張玉 李建威 暢元江 李昊 李大勇
摘要:海域可燃冰常賦存于低溫高壓深水淺層松散沉積物中,起膠結(jié)和骨架支撐作用;可燃冰分解相變,引起儲(chǔ)層滲透率改變,直接影響氣水兩相流體的滲流特征與熱質(zhì)傳遞,制約可燃冰的持續(xù)分解;同時(shí)可燃冰的分解會(huì)降低含可燃冰沉積物儲(chǔ)層的抗剪強(qiáng)度和承載力,降低井壁穩(wěn)定性。考慮可燃冰分解相變、傳熱傳質(zhì)和氣水兩相滲流過(guò)程,基于流固耦合滲流理論,建立描述含相態(tài)變化的可燃冰降壓開(kāi)采熱-流-固(T-H-M)耦合模型,對(duì)可燃冰儲(chǔ)層降壓開(kāi)采氣水兩相流動(dòng)規(guī)律、孔隙度和滲透率等物性參數(shù)演化規(guī)律進(jìn)行描述,并對(duì)井壁穩(wěn)定性進(jìn)行研究。結(jié)果表明:隨著可燃冰的分解,甲烷氣體飽和度較水飽和度明顯增大,井周氣體飽和度明顯高于水飽和度;儲(chǔ)層發(fā)生塑性屈服后,塑性區(qū)內(nèi)滲透率和有效孔隙度顯著增大,而彈性模量和黏聚力大幅度減小;開(kāi)采時(shí)間越長(zhǎng),生產(chǎn)壓差越大,儲(chǔ)層塑性屈服區(qū)域越大,井壁穩(wěn)定性越差。
關(guān)鍵詞:可燃冰; 降壓開(kāi)采; 氣水兩相流; 物性參數(shù); 井壁穩(wěn)定性
中圖分類(lèi)號(hào):TE 375 文獻(xiàn)標(biāo)志碼:A
引用格式:張玉,李建威,暢元江,等.考慮氣水兩相流固耦合下可燃冰降壓分解對(duì)井壁穩(wěn)定性影響[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,47(1):148-155.
ZHANG Yu, LI Jianwei, CHANG Yuanjiang, et al. Effect of depressurization decomposition of combustible ice on wellbore stability considering gas-water two-phase hydro-mechanical coupling[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023,47(1):148-155.
Effect of depressurization decomposition of combustible ice
on wellbore stability considering gas-water two-phase
hydro-mechanical coupling
ZHANG Yu1, LI Jianwei1, CHANG Yuanjiang2, LI Hao3, LI Dayong1
(1.College of Pipeline and Civil Engineering in China University of Petroleum (East China), Qingdao 266580, China;
2.College of Mechanical and Electrical Engineering in China University of Petroleum (East China), Qingdao 266580, China;
3.School of Petroleum Engineering in China University of Petroleum (East China), Qingdao 266580, China )
Abstract: Marine combustible ice usually occurs in deep-water and shallow loose sediments under the condition of low temperature and high pressure, which mainly plays an effective cementation or skeleton support role in hydrate bearing sediments. The permeability of reservoir changes with the phase change during the combustible ice decomposition process, which influences the flow characteristics and the heat and mass transfer of gas-water two-phase fluid. This behavior restricts the continuous decomposition of combustible ice. The decomposition of combustible ice will further reduce the shear strength and bearing capacity of combustible ice bearing sediment reservoir, which? reduces the wellbore stability. A coupled thermo-hydro-mechanical (T-H-M) model was built to describe the phase change of combustible ice depressurization production process. The evolution rules of gas-water two-phase flow, porosity, permeability and other physical parameters during the combustible ice depressurization production process were described, and the wellbore stability was studied. The results show that the methane gas saturation increases significantly compared with the water saturation, and the gas saturation around the well is significantly higher than the water saturation with the decomposition of marine combustible ice. After the plastic yield of the reservoir, the permeability and effective porosity in the plastic zone increase significantly, while the elastic modulus and cohesive force decrease greatly. The longer the production time, the greater the production pressure difference, the larger the plastic yield area of the reservoir, and the worse the wellbore stability.
