孫金聲 侯麒麟 呂開(kāi)河 金家鋒 郭璇 王金堂 黃賢斌 廖波
摘要:原位轉(zhuǎn)化技術(shù)是實(shí)現(xiàn)深層油頁(yè)巖大規(guī)模開(kāi)發(fā)的關(guān)鍵技術(shù)手段,其原理是通過(guò)人工加熱將地下的固態(tài)有機(jī)質(zhì)轉(zhuǎn)化為油氣進(jìn)行開(kāi)采。利用熱重評(píng)估實(shí)驗(yàn)和高溫?zé)峤猱a(chǎn)油實(shí)驗(yàn),開(kāi)展過(guò)渡金屬鹽催化劑CrCl3對(duì)油頁(yè)巖催化性能影響的系統(tǒng)研究,采用GC-MS對(duì)頁(yè)巖油產(chǎn)物進(jìn)行分析,通過(guò)分子模擬研究頁(yè)巖油產(chǎn)物在油頁(yè)巖層的吸附行為。結(jié)果表明:加入催化劑CrCl3后,油頁(yè)巖的熱解溫度能夠降低約50 ℃,油頁(yè)巖的熱解活化能由80.18 kJ/mol降低到44.58 kJ/mol,降幅達(dá)44.4%;CrCl3可將油頁(yè)巖的產(chǎn)油溫度降低,且產(chǎn)油率提升了6.3%;CrCl3可促進(jìn)長(zhǎng)鏈脂肪烴裂解成短鏈脂肪烴,且具有良好的生烴轉(zhuǎn)化能力;CrCl3可促進(jìn)有機(jī)質(zhì)裂解,并且使頁(yè)巖油中短鏈烷烴的含量增加,具有優(yōu)異的油頁(yè)巖的熱解催化活性。
關(guān)鍵詞:油頁(yè)巖; 原位轉(zhuǎn)化; 催化熱解; 氯化鉻; 分子模擬
中圖分類號(hào):TE 624.4 文獻(xiàn)標(biāo)志碼:A
引用格式:孫金聲,侯麒麟,呂開(kāi)河,等.氯化鉻對(duì)油頁(yè)巖的催化熱解及分子模擬機(jī)制[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,47(1):74-80.
SUN Jinsheng, HOU Qilin, L? Kaihe, et al. Catalytic pyrolysis of oil shale by CrCl3and its molecular simulation mechanism[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(1):74-80.
Catalytic pyrolysis of oil shale by CrCl3and its molecular
simulation mechanism
SUN Jinsheng1,2, HOU Qilin1, L? Kaihe1, JIN Jiafeng1, GUO Xuan1, WANG Jintang1, HUANG Xianbin1, LIAO Bo1
(1.School of Petroleum Engineering in China University of Petroleum (East China), Qingdao 266580,? China;
2.CNPC Engineering Technology R & D Company Limited,? Beijing 102206,? China)
Abstract: In-situ conversion is a key technology to achieve large-scale development of deep oil shale. Its principle is to convert solid organic matter underground into oil and gas by artificial heating. In this study, the effects of transition metal salt catalyst CrCl3on the catalytic performance of oil shale were systematically studied by thermogravimetric analysis and high temperature pyrolysis experiments. The pyrolysis products of shale oil were analyzed by GC-MS, and their adsorption behavior in the oil shale layer was studied by molecular simulation. The results show that, with the addition of CrCl3, the pyrolysis temperature of oil shale can be reduced by about 50 ℃, and its pyrolysis activation energy can be reduced by 44.4% from 80.18 kJ/mol to 44.58 kJ/mol. CrCl3can reduce the oil production temperature and increase the oil production rate by 6.3%. CrCl3has an excellent pyrolysis catalytic activity of oil shale, and can promote the cracking of long-chain aliphatic hydrocarbons into short-chain hydrocarbons, which can facilitate the pyrolysis of organic matters in oil shale for hydrocarbon generation and transformation.
