network pharmacology:curing causal mechanisms instead of treating symptoms[J].Trends Pharmacol Sci, 2022, 43(2):136-150.
[7] RU J L, LI P, WANG J N, et al. TCMSP: a database of systems harmacology for drug discoveryfrom herbal medicines[J].J Cheminformatics, 2014, 6:13.
[8] DING H J, WANG C G, MALKASIAN S, et al. Characterization of arterial plaque composition with dual energy computed tomography:a simulation study[J].Int J Cardiovasc Imaging, 2021, 37(1):331-341.
[9] MUSHENKOVA N V, SUMMERHILL V I, ZHANG D W, et al. Current advances in the diagnostic imaging of atherosclerosis:insights into the pathophysiology of vulnerable plaque[J].Int J Mol Sci, 2020, 21(8):2992.
[10] MOORE K J, SHEEDY F J, FISHER E A. Macrophages in atherosclerosis:a dynamic balance[J].Nat Rev Immunol, 2013, 13(10):709-721.
[11] KYRIAKIDIS K, ANTONIADIS P, CHOKSY S, et al. Comparative study of protein expression levels of five plaque biomarkers and relation with carotid plaque type classification in patients after carotid endarterectomy[J].Int J Vasc Med, 2018, 2018:1-8.
[12] PAPAIOANNOU T G, KALANTZIS C, KATSIANOS E, et al. Personalized assessment of the coronary atherosclerotic arteries by intravascular ultrasound imaging:hunting the vulnerable plaque[J].J Pers Med, 2019, 9(1):8.
[13] WANG F, LI T W, CONG X F, et al. Association between circulating big endothelin-1 and noncalcified or mixed coronary atherosclerotic plaques[J].Coron Artery Dis, 2019, 30(6):461-466.
[14] DUAN H, ZHANG Q, LIU J, et al. Suppression of apoptosis in vascular endothelial cell,the promising way for natural medicines to treat atherosclerosis[J].Pharmacol Res, 2021, 168:105599.
[15] LU X L, ZHAO C H, YAO X L, et al. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway[J].Biomed Pharmacother, 2017, 85:658-671.
[16] JIA Q L, CAO H, SHEN D Z, et al. Quercetin protects against atherosclerosis by regulating the expression of PCSK9,CD36,PPARγ,LXRα and ABCA1[J].Int J Mol Med, 2019, 44(6):893-902.
[17] CAO H, JIA Q L, YAN L, et al. Quercetin suppresses the progression of atherosclerosis by regulating MST1-mediated autophagy in ox-LDL-induced RAW264.7 macrophage foam cells[J].Int J Mol Sci, 2019,20(23):6093.
[18] DUAN L H, RAO X Q, XIA C, et al. The regulatory role of DPP4 in atherosclerotic disease[J].Cardiovasc Diabetol, 2017, 16(1):76.
[19] SHAH Z, KAMPFRATH T, DEIULIIS J A, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis[J].Circulation,2011,124(21):2338-2349.
[20] BARBIERI M, MARFELLA R, ESPOSITO A, et al. Incretin treatment and atherosclerotic plaque stability:role of adiponectin/APPL1 signaling pathway[J].J Diabetes Complicat, 2017, 31(2):295-303.
[21] WU D Q, HU Q A, WANG Y Q, et al. Identification of HMOX1 as a critical ferroptosis-related gene in atherosclerosis[J].Front Cardiovasc Med, 2022, 9:833642.
[22] GOKANI S, BHATT L K. Caveolin-1:a promising therapeutic target for diverse diseases[J].Curr Mol Pharmacol, 2022, 15(5):701-715.
[23] RAUDENSKA M, GUMULEC J, BALVAN J, et al.Caveolin-1 in oncogenic metabolic symbiosis[J].Int J Cancer, 2020, 147(7):1793-1807.
[24] HOU K, LI S, ZHANG M,et al. Caveolin-1 in autophagy: a potential therapeutic target in atherosclerosis[J].Clin Chim Acta,2021,513:25-33.
[25] THAYSE K, KINDT N, LAURENT S, et al. VCAM-1 target in non-invasive imaging for the detection of atherosclerotic plaques[J].Biology, 2020, 9(11):368.
[26] TRONCOSO M F, ORTIZ-QUINTERO J, GARRIDO-MORENO V, et al. VCAM-1 as a predictor biomarker in cardiovascular disease[J].Biochim Biophys Acta BBA Mol Basis Dis, 2021, 1867(9):166170.
[27] CHIEN C S, LI J Y, CHIEN Y, et al. METTL3-dependent N6-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium[J].Proc Natl Acad Sci U S A,2021,118(7):e2025070118.
[28] BRYNIARSKI K L, WANG Z, FRACASSI F, et al. Three-dimensional fibrous cap structure of coronary lipid plaque―ST-elevation myocardial infarction vs.stable angina[J].Circ J, 2019, 83(6):1214-1219.
[29] SHI S, JI X, SHI J, et al. Andrographolide in atherosclerosis: integrating network pharmacology and in vitro pharmacological evaluation[J].Biosci Rep, 2022,42(7):BSR20212812.
(收稿日期:2022-12-01修回日期:2023-02-15)
(編輯:潘明志)