Keywords: combustible ice; depressurization production; gas-water two-phase flow; physical parameters; wellbore stability
海域可燃冰在儲(chǔ)層孔隙中起膠結(jié)或支撐作用,可燃冰在分解過(guò)程中飽和度的變化會(huì)改變儲(chǔ)層滲流特征和力學(xué)特性,進(jìn)而引起近井區(qū)域應(yīng)力變化和儲(chǔ)層變形,甚至引發(fā)井壁失穩(wěn),影響開(kāi)采過(guò)程的穩(wěn)定性和安全性[1]。已有可燃冰儲(chǔ)層力學(xué)行為的模擬主要基于溫度-滲流-應(yīng)力-化學(xué)多場(chǎng)模型[2-4],但滲流場(chǎng)中沒(méi)有考慮到氣-水兩相滲流過(guò)程?,F(xiàn)有考慮氣-水兩相滲流的模擬主要集中于氣體產(chǎn)能預(yù)測(cè)和儲(chǔ)層性能評(píng)價(jià)[5-6],并基于氣體產(chǎn)能預(yù)測(cè)和儲(chǔ)層評(píng)價(jià)提出了可燃冰高效增產(chǎn)措施[7],忽略了氣水兩相滲流過(guò)程中儲(chǔ)層物性參數(shù)演化規(guī)律和力學(xué)特性分析?,F(xiàn)有對(duì)于含可燃冰儲(chǔ)層和井壁穩(wěn)定性研究主要集中于鉆井過(guò)程中[8-9],也有部分學(xué)者開(kāi)展了可燃冰分解過(guò)程中儲(chǔ)層穩(wěn)定性分析,但少有涉及開(kāi)采過(guò)程中井壁穩(wěn)定問(wèn)題和完整描述可燃冰分解過(guò)程對(duì)儲(chǔ)層物理力學(xué)參數(shù)的影響。綜上所述,目前對(duì)于井壁穩(wěn)定性的研究并未全面考慮溫度、可燃冰分解相變以及氣水兩相滲流對(duì)儲(chǔ)層力學(xué)性質(zhì)的影響,可燃冰開(kāi)采過(guò)程中較少涉及考慮氣水兩相滲流的井壁穩(wěn)定性分析。因此筆者建立能夠描述可燃冰儲(chǔ)層降壓開(kāi)采過(guò)程中氣水兩相滲流和物性參數(shù)演化規(guī)律的傳熱-滲流-應(yīng)力耦合模型,通過(guò)數(shù)值模擬方法研究開(kāi)采過(guò)程中儲(chǔ)層特性和井壁穩(wěn)定性。
1 傳熱-滲流-應(yīng)力耦合數(shù)學(xué)模型
可燃冰儲(chǔ)層降壓開(kāi)采是一個(gè)包含可燃冰分解相變、多相流體滲流、傳熱傳質(zhì)和儲(chǔ)層變形的復(fù)雜過(guò)程,建立傳熱-滲流-應(yīng)力耦合模型時(shí)假設(shè):①儲(chǔ)層巖土材料遵循廣義Hook定律以及Drucker-Prager屈服準(zhǔn)則,固體骨架變形為小位移變形[10];②儲(chǔ)層孔隙空間內(nèi)氣水兩相流動(dòng)服從廣義達(dá)西定律;③可燃冰儲(chǔ)層沒(méi)有外界熱量獲取,僅在儲(chǔ)層內(nèi)部有熱量交換。
1.1 可燃冰分解方程
可燃冰分解動(dòng)力學(xué)模型[11]表示為
式中,kd為動(dòng)力學(xué)反應(yīng)速率,mol/(m2·Pa·s);Mh為可燃冰分解速率,kg/mol;As為比表面積,m-1;pg和pe分別為氣體壓力和相平衡壓力,MPa。
1.2 能量守恒方程
儲(chǔ)層內(nèi)部能量守恒方程[12]為
式中,下標(biāo)r、h、g、w分別代表儲(chǔ)層固相、可燃冰、甲烷氣體和水;φ為孔隙度;ρ為密度,kg/m3;c為比熱容,J/(kg·K);S為飽和度;T為溫度,K;μ為流體黏度,mPa·s;k為儲(chǔ)層滲透率,10-3μm2;Kr為相對(duì)滲透率;λc為等效熱傳導(dǎo)系數(shù),W/(m·K);Qh為可燃冰分解潛熱,J/(s·m3);pw為水相壓力,MPa。
1.3 滲流方程
甲烷氣體、水和固相可燃冰的連續(xù)性方程為
其中
i=g,w,h.