Keywords: oil shale; in-situ conversion; catalytic pyrolysis; CrCl3; molecular simulation
油頁(yè)巖是一種高灰分富含固態(tài)可燃性有機(jī)質(zhì)的沉積巖,高溫加熱時(shí)通過(guò)裂解、環(huán)化、縮聚等熱化學(xué)反應(yīng)轉(zhuǎn)化為輕質(zhì)的頁(yè)巖油和頁(yè)巖氣[1]。中國(guó)油頁(yè)巖資源豐富,地質(zhì)資源儲(chǔ)量約7199.97億t,折算成頁(yè)巖油資源約476.44億t,是常規(guī)油氣資源的兩倍[2-3]。油頁(yè)巖原位轉(zhuǎn)化是一種新型高效、綠色環(huán)保開(kāi)發(fā)地下深層油頁(yè)巖的技術(shù)手段,其原理是通過(guò)在加熱井內(nèi)放入電加熱器,采用熱傳導(dǎo)的方式加熱油頁(yè)巖儲(chǔ)層,收集產(chǎn)生的頁(yè)巖油和烴類氣體[4]。然而,油頁(yè)巖原位轉(zhuǎn)化需滿足有機(jī)質(zhì)類質(zhì)量分?jǐn)?shù)大于6%,油頁(yè)巖層厚度大于15 m等條件,且油頁(yè)巖需長(zhǎng)時(shí)間加熱到約500 ℃的高溫才會(huì)有油氣產(chǎn)物產(chǎn)出[5],以上因素制約了油頁(yè)巖地下原位轉(zhuǎn)化。催化劑分為過(guò)渡金屬鹽催化劑和非過(guò)渡金屬鹽催化劑。油頁(yè)巖熱解催化劑可加速有機(jī)質(zhì)中長(zhǎng)鏈分子鍵的斷裂,將固態(tài)或重質(zhì)有機(jī)物轉(zhuǎn)化為可流動(dòng)的輕質(zhì)石油烴,通過(guò)催化技術(shù)有望解決油頁(yè)巖熱解溫度過(guò)高、加熱時(shí)間長(zhǎng)等難題,實(shí)現(xiàn)油頁(yè)巖的地下原位轉(zhuǎn)化。Song等[6]將天然黏土、凹凸棒石和3-巰基丙基三甲氧基硅烷(MPTMS)優(yōu)選后制得催化劑SO3H-APG,該催化劑降低了油頁(yè)巖的熱解溫度和活化能,提高了油頁(yè)巖轉(zhuǎn)化過(guò)程中的烴產(chǎn)率,降低了含氧化合物和含氮化合物的含量。Chang等[7]使用過(guò)渡金屬鹽催化油頁(yè)巖熱解,結(jié)果表明,CoCl2和NiCl2均能促進(jìn)油頁(yè)巖的熱解,所選金屬鹽均能促進(jìn)頁(yè)巖油的二次裂解。但目前所用的催化劑在降低油頁(yè)巖熱解溫度方面性能較差并且裂解產(chǎn)物中重質(zhì)油的含量較高,使油頁(yè)巖地下原位轉(zhuǎn)化技術(shù)仍無(wú)法應(yīng)用到商業(yè)開(kāi)發(fā)中。過(guò)渡金屬鹽催化劑已成功用于稠油的原位降黏[8],且在油頁(yè)巖催化裂解方面有優(yōu)異的表現(xiàn)。CrCl3是一種活性的路易斯酸催化劑,Choudhary等[9]在水介質(zhì)中使用CrCl3催化葡萄糖異構(gòu)化為果糖。Kim等[10]以CrCl3和DPPDME配體為基礎(chǔ)制備[(DPPDME)CrCl3]2,在乙烯的四聚化反應(yīng)中具有高效的催化作用。此外,CrCl3易溶于水,可以通過(guò)水力壓裂的方式將CrCl3注入到油頁(yè)巖層中,在油頁(yè)巖原位轉(zhuǎn)化催化過(guò)程中具有潛在的應(yīng)用前景。筆者開(kāi)展氯化鉻對(duì)油頁(yè)巖的催化裂解性能影響研究,并結(jié)合分子動(dòng)力學(xué)模擬技術(shù),構(gòu)建油頁(yè)巖地層模型,分析不同溫度下油頁(yè)巖催化裂解產(chǎn)物在地層中的吸附行為,揭示油頁(yè)巖催化熱解機(jī)制。
1 材料和方法
