彭佩 王勇
基于過渡金屬原子的電子結構及與之配位的配體多樣性,目前已經(jīng)合成了種類和數(shù)量眾多的過渡金屬配合物[1-2].這些配合物表現(xiàn)出豐富的光物理、光化學和電化學性質,使其在發(fā)光、電子轉移、生物傳感器、催化劑和染料敏化太陽能電池等領域有廣泛的應用[3-4].因此,引起了人們對具有八面體構型的 4d6和 5d6金屬配合物的興趣,這些金屬配合物的合成與光物理以及化學性質已成為各個領域研究的熱點[5-6].4d6釕金屬配合物具有獨特的物理、化學性質,分子本身具有較強的可塑性,可以通過改變配體或對其修飾,從而改變配合物的性質[7-8].目前許多釕金屬配合物被不斷設計合成出,并廣泛應用于多個研究領域.其中,發(fā)光的釕配合物尤其引人注目,這主要是由于其本身具有優(yōu)異的光物理、光化學性質以及十分穩(wěn)定的電化學氧化還原性.膦配體是過渡金屬最常使用的配體類型之一,它們與金屬有很強的結合能力,空間結構易于調節(jié),制備方法簡單,研究人員可根據(jù)膦配體的空間和電子性質,精確地設計出所需的過渡金屬配合物.近年來,因為在催化、光譜學、電化學等研究中具有廣闊的應用前景,含雙齒膦配體的過渡金屬配合物引起了廣大科研工作者的興趣[9-11].
過渡金屬配合物的化學和物理性質取決于配體在金屬中心周圍的幾何排列,除了它們不同的物理特性外,幾何異構體的化學性能也可能不同[12-13].盡管八面體金屬配合物中的順/反異構現(xiàn)象很常見,但同時系統(tǒng)研究順/反異構體的例子還不是很多.如果金屬配合物的順反異構化能導致材料性能發(fā)生顯著變化,將為未來的材料發(fā)展開辟許多可能性.
基于對順式/反式構型含雙膦配體釕化合物的興趣[14-15],文中合成了4個螯合雙膦單核釕化合物cis-Ru(dppm)2Cl2 (1),trans-Ru(dppm)2Cl2 (2),cis-Ru(dppe)2Cl2(4)和trans-Ru(dppm)2Cl2 (4),并對這4個化合物進行了核磁共振氫譜、碳譜、磷譜和X 射線單晶結構分析.此外,還研究了化合物 1~4 的紫外-可見吸收光譜和熒光光譜.
31PNMR和單晶X射線衍射分析等手段對化合物1~4進行了結構表征.結合晶體結構數(shù)據(jù)和紫外-吸收光譜,表明順式異構體具有比反式異構體更低的能量,是一種更穩(wěn)定的結構.
參考文獻:
[1] YANG Y Y,ZHU X Q,WANG Y,et al.Effect of potential difference between the central and terminal metals on the electron communication in an Fe-Ru-Fe cyanidometal-bridged mixed valence system[J].Inorg Chem Front,2022,9(18):4732.
[2] SEN S,WON M,LEVINE M S,et al.Metal-based anticancer agents as immunogenic cell death inducers:the past,present,and future[J].Chem Soc Rev,2022,51(4):1212.
[3] GOURDON L,CARIOU K,GASSER G.Phototherapeutic anticancer strategies with first-row transition metal complexes:a critical review[J].Chem Soc Rev,2022,51(3):1167.
[4] VOLARIC J,SZYMANSKI W,SIMETH N A,et al.Molecular photoswitches in aqueous environments[J].Chem Soc Rev,2021,50(22):12377.
[5] PETE S,ROY N,KAR B,et al.Construction of homo and heteronuclear Ru(Ⅱ), Ir(Ⅲ) and Re(Ⅰ) complexes for target specific cancer therapy[J].Coord Chem Rev,2022,460:214462
[6] YEUNG C F,SHEK H L,YIU S M,et al.Controlled activation of dipicolinyl-substituted propargylic alcohol by Ru(Ⅱ)and Os(Ⅱ)for unprecedented indolizine-fused metallafuran complexes[J].Organometallics,2021,40(15):2458.
[7] RUPP M T,SHEYCHENKO N,HANAN G S,et al.Enhancing the photophysical properties of Ru(Ⅱ) complexes by specific design of tridentate ligands[J].Coord Chem Rev,2021,446:214127.
[8] UDYARDY A,JOO F,KATHO A.Synthesis and catalytic applications of Ru(Ⅱ)-phosphaurotropine complexes with the use of simple water-soluble Ru(Ⅱ)-precursors[J].Coord Chem Rev,2021,438:213871.
[9] TAKEDA H,KOBAYASHI A,TSUGE K.Recent developments of photoactive Cu(Ⅰ)and Ag(Ⅰ) complexes with diphosphine and related ligands[J].Coord Chem Rev,2022,470:214700.
[10] WANG X M,HAN Z B,WANG Z,et al.A type of structurally adaptable aromatic spiroketal based chiral diphosphine ligands in asymmetric catalysis[J].Acc Chem Res,2021,54(3):668.
[11] WIEDNER E S,APPEL A M,RAUGEI S,et al.Molecular catalysts with diphosphine ligands containing pendant amine[J].Chem Rev,2022,122(12):12427.
[12] KAYA Z,BENTOUHAMI E,PELZER K,et al.Cavity-shaped ligands for asymmetric metal catalysis[J].Coord Chem Rev,2021,445:214066.
[13] ASSEN A H,ADIL K,CORDOVA K E,et al.The chemistry of metal-organic frameworks with face-centered cubic topology[J].Coord Chem Rev,2022,468:214644.
[14] WANG Y.Synthesis,structural and metal-to-metal charge transfer properties of cyanide-bridged compound FeⅡ/Ⅲ-NC-RuⅡ-CN-FeⅡ/Ⅲ[J].New J Chem,2022,46(8):3978.
[15] LIU M,HU J,WANG Y.Synthesis,crystal structure and MMCT of a heterobimetallic cyanide-bridged complex trans-BrRuⅡ(dppe)2(μ-CN)(FeⅢBr3)[J].Polyhedron,2018,149:79.
[16] SULLIVAN B P,CALVERT J M,MEYER T J.Cis-trans isomerism in (trpy)(PPh3)RuC12:comparisons between the chemical and physical properties of a Cis-trans isomeric pair[J].Inorg Chem,1980,19(5):1404.
[17] EVANS I P,SPENCE A,WILKINSON G.Dichlorotetrakis(dimethyl sulphoxide) ruthenium(Ⅱ) and its use as a source material for some new ruthenium(Ⅱ) complexes[J].J Chem Soc,Dalton Trans,1973(2):204.
[18] SHELDRICK G M.Program for X-ray Crystal Structure Refinement[M].Gttingen:University of Gttingen,Germany 2016.
(責任編輯 陸泉芳)