式中,vi為流動(dòng)速度,m/s;mi為單位體積的生成速率,kg/(s·m3);qi為源匯項(xiàng),kg/(s·m3)。
氣水兩相滲流遵循廣義達(dá)西定律,即
式中,g為重力加速度,m/s2。
簡(jiǎn)化氣水兩相滲流方程,得到滲流場(chǎng)控制方程:
式中,Mg為氣體摩爾質(zhì)量,kg/mol;p′c為毛細(xì)管力對(duì)水相飽和度的偏導(dǎo)數(shù),MPa;R為氣體常數(shù),J/mol。
1.4 應(yīng)力場(chǎng)方程
采用Drucker-Prager模型作為本構(gòu)模型[13-14],根據(jù)平衡微分方程和太沙基有效應(yīng)力原理,建立考慮流固耦合的微分平衡方程[15]:
式中,σjk為有效應(yīng)力,MPa;fi為體力分量, MPa/m;ppor為孔隙壓力,MPa;δjk為Kronecker符號(hào)。
1.5 儲(chǔ)層物性參數(shù)演化模型
可燃冰分解過(guò)程中儲(chǔ)層物性和力學(xué)特性發(fā)生變化,物性參數(shù)演化包括儲(chǔ)層滲透率、毛細(xì)管壓、有效孔隙度,力學(xué)特性演化包括彈性模量和黏聚力。
孔隙度演化模型[16]為
式中,εV為儲(chǔ)層體積應(yīng)變;φ0為絕對(duì)孔隙度。
建立滲透率演化模型[13,17]為
式中,k0為絕對(duì)滲透率,10-3μm2;φe為有效孔隙度
。
相對(duì)滲透率[18]為
式中,m為參數(shù);Krw0和Krg0分別為初始水相和氣相相對(duì)滲透率。
儲(chǔ)層彈性模量與儲(chǔ)層黏聚力演化模型[19]分別為
式中,E0為可燃冰儲(chǔ)層初始彈性模量,GPa;ξ為試驗(yàn)擬合參數(shù),取9.5 GPa;Sh0為可燃冰初始飽和度。
式中,f和f0分別為可燃冰分解后儲(chǔ)層黏聚力和初始黏聚力,MPa。
1.6 井壁穩(wěn)定性判別準(zhǔn)則
在可燃冰降壓開(kāi)采過(guò)程中可能導(dǎo)致儲(chǔ)層產(chǎn)生塑性變形,用穩(wěn)定性指數(shù)SI判斷井壁是否發(fā)生破壞[20]:
式中,I1為應(yīng)力第一不變量,MPa;J2為偏應(yīng)力第二不變量,MPa;α為參數(shù),無(wú)量綱;B為參數(shù),MPa。
當(dāng)SI>0 MPa時(shí),儲(chǔ)層處于穩(wěn)定狀態(tài),未發(fā)生剪切破壞;當(dāng)SI=0 MPa時(shí),儲(chǔ)層處于臨界狀態(tài);當(dāng)SI<0 MPa時(shí),儲(chǔ)層發(fā)生剪切破壞。
1.7 模型驗(yàn)證
將模擬和Masuda試驗(yàn)[21]所得結(jié)果對(duì)比,如圖1所示。可燃冰分解初期吸收熱量與滲流攜帶熱量之和大于恒溫水浴向巖心內(nèi)部傳遞的熱量,溫度顯著下降,隨著分解進(jìn)行,可燃冰分解吸收熱量和對(duì)流攜帶熱量之和小于巖心外邊界從恒溫水浴中吸收的熱量,試樣溫度上升。模型具有良好的適用性。
2 可燃冰降壓開(kāi)采模型
2.1 降壓計(jì)算模型
可燃冰降壓開(kāi)采模擬研究采用平面應(yīng)變模型,選取1/4儲(chǔ)層建立幾何模型如圖2所示。模型為矩形,邊長(zhǎng)為10 m×10 m,設(shè)置井眼半徑為0.15 m。