1.1 實(shí)驗(yàn)材料
本研究使用的油頁(yè)巖采自中國(guó)吉林省延邊朝鮮族自治州汪清縣,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)約為15%,產(chǎn)油率約為10%。實(shí)驗(yàn)所用油頁(yè)巖粒徑為0.5~0.85 mm。CrCl3·6H2O,規(guī)格AR,購(gòu)于上海麥克林生化科技有限公司。
將1.581 g CrCl3·6H2O(1 g CrCl3)溶于100 mL蒸餾水中,制備質(zhì)量濃度為0.01 g/mL的CrCl3溶液,取10 mL溶液均勻噴灑于1 g油頁(yè)巖顆粒表面,使油頁(yè)巖與CrCl3比例為10∶1,在200 ℃烘箱中放置12 h,得到表面負(fù)載CrCl3催化劑的油頁(yè)巖樣品。
1.2 油頁(yè)巖熱解實(shí)驗(yàn)
將配制好表面負(fù)載CrCl3催化劑的油頁(yè)巖樣品放在氧化鋁坩堝上,在熱重分析儀(TGA 500)中N2氣氛下從30 ℃加熱到600 ℃,加熱速率為10 ℃/min,氮?dú)饬魉贋?0 mL/min。
油頁(yè)巖熱解過(guò)程所涉及反應(yīng)眾多,通過(guò)擬合Newkirk法進(jìn)行熱解動(dòng)力學(xué)分析,即
式中,k為反應(yīng)速率常數(shù);k1和k2分別為反應(yīng)起始溫度和反應(yīng)結(jié)束溫度對(duì)應(yīng)的反應(yīng)速率常數(shù);t為時(shí)間,min;α為反應(yīng)轉(zhuǎn)化率;Ea為活化能,kJ/mol;A為指前因子,min-1;R為氣體常數(shù);T為溫度,K;T1和T2分別為反應(yīng)起始溫度和反應(yīng)結(jié)束溫度,K;β為升溫速率,K/min。
采用Coats-Redfern方法(式(3))計(jì)算油頁(yè)巖催化轉(zhuǎn)化動(dòng)力學(xué)參數(shù)。
1.3 油頁(yè)巖催化轉(zhuǎn)化
分別將30 g油頁(yè)巖和30 g表面負(fù)載3 g CrCl3催化劑的油頁(yè)巖樣品在200 ℃烘箱中放置12 h,取出后放入自制的油頁(yè)巖高溫高壓裂解裝置,進(jìn)行催化熱解實(shí)驗(yàn)。3次N2吹掃后,升高溫度至300 ℃,2 h收集一次產(chǎn)物;然后升高50 ℃,2 h后收集產(chǎn)物,實(shí)驗(yàn)結(jié)束。采用Agilent 7683B自動(dòng)進(jìn)樣器,HP-5毛細(xì)管柱,F(xiàn)ID(火焰離子化檢測(cè)器),GC-MS (Agilent 7890-5975C)進(jìn)行化學(xué)成分鑒定。頁(yè)巖油元素分析按GB/T 19143-2017和GB/T 37160-2019標(biāo)準(zhǔn)方法進(jìn)行。
1.4 分子模擬
油頁(yè)巖是由有機(jī)質(zhì)、黏土礦物和水組成的復(fù)雜混合物[11]。油頁(yè)巖中有機(jī)質(zhì)的化學(xué)組成非常復(fù)雜,為簡(jiǎn)便起見(jiàn),目前國(guó)際上一般采用石墨烯對(duì)有機(jī)質(zhì)結(jié)構(gòu)進(jìn)行近似代替[12-13],黏土礦物選用石英近似代替。