可燃冰儲(chǔ)層含可燃冰飽和度取0.5,儲(chǔ)層絕對(duì)孔隙度取0.4,絕對(duì)滲透率為200×10-3μm2??扇急鶅?chǔ)層初始溫度為15 ℃(288.15 K),初始孔隙壓力為16.9 MPa,模擬區(qū)域位于南海神狐海域北部的荔灣斜坡[22]。
2.2 邊界條件
AB邊為井眼邊界,即為生產(chǎn)壓力邊界,作用有效井眼液柱壓力。CD和DE邊界均布恒定孔隙壓力,并分別作用最大、最小有效水平地應(yīng)力。AE和BC邊界為對(duì)稱(chēng)邊界,AE邊界x向變形受約束,y向可自由變形;BC邊界x向可自由變形,y向變形受約束。模型內(nèi)部有儲(chǔ)層初始孔隙壓力作用,AB、CD和DE邊界均為孔隙壓力邊界。
3 可燃冰降壓開(kāi)采模擬
3.1 模擬方案
研究?jī)?chǔ)層氣水兩相滲流規(guī)律時(shí)設(shè)置生產(chǎn)壓差為2 MPa,開(kāi)采時(shí)長(zhǎng)設(shè)置為4、8和12 h。設(shè)置生產(chǎn)壓差分別為2、3、4和5 MPa,生產(chǎn)時(shí)長(zhǎng)分別為2、12、24、36和48 h。
3.2 氣水兩相滲流規(guī)律
在遠(yuǎn)場(chǎng)可燃冰未分解區(qū)域,氣水兩相飽和度保持初始飽和度不變,約為0.13和0.37??扇急纸鈱?dǎo)致甲烷氣體和水逐漸釋放,近井區(qū)域孔隙空間被甲烷氣體和水占據(jù),氣相的飽和度急劇上升,而水相飽和度增加較慢,如圖3所示,氣水兩相飽和度約為0.59和0.41。氣水兩相在壓力的驅(qū)動(dòng)下流向井眼附近,由于水相的滲流速度小于氣相,井眼處氣相飽和度會(huì)逐漸升高至0.7,而水相飽和度則逐漸降低至0.3。在井周的小范圍內(nèi),水在壓力梯度下向井眼匯集,水相飽和度有突然增大的現(xiàn)象,其高度約為0.45,隨著大量的水在井眼處被抽走,水相飽和度又會(huì)降低至最低水平。
3.3 儲(chǔ)層物性參數(shù)演化規(guī)律
以生產(chǎn)壓差為4 MPa,生產(chǎn)時(shí)長(zhǎng)分別為12、24、36和48 h,以?xún)?chǔ)層BC邊界為例,分析儲(chǔ)層滲透率、有效孔隙度演化規(guī)律,如圖4所示。有效孔隙度和儲(chǔ)層滲透率的演化規(guī)律類(lèi)似,隨著開(kāi)采時(shí)長(zhǎng)的增加,可燃冰分解范圍進(jìn)一步擴(kuò)大,滲透率由1.56×10-3μm2增加至200×10-3μm2,有效孔隙度由0.2增加至0.4,滲透率和有效孔隙度有較明顯的增大,且增大范圍隨著開(kāi)采時(shí)間的增加逐漸擴(kuò)大至整個(gè)儲(chǔ)層范圍。
儲(chǔ)層黏聚力與彈性模量的演化規(guī)律也呈現(xiàn)出相似趨勢(shì),如圖5所示。隨著開(kāi)采時(shí)長(zhǎng)增加,儲(chǔ)層彈性模量由3.65 GPa降低至1.66 GPa,黏聚力由2 MPa降低至1.52 MPa。由于彈性模量和黏聚力與可燃冰飽和度密切相關(guān),不同時(shí)刻的儲(chǔ)層彈性模量演化曲線的下降段可視為可燃冰分解前緣的大致范圍。在生產(chǎn)48 h后,分解前緣已到達(dá)距井眼中心9.5 m位置處,接近本模型設(shè)置的邊界位置。