模擬系統(tǒng)由石英表面和石墨烯組成,其中采用CLAYFF力場(chǎng)對(duì)石英表面進(jìn)行描述[14],采用OPLS力場(chǎng)的參數(shù)對(duì)石墨烯和產(chǎn)物中的有機(jī)質(zhì)分子進(jìn)行模擬。油頁(yè)巖有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為5%~30%時(shí),密度為2.2~2.7 g/cm3[14],模擬盒子的尺寸為2.26 nm×2.38 nm×6.45 nm,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為20%,密度為2.47 g/cm3,模型符合實(shí)際要求。為了使模擬結(jié)果清晰,將盒子Z軸方向增加為20 nm。每層石墨烯之間相互平行且間距為0.335 nm,由于模型在3個(gè)方向上均為周期性邊界,為了避免鄰近模型的影響,在固體壁面的外側(cè)加一個(gè)至少2 nm厚的真空層,模型如圖1所示。結(jié)合每個(gè)溫度下收集的實(shí)驗(yàn)產(chǎn)物,對(duì)比催化前后產(chǎn)物的吸附情況進(jìn)一步揭示催化熱解機(jī)制。
所有模擬均使用GROMACS進(jìn)行,在模擬過(guò)程中石英表面和構(gòu)成有機(jī)質(zhì)表面的碳原子均固定不動(dòng),而烷烴分子被視為完全靈活的[15-16]。使用“最陡下降”方法對(duì)初始模型進(jìn)50000步行能量最小化,以降低系統(tǒng)能量。在分子數(shù)、體積和溫度(NVT)不變的情況下,模擬1 ns。體系的總能量、溫度等不隨時(shí)間變化時(shí)認(rèn)為體系已達(dá)到平衡狀態(tài)。對(duì)能量最小化的系統(tǒng)使用Nose-Hoover恒溫器將系統(tǒng)溫度保持在實(shí)驗(yàn)所要求的溫度,時(shí)間步長(zhǎng)為1 fs的leap-frog積分法對(duì)運(yùn)動(dòng)方程積分1 ns。范德華截?cái)喟霃綖? nm,用于計(jì)算短程相互作用。使用粒子網(wǎng)Ewald(PME)處理遠(yuǎn)距離靜電相互作用。采用可視化分子動(dòng)力學(xué)(VMD)軟件包進(jìn)行可視化[17]。
2 結(jié)果分析
2.1 油頁(yè)巖熱解
采用熱重儀表征催化劑的催化活性,油頁(yè)巖和負(fù)載催化劑樣品的質(zhì)量損失(thermogravimetry,TG)、微分熱重(derivative thermogravimetry, DTG)曲線如圖2所示。從圖2可以看出,在約300 ℃時(shí),油頁(yè)巖樣品中有機(jī)質(zhì)開(kāi)始分解,失重的速率隨著溫度的不斷升高而逐漸加快。在300~500 ℃階段主要是油頁(yè)巖中的干酪根分子和其他有機(jī)物組分分解生成瀝青質(zhì),瀝青質(zhì)繼續(xù)熱解生成各種小的芳香烴分子或脂肪烴分子而從油頁(yè)巖中揮發(fā)的過(guò)程[18-19]。加入CrCl3以后,樣品的熱解起始溫度和最大失重速率對(duì)應(yīng)的溫度均降低,最大失重速率所對(duì)應(yīng)的溫度由498.7 ℃降低至453.3 ℃。CrCl3耐高溫,在600 ℃前不會(huì)發(fā)生分解,故負(fù)載催化劑樣品的最大失重速率有所降低。根據(jù)Newkirk法對(duì)熱解過(guò)程進(jìn)行動(dòng)力學(xué)分析和計(jì)算,油頁(yè)巖熱解活化能為80.18 kJ/mol,負(fù)載CrCl3的油頁(yè)巖熱解活化能為44.58 kJ/mol,說(shuō)明CrCl3的加入使油頁(yè)巖熱解過(guò)程的活化能顯著降低,對(duì)油頁(yè)巖的熱解有催化作用。
2.2 油頁(yè)巖催化裂解產(chǎn)油實(shí)驗(yàn)