3.4 井壁穩(wěn)定性分析
降壓開(kāi)采時(shí),生產(chǎn)壓力越小,則生產(chǎn)壓力與儲(chǔ)層初始孔隙壓力差值越大,地層偏應(yīng)力越大,出現(xiàn)剪切破壞的風(fēng)險(xiǎn)越高。改變生產(chǎn)壓力在影響儲(chǔ)層壓降傳遞效率的同時(shí),還會(huì)引起儲(chǔ)層應(yīng)力集中,同時(shí)儲(chǔ)層近井區(qū)域孔壓減小會(huì)使有效應(yīng)力增大而對(duì)井壁穩(wěn)定性不利。不同生產(chǎn)壓差下近井儲(chǔ)層等效塑性應(yīng)變分布如圖6所示。不同生產(chǎn)壓差下BC邊界、AE邊界的穩(wěn)定性指數(shù)分布如圖7所示。
以分解時(shí)間2 h為例,生產(chǎn)壓差為2、3、4和5 MPa,生產(chǎn)壓差為2 MPa時(shí),井周雖然也有塑性區(qū)域發(fā)展,但未發(fā)生井壁失穩(wěn)。生產(chǎn)壓差由2 MPa增長(zhǎng)至5 MPa時(shí),井周儲(chǔ)層塑性變形區(qū)域顯著變大,井壁最大等效塑性應(yīng)變由2.24%增長(zhǎng)至5.36%;井壁最危險(xiǎn)位置(點(diǎn)A)穩(wěn)定性亦隨生產(chǎn)壓差增大而變差(圖8)。主要原因?yàn)椋孩偕a(chǎn)壓差越大,井周儲(chǔ)層壓降的效果越明顯,近井儲(chǔ)層有效應(yīng)力增大明顯,從而加劇井周儲(chǔ)層的塑性屈服和失穩(wěn);②生產(chǎn)壓差越大,可燃冰分解程度越大,近井儲(chǔ)層的膠結(jié)程度和力學(xué)強(qiáng)度越弱,穩(wěn)定性越差。
可燃冰分解導(dǎo)致分解區(qū)的孔隙壓力降低,分解區(qū)維持著較高的有效應(yīng)力水平,在井壁兩側(cè)應(yīng)力集中明顯,在井壁點(diǎn)A和點(diǎn)B附近分別是最大和最小應(yīng)力集中區(qū)域,在這兩個(gè)區(qū)域的穩(wěn)定性指數(shù)產(chǎn)生劇烈變化。從圖7中可知,穩(wěn)定性指數(shù)曲線在起始階段的變化率很大,在較小的距離內(nèi)即從負(fù)值增大到0,這是因?yàn)閮?chǔ)層發(fā)生失穩(wěn)破壞主要集中在井壁的小部分區(qū)域內(nèi)。距井壁較遠(yuǎn)的可燃冰分解區(qū)域雖然有減小的趨勢(shì),但其穩(wěn)定性指數(shù)仍然比可燃冰未分解區(qū)稍大,而未分解區(qū)的有效應(yīng)力維持原狀儲(chǔ)層的應(yīng)力狀態(tài),穩(wěn)定性指數(shù)水平也相對(duì)較低,曲線比較平緩。隨著生產(chǎn)壓差的增加,井壁穩(wěn)定性指數(shù)不斷減小(圖8),井壁發(fā)生破壞失穩(wěn)的風(fēng)險(xiǎn)不斷提高,當(dāng)分解時(shí)間為2 h,生產(chǎn)壓差由2 MPa增加至5 MPa時(shí),儲(chǔ)層井壁穩(wěn)定性指數(shù)由1.21 MPa降低至-2.925 MPa。