圖3為不同溫度下油頁(yè)巖和負(fù)載催化劑樣品的產(chǎn)油量對(duì)比。結(jié)果表明,加入催化劑CrCl3后,350 ℃時(shí)已有頁(yè)巖油產(chǎn)生,且在400 ℃時(shí)油頁(yè)巖中的頁(yè)巖油全部產(chǎn)出,產(chǎn)油率提升了6.3%,這說(shuō)明催化劑CrCl3促進(jìn)了油頁(yè)巖有機(jī)質(zhì)的裂解使油頁(yè)巖的裂解產(chǎn)油溫度降低,同時(shí)CrCl3促進(jìn)殘存在油頁(yè)巖內(nèi)部的瀝青質(zhì)發(fā)生二次裂解反應(yīng),使頁(yè)巖油的產(chǎn)率提升[20]。
采用GC-MS對(duì)添加催化劑和無(wú)催化劑條件下熱解得到的頁(yè)巖油樣品的含碳數(shù)分布和化學(xué)成分進(jìn)行分析。頁(yè)巖油樣品的含碳數(shù)分布如圖4所示,化學(xué)成分如表1所示。未加催化劑的頁(yè)巖油含碳數(shù)主要分布在C10~C13,加入催化劑以后,頁(yè)巖油主要分布在C7~C10,說(shuō)明催化劑CrCl3催化長(zhǎng)鏈脂肪烴轉(zhuǎn)化為短鏈脂肪烴,短鏈脂肪烴的相對(duì)數(shù)量增加,將稠油轉(zhuǎn)化為輕油。隨著溫度升高,頁(yè)巖油產(chǎn)量增加,同時(shí)趨于低含碳量分布,說(shuō)明高溫可促進(jìn)油頁(yè)巖中有機(jī)質(zhì)干酪根的裂解和殘存在內(nèi)部的瀝青質(zhì)二次裂解。
碳?xì)浠衔铩⒑趸衔铮ù碱?、酮類、酚類、酯類)和含氮化合物是油?yè)巖轉(zhuǎn)化過(guò)程中最常見(jiàn)的油品(表1)?;瘜W(xué)成分分析結(jié)果顯示油頁(yè)巖催化轉(zhuǎn)化的產(chǎn)物主要是碳?xì)浠衔?。與未加催化劑的頁(yè)巖油相比,添加CrCl3催化劑后產(chǎn)物中烴類含量增加,含氮化合物的含量減少,表明催化劑促進(jìn)C—N鍵斷裂使中性氮被去除。含氧化合物(醇類、酮類、酚類、酯類)的減少說(shuō)明催化劑具有良好的生烴轉(zhuǎn)化能力,這也與油頁(yè)巖催化熱解的結(jié)果一致[21]。
2.3 分子模擬
在油頁(yè)巖地下轉(zhuǎn)化過(guò)程中油氣產(chǎn)物在地下的吸附和流動(dòng)行為尚不明確,基于牛頓力學(xué)的分子動(dòng)力學(xué)(MD)模擬可以直觀清晰地描述油氣在地層中的運(yùn)移情況[22-23]。Wang等[24-26]模擬了頁(yè)巖油在蒙脫土、石英和有機(jī)質(zhì)孔隙中的流動(dòng),發(fā)現(xiàn)烴類物質(zhì)在無(wú)機(jī)和有機(jī)表面運(yùn)動(dòng)時(shí)傾向于吸附在有機(jī)質(zhì)表面。Liu等[27]優(yōu)化了頁(yè)巖的有機(jī)質(zhì)模型,以干酪根代表有機(jī)質(zhì)模擬頁(yè)巖油在干酪根孔隙中的流動(dòng),發(fā)現(xiàn)增大驅(qū)動(dòng)力和溫度可以加快頁(yè)巖油的流動(dòng)。油頁(yè)巖地層結(jié)構(gòu)復(fù)雜,應(yīng)該考慮多組分的模型來(lái)代表地層。
頁(yè)巖油的組分非常復(fù)雜,為了簡(jiǎn)化模型,不同溫度下的產(chǎn)油取含量最高的3組且均以正烴類形態(tài)代替整個(gè)產(chǎn)物進(jìn)行模擬,結(jié)合產(chǎn)物和模型分析,350 ℃負(fù)載催化劑CrCl3的30 g油頁(yè)巖產(chǎn)出頁(yè)巖油1.221 g,則體積為2.26×2.38×6.45 nm3,密度為2.47 g/cm,質(zhì)量為8.56×10-20g,產(chǎn)出頁(yè)巖油3.36×10-21g,取含量最高的3組C7H16、C8H18、C9H20質(zhì)量比為20∶15∶16,故產(chǎn)物為20個(gè)C7H16、5個(gè)C8H18、5個(gè)C9H20。同理400 ℃負(fù)載催化劑CrCl3,產(chǎn)物為30個(gè)C7H16、7個(gè)C8H18、6個(gè)C9H20,如圖5所示。