井底低壓擴(kuò)散范圍隨開(kāi)采時(shí)長(zhǎng)增加不斷增大,以生產(chǎn)壓差4 MPa為例,對(duì)開(kāi)采時(shí)長(zhǎng)為12、24、36和48 h四種情況進(jìn)行模擬。圖9為儲(chǔ)層等效塑性應(yīng)變分布,不同開(kāi)采時(shí)長(zhǎng)下BC邊界、AE邊界的穩(wěn)定性指數(shù)分布如圖10所示。
儲(chǔ)層穩(wěn)定性指數(shù)分布的變化范圍與可燃冰分解程度的變化規(guī)律一致,隨著開(kāi)采時(shí)長(zhǎng)的增加,儲(chǔ)層可燃冰分解范圍不斷擴(kuò)大,導(dǎo)致近井儲(chǔ)層的塑性屈服區(qū)域不斷擴(kuò)張、屈服程度不斷增大。
點(diǎn)A作為井壁上最易發(fā)生剪切破壞的位置,隨著開(kāi)采時(shí)長(zhǎng)的增大,穩(wěn)定性指數(shù)不斷減小,等效塑性應(yīng)變值增長(zhǎng)速率越來(lái)越大(圖11),井壁發(fā)生破壞失穩(wěn)的風(fēng)險(xiǎn)不斷提高。生產(chǎn)壓力為4 MPa,分解時(shí)間從12 h增加至48 h時(shí),儲(chǔ)層井壁穩(wěn)定性指數(shù)由-2.11 MPa降低至-3.65 MPa,井壁的最大塑性應(yīng)變由5.31%增大到9.3%。
4 結(jié) 論
(1)隨著可燃冰的分解,可燃冰飽和度減小,甲烷氣體和水的飽和度均增大,可燃冰完全分解,飽和度由0.5降為0,儲(chǔ)層氣相飽和度增加0.46,水飽和度增加0.04,但氣體飽和度增大明顯;氣相飽和度增加值約為水相飽和度增加值的11.5倍。水在儲(chǔ)層中的滲流速度小于氣體,氣體和水在壓力梯度的作用下在井眼周?chē)鷧R集,井周氣體飽和度明顯高于水飽和度。
(2)近井儲(chǔ)層屈服后,塑性區(qū)內(nèi)滲透率和有效孔隙度明顯增加,彈性模量和黏聚力大幅度降低;生產(chǎn)壓差為4 MPa時(shí),隨著可燃冰的分解,滲透率由1.56×10-3μm2增加至200×10-3μm2,有效孔隙度由0.2增加至0.4,儲(chǔ)層彈性模量由3.65 GPa降低至1.66 GPa,黏聚力由2 MPa降低至1.52 MPa。
(3)生產(chǎn)壓差越大,生產(chǎn)時(shí)長(zhǎng)越長(zhǎng),可燃冰分解區(qū)域越大,儲(chǔ)層物性參數(shù)所受影響范圍越廣,儲(chǔ)層塑性屈服區(qū)域越大,井壁穩(wěn)定性越差;當(dāng)分解時(shí)間取為2 h時(shí),生產(chǎn)壓差由2 MPa增加至5 MPa時(shí),儲(chǔ)層井壁穩(wěn)定性指數(shù)由1.21 MPa降低至-2.925 MPa;生產(chǎn)壓力為4 MPa,分解時(shí)間從12 h增加至48 h時(shí),儲(chǔ)層井壁穩(wěn)定性指數(shù)由-2.11 MPa降低至-3.65 MPa。
參考文獻(xiàn):
[1]劉天樂(lè),蔣國(guó)盛,寧伏龍,等.水合物地層低溫鉆井液對(duì)井底巖石表層強(qiáng)度影響[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,39(4):147-153.
LIU Tianle, JIANG Guosheng, NING Fulong, et al.Influence of low temperature drilling fluid on strength of downhole rock surface[J].Journal of China University of Petroleum (Edition of Natural Science), 2015,39(4):147-153.
[2]SUN X, LUO H, KENICHI S. A coupled thermal-hydraulic-mechanical-chemical (THMC) model for methane hydrate bearing sediments using COMSOL multiphysics[J]. Journal of Zhejiang University-Science A,2018,19(8):600-623.
[3]王文博,劉曉,崔偉,等.天然氣水合物降壓開(kāi)采數(shù)值模擬研究[J].地球物理學(xué)報(bào),2021,64(6):2097-2107.
WANG Wenbo, LIU Xiao, CUI Wei, et al. Numerical simulation on depressurization production of natural gas hydrate[J]. Chinese Journal of? Geophysics, 2021,64(6):2097-2107.
[4]董懷民,孫建孟,林振洲,等.基于CT掃描的天然氣水合物儲(chǔ)層微觀孔隙結(jié)構(gòu)定量表征及特征分析[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,42(6):40-49.
DONG Huaimin, SUN Jianmeng, LIN Zhenzhou, et al. Quantitative characterization and characteristics analysis of micro-scopic pore structure in natural gas hydrate based on CT scanning[J]. Journal of China University of Petroleum (Edition of Natural Science) 2018,42(6):40-49.
[5]宋永臣,梁海峰,王志國(guó).天然氣水合物降壓開(kāi)采數(shù)值模擬及影響因素分析[J].大連理工大學(xué)學(xué)報(bào),2009,49(2):199-204.
SONG Yongchen, LIANG Haifeng, WANG Zhiguo. Numerical simulation for natural gas produced from hydrate and analysis of influence factors[J]. Journal of Dalian University of Technology, 2009,49(2):199-204.
[6]EVGENIY MM, YONGKOO S, JEEN-SHANG L, et al. Numerical simulations of depressurization-induced gas production from an interbedded turbidite gas hydrate-bearing sedimentary section in the offshore India: site NGHP-02-16 (area-B)[J]. Marine and Petroleum Geology, 2019,108:619-638,
[7]SUN Jiaxin, NING Fulong, LIU Tianle, et al. Gas production from a silty hydrate reservoir in the South China Sea using hydraulic fracturing: a numerical simulation[J]. Energy Science & Engineering, 2019,7(4):1106-1122.
[8]SUN Jiaxin, NING Fulong, LEI Hongwu, et al. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area: a case study[J]. Journal of Petroleum Science and Engineering, 2018,170,345-367.
[9]LIN J, UCHIDA S, MYSHAKINE, et al. Assessing the geomechanical stability of interbedded hydrate-bearing sediments under gas production by depressurization at NGHP-02 site 16[J]. Marine and Petroleum Geology, 2019,108:648-659.