頁(yè)巖油中的碳元素均來(lái)自于油頁(yè)巖,為了符合真實(shí)情況,熱傳導(dǎo)條件下油頁(yè)巖有機(jī)質(zhì)中的碳鏈離石英表面最近的最先斷裂。各個(gè)系統(tǒng)穩(wěn)定以后,得到頁(yè)巖油在Z軸方向的密度分布,如圖6所示。
密度分布曲線關(guān)于模型的中心平面(Z=12)對(duì)稱。在350 ℃添加催化劑CrCl3和400 、450 ℃無(wú)催化劑的條件下,頁(yè)巖油集中于Z=4.768和Z=19.232的有機(jī)質(zhì)表面上,表明有機(jī)質(zhì)對(duì)頁(yè)巖油有很強(qiáng)的吸附作用。在400 ℃加入CrCl3的條件下,頁(yè)巖油集中于Z=4.433、Z=4.768、Z=19.232和Z=19.567的有機(jī)質(zhì)表面上,造成這種情況的原因是離石英最近的有機(jī)質(zhì)A層和F層全部轉(zhuǎn)化為頁(yè)巖油,而有機(jī)質(zhì)對(duì)頁(yè)巖油的吸附作用強(qiáng)于石英[28],所以介于有機(jī)質(zhì)和石英之間的頁(yè)巖油均吸附于有機(jī)質(zhì)B層和E層表面上。隨著溫度的升高,游離于有機(jī)質(zhì)C層和D層之間的脂肪烴含量增加,即吸附于有機(jī)質(zhì)表面的脂肪烴含量減少,說(shuō)明溫度升高有利于脂肪烴脫離有機(jī)質(zhì)表面,利于產(chǎn)物的采收。
對(duì)分子數(shù)、體積、溫度條件下平衡后的分子體系,取消體系中的周期性邊界條件,使用gmxrerun命令,模擬100 ps,得到如圖7所示的頁(yè)巖油和有機(jī)質(zhì)相互作用能的變化。研究發(fā)現(xiàn),溫度升高,頁(yè)巖油中的烷烴分子運(yùn)動(dòng)加快,更易于從有機(jī)質(zhì)表面逃逸,相互作用能下降利于產(chǎn)物游離。350 ℃添加CrCl3的相互作用能低于400 ℃無(wú)催化劑的,是由于無(wú)催化劑條件下產(chǎn)生的頁(yè)巖油均為碳鏈較長(zhǎng)的烷烴,與有機(jī)質(zhì)的相互作用能較大,并且添加催化劑以后CrCl3促進(jìn)油頁(yè)巖中有機(jī)質(zhì)的裂解,有機(jī)質(zhì)的總體含量減少,頁(yè)巖油與有機(jī)質(zhì)總的相互作用能減少。
3 結(jié) 論
(1)CrCl3的加入使油頁(yè)巖裂解產(chǎn)油溫度降低50 ℃,熱解過(guò)程的活化能降低35.6 kJ/mol。CrCl3可以催化油頁(yè)巖有機(jī)質(zhì)在低溫度區(qū)間的裂解。
(2)CrCl3可以將大分子的長(zhǎng)鏈脂肪烴催化裂解成短鏈脂肪烴,并且頁(yè)巖油中含氧化合物(醇類、酮類、酚類、酯類)含量減少,碳?xì)浠衔锏暮吭黾樱f(shuō)明催化劑具有良好的生烴轉(zhuǎn)化能力。
(3)低溫時(shí)頁(yè)巖油吸附于有機(jī)質(zhì)表面;當(dāng)溫度升高,脂肪烴分子與有機(jī)質(zhì)表面的相互作用能降低,更易于從孔喉表面逸散;同時(shí)催化劑CrCl3促進(jìn)了有機(jī)質(zhì)裂解和短鏈烷烴含量的增加,催化后的頁(yè)巖油更易采收。
參考文獻(xiàn):
[1]孫友宏,徐紹濤, 楊秦川,等.樺甸油頁(yè)巖有氧熱解反應(yīng)及其產(chǎn)物分布[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,45(2):149-156.
SUN Youhong, XU Shaotao, YANG Qinchuan, et al. Oxidizing pyrolysis of Huadian oil shale and its product distribution[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021,45(2):149-156.