[10]沈海超.天然氣水合物藏降壓開(kāi)采流固耦合數(shù)值模擬研究[D].青島:中國(guó)石油大學(xué)(華東),2009.
SHEN Haichao. Fluid-solid coupling numerical simulation on natural gas production from hydrate reservoirs by depressurization[D]. Qingdao:China University of Petroleum(East China), 2009.
[11]KIM H C, BISHNOI P R, HEIDEMANN R A. Kinetics of methane hydrate decomposition[J]. Chemical Engineer Science, 1987,42(7):1645-1653.
[12]WANG Zhiyuan, LIAO Youqiang, ZHANG Weidong, et al. Coupled temperature field model of gas-hydrate formation for thermal fluid fracturing[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2018,133:160-169.
[13]徐干成,鄭穎人.巖石工程中屈服準(zhǔn)則應(yīng)用的研究[J].巖土工程學(xué)報(bào),1990,12(2):90-99.
XU Gancheng, ZHENG Yingren. Study on the application of yield criterion in rock engineering[J]. Chinese Journal of Geotechnical Engineering, 1990,12(2):90-99.
[14]劉金龍,欒茂田,許成順,等.Drucker-Prager準(zhǔn)則參數(shù)特性分析[J].巖石力學(xué)與工程學(xué)報(bào),2006,25(S2):4009-4015.
LIU Jinlong, LUAN Maotian, XU Chengshun, et al. Study on parametric characters of Drucker-Prager criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(S2):4009-4015.
[15]冉啟全,顧小蕓.油藏滲流與應(yīng)力耦合分析[J].巖土工程學(xué)報(bào),1998,20(2):69-73.
RAN Qiquan, GU Xiaoyun. Coupling analysis of multiphase flow and stress for oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 1998,20(2):69-73.
[16]王華寧,郭振宇,高翔,等.含水合物地層井壁力學(xué)狀態(tài)的彈塑性解析分析[J].同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,48(12):1696-1706.
WANG Huaning, GUO Zhenyu, GAO Xiang, et al. Elastoplastic analytical investigation of mechanical response of wellbore in methane hydrate-bearing Sediments[J]. Journal of Tongji University(Natural Science), 2020,48(12):1696-1706.
[17]程遠(yuǎn)方,沈海超,趙益忠,等.多孔介質(zhì)中天然氣水合物降壓分解有限元模擬[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,33(3):85-89.
CHENG Yuanfang, SHEN Haichao, ZHAO Yizhong, et al. Numerical simulation with finite element method on natural gas hydrate decomposition by depressurization in porous media[J]. Journal of China University of Petroleum(Edition of Natural Science), 2009,33(3):85-89.
[18]van GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J]. Soil Science Society of America Journal, 1980,44(10):892-898.
[19]FREIJ-AYOUB R, TAN C, CLENNELL B, et al. A wellbore stability model for hydrate bearing sediments[J]. Journal of Petroleum Science & Engineering, 2007,57(1/2):209-220.
[20]沈海超,程遠(yuǎn)方,胡曉慶.天然氣水合物藏降壓開(kāi)采近井儲(chǔ)層穩(wěn)定性數(shù)值模擬[J].石油鉆探技術(shù),2012,40(2):76-81.
SHEN Haichao, CHENG Yuanfang, HU Xiaoqing. Numerical simulation of near wellbore reservoir stability during gas hydrate production by depressurization[J]. Petroleum Drilling Techniques, 2012,40(2):76-81.
[21]MASUDAY, FUJINAGA Y, NAGANAWA S. Modeling and experiment studies on dissociation of methane gashydrates in berea sandstone cores//The 3rd International Conference on gas hydrate[C]. Salt Lake City, USA, 1999.
[22]RUAN Xueke, LI Xiaosen, XU Chungang. A review of numerical research on gas production from natural gas hydrates in China[J]. Journal of Natural Gas Science and Engineering, 2020,85:103713.
(編輯 沈玉英)