[2]劉招君,董清水,葉松青,等.中國(guó)油頁(yè)巖資源現(xiàn)狀[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2006,45(6):869-876.
LIU Zhaojun, DONG Qingshui, YE Songqing, et al.The situation of oil shale resources in China[J]. Journal of Jilin University (Earth Science Edition), 2006,45(6):869-876.
[3]孟慶濤,劉招君,胡菲,等.樺甸盆地始新世古湖泊生產(chǎn)力與有機(jī)質(zhì)富集機(jī)制[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,36(5):38-44.
MNEG Qingtao, LIU Zhaojun, HU Fei, et al. Productivity of Eocene ancient lake and enrichment mechanism of organic matter in Huadian Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2012,36(5):38-44.
[4]孫友宏,郭威,鄧孫華.油頁(yè)巖地下原位轉(zhuǎn)化與鉆采技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)[J].鉆探工程,2021,48(1):57-67.
SUN Youhong, GUO Wei, DENG Sunhua. The status and development trend of in-situ conversion and drilling exploitation technology for oil shale[J].Drilling Engineering, 2021,48(1):57-67.
[5]趙文智,胡素云,侯連華.頁(yè)巖油地下原位轉(zhuǎn)化的內(nèi)涵與戰(zhàn)略地位[J].石油勘探與開(kāi)發(fā),2018,45(4):537-545.
ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018,45(4):537-545.
[6]SONG R, MENG X, YU C, et al. Oil shale in-situ upgrading with natural clay-based catalysts: enhancement of oil yield and quality[J]. Fuel, 2022,314:123076.
[7]CHANG Z, CHU M, ZHANG C, et al. Investigation of the effect of selected transition metal salts on the pyrolysis of Huadian oil shale, China[J]. Oil Shale, 2017,34(4):354.
[8]SHAH A, FISHWICK R, WOOD J, et al. A review of novel techniques for heavy oil and bitumen extraction and upgrading[J]. Energy & Environmental Science, 2010,3(6):700-714.
[9]CHOUDHARY V, MUSHRIF S H, HO C, et al. Insights into the interplay of lewis and brnsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media[J]. Journal of the American Chemical Society, 2013,135(10):3997-4006.
[10]KIM S K, KIM T J, CHUNG J H, et al. Bimetallic ethylene tetramerization catalysts derived from chiral DPPDME ligands: syntheses, structural characterizations, and catalytic performance of [(DPPDME)CrCl3]2(DPPDME=S,S-and R, R-chiraphos and meso-achiraphos)[J]. Organometallics, 2010,29(22):5805-5811.
[11]KANG Z, ZHAO Y, YANG D. Review of oil shale in-situ conversion technology[J]. Applied Energy, 2020,269:115121.
[12]AMBROSE R J, HARTMAN R C, DIAZ-CAMPOS M, et al. Shale gas-in-place calculations part I: new pore-scale considerations[J]. SPE Journal, 2012,17(1):219-229.
[13]MOSHER K, HE J, LIU Y, et al. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013,109/110:36-44.
[14]趙隆業(yè),陳基娘,王天順.我國(guó)油頁(yè)巖的成分和品級(jí)劃分[J].現(xiàn)代地質(zhì),1991(4):423-429.
ZHAO Longye, CHEN Jiniang, WANG Tianshun. Grade dividing and composition of oil shale in China[J].Geoscience, 1991(4):423-429.
[15]ABRAHAM M J, MURTOLA T, SCHULZ R, et al. G
romacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015,1/2:19-25.
[16]WANG S, FENG Q, ZHA M, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and slits of shale organic matter[J]. Petroleum Exploration and Development, 2015,42(6):844-851.
[17]HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996,14(1):33-38.
[18]JIANG H, SONG L, CHENG Z, et al. Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015,112:230-236.
[19]遲姚玲,李術(shù)元,馬玉華,等.龍口油頁(yè)巖熱解特性及動(dòng)力學(xué)研究[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,31(4):112-115.
CHI Yaoling, LI Shuyuan, MA Yuhua, et al. Study of pyrolysis characteristics and kinetics of Longkou oil shale[J]. Journal of China University of Petroleum(Edition of Natural Science), 2007,31(4):112-115.
[20]HUANG Y, ZHANG M, LIU J, et al. Modeling study on effects of intraparticle mass transfer and secondary reactions on oil shale pyrolysis[J]. Fuel, 2018,221:240-248.
[21]CHANG Z, QU Y, GU Z, et al. Production of aromatic hydrocarbons from catalytic pyrolysis of Huadian oil shale using ZSM-5 zeolites as catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2020,159:104990.
[22]YANG Y, WANG K, ZHANG L, et al. Pore-scale simulation of shale oil flow based on pore network model[J]. Fuel, 2019,251:683-692.
[23]雷光倫,李姿,姚傳進(jìn),等.油頁(yè)巖注蒸汽原位開(kāi)采數(shù)值模擬[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,41(2):100-107.
LEI Guanglun,LI Zi,YAO Chuanjin,et al. Numerical simulation on in-situ upgrading of oil shale via steam injection[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017,41(2):100-107.
[24]WANG S, FENG Q, ZHA M, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and slits of shale organic matter[J]. Petroleum Exploration and Development, 2015,42(6):844-851.
[25]WANG S, JAVADPOUR F, FENG Q. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J]. Fuel, 2016,181:741-758.
[26]WANG S, FENG Q, JAVADPOUR F, et al. Breakdown of fast mass transport of methane through calcite nanopores[J]. The Journal of Physical Chemistry C, 2016,120(26):14260-14269.
[27]LIU J, YANG Y, SUN S, et al. Flow behaviors of shale oil in kerogen slit by molecular dynamics simulation[J]. Chemical Engineering Journal, 2022,434:134682.
[28]DONG X, XU W, LIU R, et al. Insights into adsorption and diffusion behavior of shale oil in slit nanopores: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2022,359:119322.
(編輯 李志芬)